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Abstract: Images taken by drones often must be preprocessed and stitched together due to the
inherent noise, narrow imaging breadth, flying height, and angle of view. Conventional UAV feature-
based image stitching techniques significantly rely on the quality of feature identification, made
possible by image pixels, which frequently fail to stitch together images with few features or low
resolution. Furthermore, later approaches were developed to eliminate the issues with conventional
methods by using the deep learning-based stitching technique to collect the general attributes of
remote sensing images before they were stitched. However, since the images have empty backgrounds
classified as stitched points, it is challenging to distinguish livestock in a grazing area. Consequently,
less information can be inferred from the surveillance data. This study provides a four-stage object-
based image stitching technique that, before stitching, removes the background’s space and classifies
images in the grazing field. In the first stage, the drone-based image sequence of the livestock on the
grazing field is preprocessed. In the second stage, the images of the cattle on the grazing field are
classified to eliminate the empty spaces or backgrounds. The third stage uses the improved SIFT to
detect the feature points of the classified images to o8btain the feature point descriptor. Lastly, the
stitching area is computed using the image projection transformation.

Keywords: livestock management; drones; image stitching algorithms; cattle monitoring; drone
image processing

1. Introduction

Unmanned aerial vehicles (UAVs) are routinely applied in diverse fields. One appli-
cation area is the agricultural field, where UAVs can monitor grazing fields, crops, and
pests; act as actuators; and observe regional geological conditions and farm produce. One
of the many features that must be developed for dependable technology to aid people in
using and maximizing the function of drones is the capacity for photogrammetry. However,
cloud cover is a problem as long as photogrammetry is still only acquired from satellites,
particularly during the rainy season. Additionally, reliance on satellite data is expensive
and results in information delays due to the slow data collection rate. One of the alternative
technologies to get a more thorough, fast, quick, and economic assessment is imagery taken
by an unmanned aerial vehicle. Another method for locating a place for various purposes
is to use a UAV equipped with a camera [1].

Both single and multiple drone technological systems have been recently employed to
achieve effective and efficient surveillance of agricultural farms and cattle grazing fields to
improve farming and herding operations whilst eradicating hunger [1,2]. However, the
surveillance images obtained from this agricultural farmland and cattle grazing areas using
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drones are limited by the drone camera’s angle of view [2]. This effect often leads to over-
lapping images, causing challenges and obstacles in image processing and data recognition.
One common technique used to solve the issue of overlapping images in a drone-based
cattle surveillance system is the image stitching technique [3]. The process of integrating
several overlapping images from various viewpoints to produce a high-resolution image
representing the information of an entire coverage region is known as image or panorama
stitching. Direct pixel-to-pixel and feature-based methods can be used to complete the
procedure. Stitching images are essentially broken down into multiple processes, including
interest points extraction and matching, target image registration, mixing, and special
border processing. The target image’s registration and integration are the most crucial [4].
The precision and speed of the finished spliced image will be significantly impacted by
the image splicing algorithm used. The diagram in Figure 1 conceptualizes the processes
involved in drone-based image stitching for cattle grazing fields [5,6].
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Figure 1. Generic Drone-Based Image Stitching Process for Cattle Surveillance.

Figure 1 serves as an illustration of a general drone-based image stitching method for
cattle observation. The four development stages of the system under discussion are picture
preprocessing, image matching and registration, image modification, and image stitching.
The drones have cameras with sensors. This makes it possible to get photographic data
on the cattle and the grazing area [7]. The designed system receives and preprocesses
the images collected by each drone. For the vast number of images captured by these
drones on grazing fields to be useful for inferential purposes, they must first be analyzed
quickly. Second, wind-induced UAV vibrations and unstable aircraft control likely lead to
the capture of low-quality surveillance images. The constant position changes of UAVs
make it challenging to estimate camera pose, which necessitates preprocessing.

Because conventional methods, such as human watching over the grazing field, are not
sustainable, drone-based cattle management and surveillance in contemporary cities are
crucial [8–11]. This is because the drone/UAV can have a broader view range of the cattle
on the grazing field than the human eye. The constant surveillance of cattle on grazing
fields can be linked to the continuous increase in demand for and strain on the available
resources to meet the goals of the international community’s sustainable development
agenda, which aims to eradicate world hunger by 2030. Recent research papers have made
an effort to support the global community’s objective for sustainable development by
utilizing various cutting-edge strategies for cultivating agricultural produce and managing
cattle. To enhance farming and herding operations, the smart livestock farm deployed
drone technology as a surveillance approach [12–16]. The drones used for the job featured
sensors for taking pictures and computer vision capabilities that oversaw the entire process.
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Nevertheless, during a drone flight, a single surveillance image only contains a small
amount of information due to the limited flight height and the wide angle of the aerial cam-
era, among others. This causes some challenges and obstacles in the processing and recog-
nition of the data presented in it. Multiple aerial livestock images must be picture-stitched
together to acquire information on the cattle in a generally full surveillance area [17–21]. As
a result, creating a full surveillance area will effectively inform stakeholders in the livestock
farming industry of the insights obtained from the processed data and suggestions for
management strategies.

The remainder of the text is organized as follows: The usage of common approaches
in drone-based image stitching, usage platforms, and state-of-the-art drone-based cattle
management and surveillance in contemporary cities are all reviewed in Section 2. Section 3
describes the platform’s technological features, which enable the real-time use of image
identification and description algorithm for cattle management and surveillance. The
results obtained compared to other works of literature are presented in Section 4. Finally,
Section 5 summarizes the research findings and discusses potential further research directions.

Several approaches to drone-based image stitching have been widely used in literature.
These are the Speeded Up Robust Feature (SURF), Oriented FAST and rotated BRIEF
(ORB), and Scale-Invariant Feature Transform (SIFT) [22–25]. The development of some
of the recent drone-based image stitching techniques can be traced to these three frequent
approaches. The operating principle and governing equations are presented subsequently.

SURF: The SURF method is a quick and reliable approach for local, similarity-invariant
representation and comparison of images. The SURF approach’s essential appeal is its
ability to compute operators quickly using Laplacian of Gaussian box filters, enabling
real-time applications like tracking and object detection. The core of the SURF method
depends on the Hessian matrix [26–28]. The SURF algorithm primarily entails creating the
Hessian matrix, creating the scaling space, determining the feature points first, then using
non-maximal suppression, precisely locating the feature points, and choosing the primary
direction [29,30]. The governing equations to perform the SURF operations are presented
in Equations (1)–(3).

The entry of an integral image I∑(x), which is at a drone-based image location,
z = (x, y)T , indicates the total number of pixels in the input image I contained inside
the rectangle area bounded by the origin and z.

I∑(x) =
σ≤x

∑
a=0

b≤y

∑
b=0

I(a, b) (1)

The Hessian of a given pixel is computed as

Hessian( f (a, b)) =

 ∂2 f
∂a2

∂2 f
∂a∂b

∂2 f
∂a∂b

∂2 f
∂b2

 (2)

Filtering the image using a Gaussian kernel at the point z = (x, y)T , the Hessian matrix
Hessian (z, σ) in z at scale σ is defined as

Hessian(z, σ) =

[
Laa(z, σ) Lab(z, σ)
Lab(z, σ) Lbb(z, σ)

]
(3)

ORB: ORB is an alternative to SURF and SIFT, combining FAST and BRIEF descriptors.
Several researchers have used ORB because it is an open-source alternative to the
SURF and SIFT algorithms [31,32].
SIFT: A method for identifying conspicuous, stable feature points in an image is
called SIFT. It also offers a group of features that characterize and describe a tiny
area of the surrounding image for each such point. These characteristics are scale-
and rotation-invariant. Four stages are used to perform the SIFT operations, each
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with a governing equation. The four stages are scale-space extrema detection, key
point localization, orientation assignment, and key point descriptor. Equations (4)–(6)
present the mathematical expression of the stages [33–35]. To perform the scale-
space extrema detection on a drone-based image ID(x, y), a transformation function
is defined as a product of the convolution of a Gaussian kernel with the drone-
based image.

L(x, y, σ) = GK(x, y, σ)× ID(x, y) (4)

where GK(x, y, σ) is the Gaussian kernel and σ is the width of the Gaussian filter.
Once the interesting point has been detected, orientation is assigned to each of the

selected key points, and then the selection of the Gaussian smoothed image from the scale
of the key point occurs. For the Gaussian smoothed image, G(x, y), the orientation and
magnitude are defined as

θ(x, y) = tan−1 G(x, y + 1)− G(x, y− 1)
G(x + 1, y)− G(x− 1, y)

(5)

m(x, y) =
√
(G(x + 1, y)− G(x− 1, y))2 + (G(x, y + 1)− G(x, y− 1))2 (6)

2. Review of Related Works

This subsection reviews the works conducted on drone-based image stitching to obtain
the requisite information about the livestock on the grazing field. In the article [36], the
authors presented a Speeded Up Robust Feature (SURF) algorithm designed to address
the issue of a single drone not covering an image because of the drone’s narrow field of
view. Using the Hough transform and the existing image stitching algorithm, the article
tweaked and improved the conventional SURF algorithm. The decision tree forest in the
generalized Hough transform is used to filter the set of feature points after the feature
points are extracted by the SURF algorithm for the images to be spliced, and the fading
image fusion technique is then used for image splicing.

The authors updated the SURF method because of its reputation for quick feature point
extraction. Nevertheless, when the degree of rotation and angle of view is too wide, the
SURF algorithm typically has low matching accuracy. The presented drone image stitching
algorithms in the literature have been classified as indoor and outdoor environmental-
based algorithms. This can be seen in the work of [37], which presented a frame stitching
technique for an indoor-based surveillance drone. With the goal of tackling low illumination
situations and non-planar scenes, which are common in indoor environments, a selective
approach was devised for merging frames of drone-captured video. The authors’ indoor
example of the scenario was a warehouse. As a result, it was claimed that the developed
technique could handle sparse feature points and a lack of feature point correspondence in
a particular scene. Both qualitatively and statistically, the proposed method was contrasted
with the SURF and Scale-Invariant Feature Transform (SIFT) techniques. According to the
study’s presentation, the presented technique was designed to address many challenges far
better than the other algorithms.

An unmanned aerial vehicle (UAV) image stitching technique was reported in [38]
and was based on the optimal seam algorithm and half-projective warp. The method
was created to preserve the image’s original information successfully and achieve the
optimum stitching effect in the UAV images. The ghosting and blurring issues on the
stitched images are supposedly eliminated mostly by current seam stitching algorithms.
However, the deformation and angle distortion brought on by image registration are still
present in the stitched images. The author attempted to correct the deformation and
angle distortion due to image registration in the stitching results. First, the correction
was said to be done by creating a new difference matrix that contains the structural,
color, and line difference information in the overlapped region of the aligned images.
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The authors proposed a seam search algorithm by limiting the search range of the seam
using a minimum and global energy value. The stitched image’s shape was corrected
due to the seam position and half-projective warp, preserving the original shapes of more
regions. Some UAV photos were used in the experiment to demonstrate the stitching
effect. Reference [18] presented a local mesh-based bundle adjustment to successfully stitch
numerous overlapping drone photos into a natural panoramic image due to the limitation
of parallax caused by perspective changes and the inability of the existing traditional
method to handle the effect. A framework with an energy minimum as a performance
metric was created to accomplish this, and the parallax faults were incorporated into it.
This energy can be reduced effectively based on local bundle modification, eliminating
parallax effects, and achieving precise alignment. The studies revealed that the stitching
process performs better than the compared techniques in eliminating parallax effects and
producing more realistic outcomes. However, ghost problems in captured surveillance
scenes still occur.

To prevent the ghost problem in conventional approaches when the scene is subject to
significant shifts in viewpoint, the authors of [39] integrated a robust elastic warping-based
parallax-tolerant picture stitching method into the stitching of drone images. Nonetheless,
some outliers were identified with this method. To properly remove outliers from a set of
putative feature correspondences, a set of high-precision matched feature points were first
provided for a pair of drone images. The input image was then warped according to the
estimated deformation on the non-grid plane. A robust elastic warping function, which
eliminates the parallax error, was also used. The global projectivity preservation approach
was then used to produce resultant panoramas with high precision. Results of tests showed
that the approach could produce superior panoramas to its cutting-edge rivals. The authors
in [40] then provided a panoramic image that guarantees that drone surveillance images of
dairy cattle are not cropped, duplicated, or missed and that the final image is practically
inferential. It suggested that authors should ensure the use of a technique separating the
dairy cattle’s distinct regions and adding them to a panoramic image. To make a panoramic
image without the difficulty of 3D reconstruction, a map of a cattle barn floor was utilized
as the compositing surface. The findings of individual cattle region extraction were used to
create the image.

The work of [41] guided animals on the grazing field using a multiple quadrotor
UAV. The animals were guided from the grazing field to their pen with the help of the
drone surveillance images incorporating noises of predators modelled with an exponential
function with a view of providing a solution to the cattle roundup problem. An initial
aerial picture of a big herd of cattle was obtained, and image stitching was implemented
by combining the image frames. A little deviant from the work of [36–41], the authors
in [42] used one of the most common drone image-based stitching techniques to monitor
crop pests quickly and effectively. The main topic of discussion was using an enhanced
scale-invariant feature transform (SIFT) algorithm to scan drone images and extract disease
crop information quickly. Conversely, the least-squares match is employed to locate exact
matches given all the rough feature matches based on SIFT features. The image stitching
and mosaicking are based on an improved SIFT algorithm for the UAV images in various
deformation, lighting changes, and resolutions.

Using panoramic image stitching and object identification, the authors of [43] devel-
oped a drone patrol system. The authors tried to propose a technique that will stitch drone
images whilst eliminating motion ghosts. The scheme integrates the SPHP algorithm with
a region-growing algorithm based on various images to create a panorama image and elim-
inate motion ghosts. To improve the results of object classification, it also emphasizes scene
classifications and employs the well-known Faster RCNN object detector. For images of
straw farming, the authors of [44] recommend improving the scale-invariant feature trans-
form (SIFT) method. The image is down-sampled before feature detection to reduce the
number of feature points and improve feature extraction. Then, feature points are matched
using gradient normalization-based feature descriptors to improve the matching accuracy.
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The images are combined with the best stitching, fade-in, and fade-out effects to create
high-quality stitching. When stitching together surveillance images from an unmanned
aerial vehicle, reference [45] investigated the mismatch of the overlap areas from the UAV.
A local stitching technique was suggested to ensure the evenness of the projection link
between each image and the panoramic image to solve the problem as follows. The feature
points were first filtered. Image rotation systems were developed to stop the error of image
tilt brought on by perspective changes. A single-band grey-scale image was created for each
input image by combining the bands that relate to the red, green, and blue wavelengths,
according to the authors’ proposal in [46], which uses deep feature matching and elastic
warp. The feature points of each HSI were matched using a graph neural network, and the
spectral consistency of adjacent images was then ensured using intrinsic decomposition
and the determination of the transformation matrix of nearby images.

Another work [47] proposed a novel image stitching method for UAV images utilizing
an adaptive natural warp for image registration. This method aims to create two aligned
images in the same coordinate system. To find a perceptually optimal seam located in
continuous areas with high similarity, information on the color difference, gradient differ-
ence, and texture complexity was combined using the Superpixel energy function. The
Superpixel color mixing technique was utilized to remove the evident seams and produce
realistic color transitions. At the same time, a graph cut algorithm was used to conceal the
artefacts in the overlapping parts. The authors of [48] provide a rapid adaptive stitching
method for managing numerous aerial images by analyzing the UAV image footprints’
relative positions and overlapping regions using their available geotag information. All the
UAV images were processed to remove the heavily correlated images using quick feature
extraction and feature matching method. A local warp approach with a smooth transition
for overlapping regions was introduced to eliminate blurring artefacts and achieve exact
image alignment. The global alignment combined with a sharp preserving wrap to generate
natural-looking panoramas was also presented by [49]. A global alignment technique was
suggested to align the input images better to achieve natural-looking panoramas. The
stitching results were stated to improve alignment accuracy while maintaining the shape
when combined with a shape-preserving warp.

The work presented in [50] suggested a projection plane selection approach for UAV
image stitching in which a weighted topological network is established. All images are
divided into stable and unstable groups based on their affine model registration faults.
Using this method, the reference image is selected from the stable group, maintaining a
minimal total cumulative registration error. Based on the cost of the topological graph, each
unstable group image has a local image feature linked to a stable group image. The authors
of [51] offer a stitching technique that accurately predicts homography for images with
slight parallax using a deep neural network. The fundamental components of the concept
are feature maps with progressively better resolution and the hybridized matching cost
volumes. The author also provides a novel loss function for stitching that considers the
contents of images. To stitch a duo of images together, the authors of [52] employ SIFT and
SURF as feature detectors and feature descriptors. They also use a brute force matcher with
a Euclidean distance. Following the discovery of the initial match, the Random Sample
Consensus (RANSAC) is used as homography to acquire the correct matching estimates.
The deep neural network-based stitching approach was proposed by [51]. Three main
issues that need to be fixed for aerial video stitching are the size factor in the stitched
images, the frequently moving camera projection center, and severe motion blur in some
frames, according to [53]. The authors further advise looking for items with apparent depth
changes and selecting a zone containing them for stitching. They also suggest assessing
the amount of motion blurs in each video frame and, if possible, avoiding using frames
with noticeable motion blur. A new image mosaic technique for the UAV aerial image was
provided by [54] using the fast explicit diffusion (FED) algorithm based on the modified
KAZE algorithm. After adopting the Hamming strategy for a rough match of these feature
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points, the upgraded PROSAC technique was applied for exact correct matching. The
image was then stitched together using the weighted average method.

In conclusion, it is evident from the reviewed works that, through image stitching
technology, high-resolution images taken from the air by drones can be processed to
offer image information for the quick and precise detection of animals in grazing fields.
Research works have used conventional algorithms like the SIFT, SURF, and ORB, as well
as some deep learning approaches. However, using conventional algorithms presents
some drawbacks, such as high dimensionality reduction of feature descriptors and low
matching efficiency. Furthermore, some authors that used the deep learning approaches
have an empty background that is classified as stitched points, which are challenging to
distinguish livestock in a grazing area. As such, this paper proposes a pipeline for drone
image stitching algorithms using SIFT-CNN (SIFT-Convolutional Neural Network). Our
contributions are summarized as follows:

• We designed an improved SIFT-CNN algorithm pipeline for drone-based image stitch-
ing suitable for a livestock management system. We showed that classifying the
images on the grazing field and removing empty backgrounds from the stitch points
improves inference drawn from drone surveillance images.

• We simulated the design system with a set of high- and low-resolution images to learn
the various impact on inference from the drone surveillance images.

• The proposed algorithm is compared with the conventional algorithms applied to
grazing fields for effectiveness and efficiency.

3. Proposed System

This subsection presents the methodology adopted in this work. The grazing field
represents the geographical area covered by the cattle. The problem formulation used a set
of three UAVs employed to cover a grazing field in which each UAV was equipped with a
camera to capture surveillance images of the livestock. The diagram in Figure 2 presents
the pipeline of the proposed system.
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The proposed pipeline presented in Figure 2 is not limited to cattle surveillance
applications. It is applicable to other UAV surveillance scenarios but with modifications.

3.1. Methodology

The step-by-step approach employed for successfully implementing the proposed
method presented in this paper is discussed in the following items.
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Image Preprocessing and Enhancement

Images collected on grazing fields suffer from noise inherent to these images. This
type of noise is mostly speckle noise that can be attributed to the type of camera used or
the weather conditions. The test images were collected and separated as those containing
images of cattle and just empty backgrounds and were read in as an input into the MATLAB
environment accordingly. The authors of [55] compared convolutional neural network
architectures to determine bird image features efficiently in an anti-drone system. The
obtained results showed that the architectures of the AlexNet, VGG-16, ResNet18, and
ResNet50 obtained higher accuracy in comparison to the GoogLeNet, Inception-v3, and
Squeezenet. Based on this, the ResNet architecture is used in this research work. Since we
are using the already pre-trained network model, we first load the pre-trained network,
perform data argumentation, replace the final layers, and train the network. Afterwards,
we predicted and accessed the model’s accuracy and deployed the results for the stitching
process a priori. The collected data were preprocessed as the input, as shown in Figure 3.
The mathematical formulae used to preprocess the input images, which are of a different
dimension, are presented in Equation (7).

The ideal images captured from a surveillance camera on a grazing field are prone to
noise due to varying weather conditions. Hence, to improve the information quality ob-
tained from these surveillance images, the images were enhanced using a developed adap-
tive histogram-based equalization technique focusing on the hue and saturation values. The
underlying equations for the enhancement techniques are presented in Equations (8)–(11),
whilst the algorithm is shown in Algorithm 1. The collected images were in RGB format,
converted to HSV format, and filtered using a Laplacian filter. The variances of rows and
columns pv, qv were computed and used to enhance the Laplacian filter pa, qa for correlation
and image enhancement.

pv = ∑[p(a, b)− pa]
2 (8)

qv = ∑[q(a, b)− qa]
2 (9)

Equations (9)–(10) were used for correlation and enhancement of the images.

C(a, b) = ∑[p(x, y)− pv], [q(x, y)− qv]√
pv, qv

(10)

penhancement = p(a, b) + K1[p(a, b)− pv]− K2 [q(a, b)− qv]× C(a, b) (11)

where K1 and K2 are constant values between 0 and 1.
The output of contrast after subjecting it to the Laplacian filter is enhanced using a

fixed value of gamma 0.77.
qenhancement = q0.77 (12)

The enhanced luminance and contrast (penhancement and qenhancement) components of
the images are added back to the hue value to get the improved HSV of the image. The
HSV value is then converted back to RGB for classification.

(w224, h224) =
DM

max(w, h)
(w, h) (7)

where (w, h) are the width and height of the images, respectively.
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Algorithm 1: Image Pre-processing.

Input: K1, K2
Output: Enhanced Images.
1 Survey grazing field and capture images (I)
2 RGB to HSV conversion RGB→ HSV

3
Separate colour components in images
H = I(:, :, 1), H = I(:, :, 2), H = I(:, :, 3),

4 Laplacian filter—Compute S and V

5
Process image—compute pv and qv using (8) and Compute C(a, b) and Penhancement
using (9) and (10)

6 Enhance colour—compute qenhancement using (11)
7 Combine HSV and convert RGB← HSV
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3.2. Image Classification

The result of the enhanced images (R, G, B) was passed through the Resnet 50 clas-
sification algorithm, in which the architectures are depicted in Figure 4. Since the input
images are a set of numeric scalars representing features, a feature layer (fc1000) is used,
and the images will enter the ResNet50 layer with the pre-trained weights. The proposed
model has two layers, a pre-trained ResNet layer and a Feature layer, as illustrated in
Figure 4. Importing pre-trained weights for the ResNet50 model, the input data will be
trained using pre-learned weights, and the feature layer will be used to detect specific
global configurations of the features detected.
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3.3. Image Stitching

In the image stitching stage, feature detection is performed on the classified images
that will be stitched. The SIFT is used for the feature detector. This procedure’s first step
is calculating the corner detection function to find the corners on the images since it is a
grazing field image, thereby passing the coordinates into the SIFT detector. With the SIFT
detector, the extent and where a key point is located in the images are identified with the
aid of the Gaussian difference. Afterwards, a table of the distances between the descriptors
of each image is obtained. The Euclidean distance between the image’s vectors is used, and
the distances smaller than a set threshold value are recorded. Using the recorded indexes,
paired coordinates between images are identified. The RANSAC is then used to find the
transformation matrix. Once the transform between the images is determined and the
paired coordinates are known, the images can be stitched together. The diagram in Figure 5
depicts the image stitching procedure.
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Algorithm 2. Stitching Procedure.

Input: Input: Classified images, Th, dist_th, σ

Output: Enhanced Images.
1 Detect corners in (I)
2 Initiate SIFT detector
3 Define transformation using Equation (4)
4 Find the orientation of the gaussian smoothed image using Equation (5)
5 Find the magnitude of the gaussian smoothed image using Equation (6)
6 Compute Euclidean distance (ED) between the images
7 If ED < dist_th
8 Record indexes
9 else go to line 6
10 endif
11 Determine the pair coordinates of the images using the RANSAC algorithm
12 Compute transformation matrix
13 Register commonality between the set of images
14 Stitch images

The Source code of the proposed methodology and pipeline are available at https://github.com/
bosadiq?tab=repositories accessed on 2 January 2022.

4. Results and Discussion

In this section, we present the result obtained from the image preprocessing and
then obtained from the pre-trained convolutional neural network model. A discussion
using the SIFT-CNN algorithm is presented. After that, the performance of SIFT-CNN
on cattle surveillance on grazing fields is presented. Cattle dataset images, which were
separated based on the view (front view, left view and right view), were obtained from
https://www.kaggle.com/datasets/afnanamin/cow-images (accessed on 2 January 2022).
The obtained dataset consists of 89 cattle images of the front view, 60 cattle images of the
side view, and 50 cattle images of the right view. The obtained dataset was split into 70%
and 30% for training and testing, respectively. Cattle images as input were used to predict
whether the image was that of cattle or not. The possible outcomes of the classifier are
positive and negative.

4.1. Result Analysis on Image Preprocessing and Enhancement

A subjective evaluation of the images’ quality using subjective visual effects was
utilized as the first approach, and an objective evaluation utilizing the peak-to-signal-noise
ratio (PSNR) as the second method as follows:

pnsr = 10 log10

[
2552

MSER

]
(13)

The MSER is the mean square error and is obtained as follows:

MSER =
∑(a,b) (Iacquired(a, b)− Ienhanced(a, b)

)2

ab
(14)

where Iacquired(a, b) is the acquired image, and Ienhanced(a, b) is the enhanced image.
The higher the value of the PSNR, the better the reconstructed image. The subjective

visual effect of the obtained image preprocessing technique on one of the sampled images
is presented in Figure 6.

https://github.com/
bosadiq?tab=repositories
https://www.kaggle.com/datasets/afnanamin/cow-images
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Figure 6. Subjective Visual Effect of the Obtained Image Preprocessing Technique.

Based on Equations (12) and (13), the obtained PSNR for the proposed image enhance-
ment technique on cattle images was 65.7939. The obtained result will help improve the
inference drawn from the surveyed images.

4.2. Result Analysis on the Classification of Cattle Images

The obtained images were corrupted with different noise levels because noise is inher-
ent in cattle images obtained from cattle grazing fields using drones to test the classification
accuracy before stitching. The visualization of the first section of the network architecture
of the MATLAB-based image classification algorithm is depicted in Figure 7, while the
diagram in Figure 8 presents the architecture of the ResNet50.
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Figure 8. ResNet50 Architecture.

Table 1 presents the obtained results for the image preprocessing and classification
algorithm.

Table 1. Result of Image Preprocessing and Classification.

Noise Level (%) Classification Accuracy (%) PSNR

0 95.56 65.7939
5 62.20 65.7986
10 60.00 65.8245
15 60.00 65.8243
20 60.00 65.8465
25 55.60 65.8465
30 55.56 65.8465

From the results presented in Table 1, it can be observed that the enhancement algo-
rithm helped to improve the classification of images of cattle on the grazing field captured
by drones. As the level of noise captured with the images increases, the classification
accuracy decreases when the captured images are not passed through the enhancement
algorithm. The PSNR increases as the level of captured noise increases, implying that the
corrupted images are reconstructed with improved quality. The noise level graph against
the classification accuracy and PSNR is shown in Figure 9.
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4.3. Result Analysis of the Stitching Procedure

The SIFT-CNN algorithm uses the generalized Harris corner detection to extract
corners and infer feature information of the cattle on the grazing field to achieve the
screening and match objectives. It first harvests feature points using the SIFT technique.
In order to analyze the performance of various feature-matching methods and weigh the
advantages and disadvantages of each methodology, this study assesses the effectiveness of
feature extraction and matching for the SIFT, SURF, SURF-GHT, and SIFT-CNN algorithms,
respectively. In the test set of this paper, MATLAB’s underlying library function is called
by the SURF and SIFT algorithms. However, using the MATLAB-based SURF and SIFT
algorithm, the procedure has to be done in grayscale and not RGB as used with the SIFT-
CNN. If two random images of the cattle on the grazing fields are to be matched, then the
result obtained for the SIFT-CNN matching is depicted in Figure 10.

As shown in Figure 10, the red circles in the images are sample matching points
between the two images used as input in step a. In step b, the distance between matching
points was further explored to determine the correlation/corresponding points between the
images. Step c presented the stitched images together after the corresponding/correlation
points were detected. The comparison of the matching effect is presented in Table 2.

Table 2. Matching Effect Comparison.

Algorithm
Type

Number of
Characteristic Points

Right Graph

Number of
Characteristic Points

Left Graph

Matching
Pair

Matching
Time/s

SIFT 2010 1658 128 36.997
SURF 2000 1169 96 23.316

SIFT-CNN 2010 1658 128 123.004

The table above demonstrates that when all other requirements are satisfied (images
captured with no noise present), the SIFT-CNN method matches well but takes the longest
duration due to its preprocessing stage. The SURF matching is slightly worse even if the
matching duration is shorter than that of the SIFT and SIFT-CNN. Table 3 presents the
matching comparison when noise is present in the image.

Table 3. Matching Effect Comparison with Noise.

Algorithm
Type

Number of
Characteristic Points

Right Graph

Number of
Characteristic Points

Left Graph

Matching
Pair

Matching
Time/s

SIFT 2010 1658 112 36.997
SIFT-CNN 2010 1658 128 123.004

The proposed SURF-CNN technique, when noise is present in the images inherent to
drone images, as shown in Table 3, guarantees the same speed of feature extraction while
increasing the number of matching point pairs. Furthermore, the algorithm was able to
achieve the same matching time as when noise was not present in the images. This implies
that the presented algorithm is robust to noise.
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5. Conclusions

This study proposes a SIFT-CNN pipeline for livestock management method in stitch-
ing drone images captured from the different drones on the grazing field. This is in response
to the need to obtain adequate information from the grazing field that one drone cannot
provide due to camera coverage angle, imaging breadth, and flight height. To do this, this
study used the SIFT algorithm, which can extract features to match them. The proposed
system relies on information extraction from aerial photographs to offer a stitching solution
for livestock management operations. Hence, giving a direct and practical way to monitor
cattle for perimeter coverage, health amongst others, and under other natural circum-
stances. The method’s key contribution is that it practically and formally showed that
image preprocessing by removing noise and then classifying the images on the grazing field
with a view to eliminating empty backgrounds from the stitch points improves inference
drawn from drone surveillance images. It is worth noting that the technique requires more
matching time in total due to the image preprocessing stage. Further work should consider
real-world implementation (prototype development) using the FPGA or Raspberry pi for
full-scale deployment on the grazing field, as well as comparing the performance of the
different types of CNN architectures on the proposed pipeline.
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