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Abstract: Since it is difficult to accurately track reference trajectories under the condition of stride
constraints for an unmanned hexapod robot moving with rhythmic gait, an omnidirectional tracking
strategy based on model predictive control and real-time replanning is proposed in this paper. Firstly,
according to the characteristic that the stride dominates the rhythmic motion of an unmanned multi-
legged robot, a body-level omnidirectional tracking model is established. Secondly, a quantification
method of limb’s stretch and yaw constraints described by motion stride relying on a tripod gait
is proposed, and then, a body-level accurate tracking controller based on constrained predictive
control is designed. Then, in view of the low tracking efficiency of the robot under the guidance of
common reference stride, a solution strategy of variable stride period and a real-time replanning
scheme of reference stride are proposed based on the limb constraints and the integral mean, which
effectively avoid the tracking deviation caused by the guidance of constant reference strides. Finally,
the effectiveness and practicability of the proposed control strategy are demonstrated through the
comparative analysis and simulation test of a hexapod robot WelCH with omnidirectional movement
ability to continuously track the directed curve and the undirected polyline trajectory.

Keywords: multi-legged robot; trajectory tracking; model predictive control; stride constraint; stride
replanning

1. Introduction

As an important member of unmanned ground mobile devices, unmanned multi-
legged robots have outstanding performance and broad application prospects in the fields
of engineering operations, terrain adaptation, intelligent services, emergency rescue, and
so on [1–7]. Thereupon, batches of well-manufactured, versatile and skilled multi-legged
robots have been developed and gradually entered the public’s view, such as Spot [8],
ANYmal [9], and Octopus [10]. However, as a series-parallel compound omnidirectional
mobile device, unmanned multi-legged robots have a more complex structural layout
and control system than the general mobile vehicles [11,12], and its theoretical research
and technical system in all aspects are still immature. In particular, research on body
trajectory tracking, which is the basis for safe movement and precise operation of unmanned
robots [13–15], has not received enough attention.

Generally, the feet of an articulated multi-legged robot cannot rotate continuously like
wheels, but instead propel the body by means of alternate supports and swings. Therefore,
the motion trajectory of the legged robot is piecewise smooth rather than holistic smooth as
that of the wheeled robot. This naturally leads to thinking about the segment size of the
trajectory, that is, the consideration of the constraints of movement stride (i.e., the body
displacement in a rhythmic period). Similar to the fact that humans need to adjust the
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appropriate step length according to their own motion limits when walking, the stride
value sent to legged robots must also conform to the limitations of mechanical structure.
However, the existing works have not reported how to connect the body stride with the
robot’s control system, which is the primary problem addressed in this paper. In addition,
to ensure the safety of motion control of hexapod robots, the quantitative modeling and
evaluation of stride constraints should be taken as an important part of designing optimal
control strategies, which are rarely mentioned in existing research.

Although some scholars have discussed the tracking control and constraint handling
of legged robots, they are all very different from the core content of this paper. The
authors of [16,17] deeply studied the smooth trajectory tracking of a single leg of hexapod
robots, but this kind of local control methods cannot directly reflect the tracking ability of
the robot’s body. Although Chen et al. [18,19] presented the accurate tracking of reference
trajectories of the body position and posture of a hexapod robot based on sliding mode
control method, it had not yet involved any constraints. In the recent past, model predictive
control (MPC) has played an increasingly important role in optimal control and decision-
making scenarios that need to consider various virtual or physical constraints [20–23].
In particular, MPC plays a pivotal role in dealing with torque limitations and friction
cone constraints involved in the dynamic motion and gait planning of biped [24,25] and
quadruped [26,27] walking robots. However, none of these works discussed the selection
and restriction of stride length. When designing the push recovery and self-balancing
algorithm for a quadruped robot, Dini et al. [28] used MPC to deal with various physical
constraints including stability, self-collision avoidance, and step limitation. However, the
modeling and solving process in this paper is essentially different from their approach. In
addition, given that MPC has significant advantages in dealing with optimization control
problems with multiple constraints [20,29], it has gradually emerged in research and
the application of hexapod robots. For example, considering the mechanical restrictions,
energy consumption, and physical constraints, Hu et al. [30] proposed a constrained
MPC strategy to achieve acyclic and stable walking of a hexapod robot over irregular
terrain. However, this work did not involve the constraints related to stride limitations.
Aiming at the problem of stable walking and trajectory tracking of a six-wheel-legged
robot under complex road conditions and heavy loads, an MPC scheme based on fuzzy
approximation was developed in [31], which achieved satisfactory tracking performance
under the constraints of velocity limit and input increment restriction. Unfortunately, the
modeling analysis and controller design in this article are more like that of a wheeled
mobile robot, neither reflecting the characteristics of the rhythmic motion control of legged
robots, nor containing more constraints such as the swing limit of the limbs. In view of
the weaknesses of current research works on hexapod robot’s trajectory tracking and the
advantages of MPC in handling multi-constrained optimization, this paper establishes a
trajectory tracking model based on the characteristics of the rhythmic motion of legged
robots, and designs a tracking control scheme based on predictive optimization.

Compared with the existing research results on trajectory tracking of multi-legged
robots, the main contributions of this paper are as follows:

(1) A body-level trajectory tracking model based on the motion stride for hexapod robot
is pioneeringly established, which quantitatively reveals the characteristics of the
rhythmic motion of legged robots;

(2) The quantitative relationship of stretch and yaw constraints of limb based on body
stride and tripod gait is groundbreakingly modeled, which is used as an important
consideration in designing the MPC-based optimal controller to ensure the structural
integrity of the robot while achieving omnidirectional accurate trajectory tracking;

(3) A method of defining the reference stride length based on the limb constraints and the
integral mean is creatively proposed, which effectively takes into account the physical
limitations and movement capabilities of the robot; meanwhile, a solution method
of variable stride periods and the corresponding real-time replanning strategy are



Drones 2022, 6, 246 3 of 19

proposed, which effectively improve the tracking efficiency and real-time tracking
ability of the robot.

The rest of this paper is organized as follows. Section 2 introduces the body-level
kinematics of the multi-legged robot and the process of establishing the trajectory track-
ing error model. Section 3 constructs the stride-based model of limb constraints for a
hexapod robot moving with tripod gait, and then designs an MPC-based optimal tracking
controller. In Section 4, the strategies for reference trajectory segmenting, stride period
solving and reference stride replanning are proposed based on the stride constraints. The
demonstration results of the simulation analysis and tracking experiment of the robot are
shown in Section 5. Section 6 summarizes the results of this work and discusses future
research directions.

2. Body-Level Kinematics

The body-level kinematics of hexapod robot is mainly to establish the mathematical
relationship between the motion stride and the body pose, which provides a model basis
for the body-level trajectory tracking control. In view of the complexity of the structure and
control of multi-legged robots and the fact that there are few direct results of the body-level
trajectory tracking, this work, analogous to the omnidirectional mobility of a wheeled
mobile robot on a plane, only considers the omnidirectional motion and tracking capabilities
of the hexapod robot on a two-dimensional plane including the two-dimensional translation
along the horizontal direction and the rotation around the plane normal.

Unlike wheeled robots that rely on the continuous rotation and support of wheels to
move, legged robots rely on the regular discrete support and coordinated swing of all limbs
to drive the whole machine. This reflects that the accuracy of the global pose information
of the legged robot in the world coordinate system directly depends on the reliability
of the local segmental modeling of periodic rhythmic motion. Specifically, the pose of a
multi-legged robot in the world coordinate system is related not only to its gait mode and
motion state in the current stride period (that is, the time duration in which all limbs of the
robot complete one swing), but also to the pose information at the end of the previous stride
period. Therefore, only by accurately establishing the kinematic relationship and tracking
model of the robot in a stride period, and then inheriting and analogizing this relationship
and model, can the robot achieve satisfactory desired movement and tracking. Based on
the above ideas, the specific quantitative analysis and modeling are carried out below.

The diagram of the kinematic modeling of a multi-legged robot in the i-th (i ∈ N+)
stride period is shown in Figure 1. The body coordinate system at the beginning of this
stride period, ΣB

i−1, {O0,i−1x0,i−1y0,i−1z0,i−1}, is regarded as the local reference coordinate
system, and the body coordinate system at the end of this stride period is denoted as
ΣB

i ,{O0,ix0,iy0,iz0,i}. Assuming that in the current stride period, the total stride length of
the body movement is Sl , the yaw angle of point O0,i away from x0,i−1 axis is Ψ, and the
total rotation angle of the body around z0,i−1 axis is Sz. Then, at any moment in the current
stride period, the instantaneous relative pose of the body center with respect to (w.r.t.) the
frame ΣB

i−1 is 
xB = ΓB · Sl · cos Ψ,
yB = ΓB · Sl · sin Ψ,
θB = ΓB · Sz.

(1)

In the above equation, ΓB = g(t, δ, ΓF) is an interpolation function of time t related to
the duty cycle δ and the foot swing interpolation ΓF. In addition, ΓF is a linear or nonlinear
function customized according to actual requirements. A typical case of it can be found
in [32]. Without causing ambiguity, the character t representing time is omitted here and in
the following texts to simplify writing and expression.



Drones 2022, 6, 246 4 of 19

𝑋w

𝑌w

𝑂w

𝑥0,𝑖−1

𝑋𝑖

𝑌𝑖

𝑌𝑖−1

𝑋𝑖−1

𝑆𝑧

𝛩𝑖
𝛩𝑖−1

𝛹
𝛩𝑖−1

𝑆𝑙

𝑥0,𝑖
𝑦0,𝑖−1

𝑂0,𝑖−1

𝑂0,𝑖

Figure 1. Schematic diagram of the body-level kinematics modeling of multi-legged robot.

In the i-th stride period, if it is known that the pose of the body center at the initial
time relative to the world coordinate system ΣW,{OwXwYwZw} is [Xi−1, Yi−1, Θi−1]

T.
Here (Xi−1, Yi−1) is the absolute position of the body center in the world frame ΣW; and
Θi−1 is the absolute orientation in the world frame ΣW, that is, the angle between the x0,i−1
axis and the Xw axis. Then, at any moment in the current stride period, the instantaneous
absolute pose of the center of body relative to the world frame ΣW is

X = xB cos Θi−1 − yB sin Θi−1 + Xi−1,
Y = xB sin Θi−1 + yB cos Θi−1 + Yi−1,
Θ = θB + Θi−1.

(2)

Thus, in a stride period, the velocity kinematics model of the body relative to the
world frame ΣW is as follows:

Ẋ = Γ̇BSl cos(Θ− ΓBSz + Ψ) , f1(z, u),
Ẏ = Γ̇BSl sin(Θ− ΓBSz + Ψ) , f2(z, u),
Θ̇ = Γ̇BSz , f3(z, u),

(3)

where z , [X, Y, Θ]T is the state variable of the above-mentioned nonlinear control system,
and u , [Sl , Ψ, Sz]T is the control input composed of the stride triple. Define
F(z, u) , [ f1(z, u), f2(z, u), f3(z, u)]T, then the nominal system model (3) can be abbrevi-
ated as ż = F(z, u).

Taking the Taylor expansion of Equation (3) at the reference point (zr, ur) (where
zr = [Xr, Yr, Θr]T, ur = [Sr

l , Ψr, Sr
z]

T), i.e., the point on the reference trajectory, and ignoring
the higher-order terms, the body-level trajectory tracking error model can be obtained in
the following form:

ξ̇ = Aξ + Bυ, (4)

where

ξ , z− zr =

X− Xr

Y−Yr

Θ−Θr

, υ , u− ur =

Sl − Sr
l

Ψ−Ψr

Sz − Sr
z

,

A ,
∂F
∂z

∣∣∣∣z=zr

u=ur
=

0 0 − sin(v)Γ̇BSr
l

0 0 cos(v)Γ̇BSr
l

0 0 0

,
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B ,
∂F
∂u

∣∣∣∣z=zr

u=ur
=

cos(v)Γ̇B − sin(v)Γ̇BSr
l sin(v)Γ̇BSr

l ΓB

sin(v)Γ̇B cos(v)Γ̇BSr
l − cos(v)Γ̇BSr

l ΓB

0 0 Γ̇B

.

with v , Θr − ΓBSr
z + Ψr.

3. Constraints and Predictive Controller

It is well known that compared with periodic rhythm gaits such as quadruped and
wave, the tripod gait of hexapod robots is the most efficient and, therefore, the most
common gait. However, few works have explored the limb constraints of hexapod robots
moving with rhythmic gait. Taking the tripod gait as a breakthrough, this paper focuses
on the quantitative modeling method of the limb’s stretch and yaw constraints under this
gait, and the predictive control strategy is designed to comply with these constraints. The
proposed modeling idea may be able to provide theoretical guidance for further research
on constrained tracking control of hexapod robots with rhythmic gaits or free gaits.

3.1. Stretch and Yaw Constraints of Limb

When the hexapod robot moves rhythmically with tripod gait, it is agreed that its body
follows the motion rule of first translation and then rotation at every moment. Then, in a
stride period, the robot has three key configurations—the starting configuration, the semi-
periodic configuration, and the ending configuration. Their corresponding body coordinate
systems are denoted as {Os}, {Om}, and {Oe}, respectively, as shown in Figure 2. Assume
that in each stride period, the robot is in the nominal pose (where all joint angles are 0) at the
starting configuration and exactly recovers to the nominal pose at the ending configuration.
Then, for a hexapod robot that moves periodically with a tripod gait, it is obvious that
the amplitudes of stretch and yaw of each limb are the largest when the robot is in the
semi-periodic configuration. Therefore, as long as the robot does not exceed its structural
limits in this configuration, the movement at any time within a stride period is feasible
and safe. Naturally, the following focuses on the quantitative analysis of the robot in the
semi-periodic configuration.

𝑶𝐬

𝑶𝐦

𝑶𝐞

𝑥0,s

𝑥0,m

𝑥0,e

𝑆𝑙 𝑆𝑧

𝛹

Figure 2. Schematic diagram of three key configurations of a hexapod robot moving with tripod
gait within one stride period: the starting configuration (green dashed line), the semi-periodic
configuration (black solid line), and the ending configuration (red dotted line).
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Under the assumption of the above walking rules, when the robot is in the starting
and ending configurations, the homogeneous position coordinates of the foot relative to
the coordinate systems {Os} and {Oe} are the same:

Os p0 = Oe p0 =


px,0
py,0
pz,0
1

, (5)

where [px,0, py,0, pz,0]
T represents the initial position coordinate of the foot relative to the

body frame.
Then, in the semi-periodic configuration, the homogeneous position coordinate of the

stance phase relative to the frame {Om} is

Om pst =
Om
Os

T · Os p0 =

[
Trans(

Sl
2

cos Ψ,
Sl
2

sin Ψ, 0) · Rot(z,
Sz

2
)

]−1
· Os p0, (6)

where T represents the homogeneous transformation matrix synthesized by the homoge-
neous translation operator Trans(·) and the rotation operator Rot(·).

Meanwhile, the homogeneous position coordinate of the swing phase relative to the
frame {Om} is

Om psw = Om
Os

T · Os
Oe

T · Oe p0

=

[
Trans(

Sl
2

cos Ψ,
Sl
2

sin Ψ, 0) · Rot(z,
Sz

2
)

]−1
·
[
Trans(Sl cos Ψ, Sl sin Ψ, 0) · Rot(z, Sz)

]
· Oe p0.

(7)

Further, the homogeneous position coordinate of each foot relative to the frame {Om}
can be obtained by unifying Equations (6) and (7) as

Om pfoot ,


pf,x
pf,y
pf,z
1

 =


px,0 cos Sz

2 − λ · py,0 sin Sz
2 + Sl

2 cos (Ψ− Sz
2 )

λ · px,0 sin Sz
2 + py,0 cos Sz

2 + Sl
2 sin (Ψ− Sz

2 )
pz,0
1

, (8)

where λ =

{
1, for swing phase;
−1, for stance phase.

Moreover, in the semi-periodic configuration, the homogeneous position coordinate
of the hip joint w.r.t. the frame {Om} is Om phip = [ph,x, ph,y, 0, 1]T, which is usually only
related to the structure dimensions of the body. Then, the horizontal coordinates from the
foot end to the hip joint are as follows:

Om pf2h,x = pf,x − ph,x

= px,0 cos
Sz

2
− λ · py,0 sin

Sz

2
+

Sl
2

cos (Ψ− Sz

2
)− ph,x,

Om pf2h,y = pf,y − ph,y

= λ · px,0 sin
Sz

2
+ py,0 cos

Sz

2
+

Sl
2

sin (Ψ− Sz

2
)− ph,y.

(9)

Thus, the horizontal stretch length of a limb described by the motion stride is
Ls =

√
Om p2

f2h,x +
Om p2

f2h,y.

Following the above analysis, without considering the fluctuation of the robot’s body,
the horizontal stretch length of a limb described by the stride should not exceed the
structural constraints of the mechanism itself, that is,
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0 ≤ Ls ≤ Shor,max. (10)

where Shor,max represents the maximum horizontal stretch length from the foot end to
the hip joint, which is an inherent quantity determined by the mechanical size and the
joint limits.

In addition, the yaw angle solved by the motion stride is also subject to the inherent
limitations of the robot mechanism, i.e.,

q1 = Atan2(Om pf2h,y, Om pf2h,x)− αj ∈
[
q1,min, q1,max

]
, (11)

where Atan2(·) is the four-quadrant inverse tangent function; q1,min and q1,max indicate the
rotational range of Joint1; and αj represents the azimuth angle of the j-th (j = 1, 2, · · · , 6)
limb w.r.t. the body system.

Obviously, the constraints (10) and (11) are both functions of the stride parameter
(Sl , Ψ, Sz). To ensure the structural integrity of the robot, the designed controller must
satisfy the above constraints.

3.2. Model Predictive Controller

In view of the unique advantages of MPC in dealing with multi-constraint optimization
problems, this section uses it to design an optimal control model with equality constraint,
input saturation constraints and nonlinear inequality constraints. The detailed design
process is described below.

Firstly, discretize the body-level tracking error model of the nominal linearization (4)
to obtain

ξk+1 = Gkξk + Hkυk, (12)

where ξk and υk are the pose error and stride error at time k, respectively; Gk,I + ts Ak,
Hk,tsBk; I represents an identity matrix with appropriate dimensions; ts is the sampling
step size; Ak, Gk ∈ RNx×Nx ; Bk, Hk ∈ RNx×Nu ; Nx and Nu respectively represent the
dimensions of the state variable and the control variable.

Then, define Mυk , υk − υk−1, and

ξ̃k ,


ξk+1|k
ξk+2|k

...
ξk+Np|k

, υ̃k ,


υk|k

υk+1|k
...

υk+Nc−1|k

, M̃υk ,


Mυk|k
Mυk+1|k

...
Mυk+Nc−1|k

.

In the above formulas, ξk+m|k, υk+n|k and Mυk+n|k respectively represent the state,
control variable and control increment at the time k + m and k + n predicted at time k
(m = 1, 2, . . . , Np and n = 0, 1, . . . , Nc − 1); Np and Nc(≤ Np) represent the preview
horizon and control horizon, respectively.

Suppose that for any m ∈ {1, 2, . . . , Np}, there are Gk+m|k = Gk and Hk+m|k = Hk.
Then, the prediction model can be written in the following lumped form:

ξ̃k = G̃kξk + h̃kυk−1 + H̃kM̃υk, (13)

where both G̃k, H̃k, and h̃k are block matrices, and the block elements of these matrices are
defined as follows:

G̃k(m; 1) = Gm
k ,

H̃k(m; n) =

0 , if n > m
m
∑
`=n

Gm−`
k Hk , if n ≤ m

h̃k(m; 1) = H̃k(m; 1),

m = 1, 2, . . . , Np; n = 1, 2, . . . , Nc.
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Next, we define an optimization objective function as

min
M̃υk

Jk , ξ̃ T
k Q̃ξ̃k + M̃υT

k R̃M̃υk, (14)

where Q̃ = INp ⊗Q and R̃ = INc ⊗ R, with Q ∈ RNx×Nx and R ∈ RNu×Nu are weight

matrices corresponding to the predictive state vector ξ̃k and the predictive control increment
M̃υk, respectively; ⊗ represents the Kronecker product.

The corresponding constraints include at least the following five categories:

s.t.



• ξ̃k = G̃kξk + h̃kυk−1 + H̃kM̃υk;
• υ̃min ≤ υ̃k(= Ĩ ·Mυ̃k + 1̃ · υk−1) ≤ υ̃max;
• Mυ̃min ≤ Mυ̃k ≤ Mυ̃max;
• Ls,j(u) ∈ [0, Shor,max], (j = 1, 2, . . . , 6);
• q1,j(u) ∈ [q1,min, q1,max], (j = 1, 2, . . . , 6);

(15)

where Ls,j(u) and q1,j(u) are the stretch length and yaw angle of the j-th (j = 1, 2, . . . , 6)
limb defined by (10) and (11), respectively, and they are both nonlinear functions about the
stride input u; and

Ĩ ,


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1


Nc×Nc

⊗ INu , 1̃ ,


1
1
...
1


Nc×1

⊗ INu ,

u ,

Sl
Ψ
Sz

 =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0


Nu×(Nu×Nc)

· ( Ĩ · M̃υk + 1̃ · υk−1) + ur.

In Equation (15), the first type of constraints corresponds to the predictive model
constraint (13), which relates the predictive state vector to the predictive control increment
to be solved. The second type of constraints is the boundary restriction of the predictive
control vector, which indirectly reflects the limits of the body’s motion stride. The third
type of constraints is the boundary limit of the predictive control increment to be solved,
preventing the stride from changing too fast. The fourth and fifth types of constraints
represent the stretch length restrictions and yaw constraints of all limbs, respectively, which
are used to protect the physical structure of the robot itself.

It should be noted that the modeling process of the above-mentioned optimal
controller (14)–(15) follows the design idea of MPC. Consequently, the proof of its sta-
bility is universal and trivial, which is described in detail in [33–35], and will not be
repeated here.

At time k, we use the sequential quadratic programming (SQP) [36–38] to solve the
above-mentioned optimization problem (14) with nonlinear constraints (15) to get the
optimal control increment Mυ∗k (which is the first Nu rows of the column vector Mυ̃∗k ), and
then the optimal control input error υ∗k = υk−1 +Mυ∗k can be obtained. At the next moment,
by repeating the above process, a series of optimal control variables satisfying physical
constraints can be obtained.

4. Stride Period and Reference Stride

The above has solved the problem of obtaining the optimal stride error. If the stride
period and the reference stride are also known, the robot can be controlled to move at the
corresponding speed and stride. A simple and straightforward idea is to take a prede-
termined constant stride period and constant reference stride. Unfortunately, in diverse
scenarios, these constant reference values can seriously affect the tracking efficiency of
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the robot. For example, when the initial pose is significantly different from the reference
starting point, the robot can only slowly approach the reference trajectory or suddenly
send a completely unreasonable control signal that exceeds the motor’s capacity under
the limitation of the constant stride period and the constant reference stride. Even if the
robot has reached the reference trajectory at a certain time, it will appear tortuous and
back-and-forth fluctuations along the reference trajectory due to the guidance of the con-
stant reference values. To this end, this paper proposes a method to determine the variable
stride period based on the reference stride length, and then proposes a strategy to solve the
reference stride based on real-time replanning. The obtained stride period and reference
stride depend on the reference trajectory and the actual pose information of the robot,
which can effectively improve the robot’s tracking performance.

4.1. Determination Of Stride Period

An “appropriate” reference stride length should take into account both the robot’s
movement ability and locomotion efficiency. In other words, it cannot be too large, which
easily exceeds the structural limitations of the robot; while it also cannot be too small, which
easily causes the robot to move slowly and inefficiently. To this end, this paper proposes a
method for determining the length of reference stride based on the stride constraints and
integral mean.

Consider again the stretch and yaw constraints of limbs described by the motion stride
of the body. Under these constraints, the stride length Sl can be regarded as a function of
the yaw angle Ψ and the orientation angle Sz. Then, we take the integral mean of the spacial
surface where the effective maximum stride length Sl,max is located (shown in Figure 3) as
the reference stride length, that is,

Sl,max =

∫∫
D Sl,max(Ψ, Sz)dΨdSz

|D| , (16)

where |D| represents the projected area of the surface Sl,max(Ψ, Sz) onto the plane ΨOSz.
The practical significance of the reference stride length Sl,max defined by Equation (16) is to
give full play to the robot’s motion ability while taking into account the stride constraints.

Figure 3. Feasible region of motion stride based on the stretch and yaw constraints of limbs.

Next, as shown in Figure 4, on the reference trajectory, starting from the start point
(denoted as Pi−1(ti−1, Xr

i−1, Yr
i−1, Θr

i−1) ), we search for a trajectory point Pi(ti, Xr
i , Yr

i , Θr
i )

along the timeline such that the following equation holds:√
(Xr

i − Xr
i−1)

2 + (Yr
i −Yr

i−1)
2 = Sl,max. (17)
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Then, the duration of the i-th stride period is

Tsp,i = ti − ti−1 (i = 1, 2, . . . ). (18)

Then, taking Pi as the start point of the search, we repeat the above process un-
til the end of the trajectory. It should be noted that in the last search range, if the Eu-
clidean distance from the track point Pi to the end point Pend of the reference trajectory
is less than the reference stride length Sl,max, then the duration corresponding to the last
stride period is recorded as: Tsp,end = tend − ti. As a result, a series of key segmentation
points, {P0, P1, . . . , Pend}, on the reference trajectory and a variable stride period sequence,
{Tsp,1, Tsp,2, . . . , Tsp,end}, can be obtained.

𝑋w

𝑌w

𝑂w
Reference Trajectory Reference Orientation

Re-planning Trajectory Actual Trajectory

RobotSegmentation Point

𝛩𝑖−1

𝑥0,𝑖−1

𝑥0,𝑖
r

𝛹𝑖
p

𝛩𝑖
𝑆𝑧,𝑖
p

(𝑋𝑖−1, 𝑌𝑖−1, 𝛩𝑖−1)

𝑃𝑖(𝑡𝑖 , 𝑋𝑖
r, 𝑌𝑖

r, 𝛩𝑖
r)

𝑃𝑖−1

Figure 4. Schematic diagram of the segmentation of a reference trajectory and the replanning of
reference stride.

4.2. Replanning of Reference Stride

As mentioned above, the tracking effect of a legged robot under the action of a certain
constant reference stride ur = [Sr

l , Ψr, Sr
z]

T is not optimistic. For a time-varying reference
trajectory, a slightly straightforward scheme is to determine the reference stride according
to the key segmentation points on the trajectory, that is, the reference stride in the i-th stride
period can be set as: 

Sr
l,i =

√
(Xr

i − Xr
i−1)

2 + (Yr
i −Yr

i−1)
2,

Ψr
i = Atan2(Yr

i −Yr
i−1, Xr

i − Xr
i−1)−Θr

i−1,
Sr

z,i = Θr
i −Θr

i−1.

(19)

However, experiments show that, when the actual pose of the robot is not much
different from the initial reference pose, the tracking effect is good; but when the actual
pose deviates greatly from the reference value, the tracking deviation under the guidance of
the above reference stride is relatively large (which is visually analyzed in Section 5.2). To
solve this problem, the actual pose of the robot is taken into account for real-time replanning
and correction of the reference yaw angle and rotational orientation. That is, the improved
reference stride is determined by

Sp
l,i = Sl,max,

Ψ
p
i = Atan2(Yr

i −Yi−1, Xr
i − Xi−1)−Θi−1,

Sp
z,i = Θr

i −Θi−1,

(20)
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where up
i , [Sp

l,i, Ψ
p
i , Sp

z,i]
T represents the replanning reference stride in the i-th stride period.

A graphical illustration of these symbols is shown in Figure 4.
In specific applications, the actual motion stride is solved according to the formula

u = up + υ∗, which is then converted into the relative position of each foot by the gait
mode generator [32]. Then, the rotation angle of each joint can be obtained by the in-
verse kinematics solver, and the robot is urged to perform desired movements through
the drive/execution modules. Finally, the information such as actual pose of the robot is
returned through sensors, so that the entire system forms a closed loop, which can signifi-
cantly improve the accuracy of trajectory tracking. To sum up, the closed-loop structure
of the trajectory tracking control of the hexapod robot body designed in this paper can be
summarized by Figure 5.

ሶ𝝃 = 𝑨𝝃 + 𝑩𝝊

𝒛𝐫 =
𝑋r

𝑌r

𝛩r

Gait Mode

Generator

Inverse

KinematicsReplanning of 

Reference 

Stride

𝝃

𝒛

𝝊∗

𝛥𝝊∗

𝒖

𝒖𝐩

𝑷

𝒒

+
−

+ +

Robotmin
Δ𝝊𝑘

෨𝝃𝑘
T෩𝑸෨𝝃𝑘 + Δ𝝊𝑘

T෩𝑹Δ𝝊𝑘

s. t.

∙ ෨𝝃𝑘 = ෩𝑮𝑘𝝃𝑘 + ෩𝒉𝑘𝝊𝑘−1 + ෩𝑯𝑘Δ𝝊𝑘
∙ 𝝊min ≤ 𝝊𝑘 ≤ 𝝊m𝑎𝑥

∙ Δ𝝊min ≤ Δ𝝊𝑘 ≤ Δ𝝊m𝑎𝑥

∙ 𝐿𝑠,𝑗 𝒖 ∈ [0, 𝑆hor,max]

∙ 𝑞1,𝑗 𝒖 ∈ [𝑞1,min, 𝑞1,m𝑎𝑥]

MPC

Figure 5. Structure diagram of the constrained predictive tracking control for a hexapod robot.

5. Simulations and Demonstrations
5.1. Setups of Robot and Reference Trajectory

In this section, the effectiveness and practicability of the proposed predictive control
strategy are illustrated by the experimental case on a walking-climbing hexapod robot
WelCH, which is used to omnidirectionally track a composite reference trajectory.

The robot WelCH is a radial symmetrical hexapod robot used for inspection on glass
curtain walls, and its six limbs have exactly the same structural design. Each limb contains
four active rotating joints, of which the first three drive joints control the spatial position
of the foot end, and the fourth drive joint mainly controls the pitch angle of the suction
cup at the foot end. The structural sizes of this robot and the rotation range of each active
joint are listed in Table 1. In addition, the other setups of hardware and software of the
robot WelCH have been described in detail in [39–41] and will not be repeated here. The
settings of the robot’s body coordinate system {O0x0y0z0} and the j-th foot coordinate
system {Ofjxfjyfjzfj} are shown in Figure 6. The specific expression of ΓB in Equation (1) is
consistent with that in [32].

Table 1. Specifications of the robot WelCH.

Item Symbol Unit Specification

Body radius R m 0.18
Length of Link1 L1 m 0.09
Length of Link2 L2 m 0.15
Length of Link3 L3 m 0.16
Length of Link4 L4 m 0.15
Range of Joint1 q1 rad [−π/3, π/3]
Range of Joint2 q2 rad [−π/2, π/2]
Range of Joint3 q3 rad [−π/4, 4π/9]
Range of Joint4 q4 rad [−π/2, π/2]
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Fig.1 Prototype of walking-climbing hexapod robot WeLCH

𝑥0
𝑦0

𝑧0
𝒒𝟏

𝒒𝟐
𝒒𝟑

𝒒𝟒

𝑥f1
𝑦f1𝑧f1 𝑥f2

𝑦f2
𝑧f2Leg1

Leg2

Leg3Leg4

Leg6

Leg5

𝛼5

(a) Physical prototype (b) Virtual prototype

Figure 6. Prototype of the wall-climbing hexapod robot WelCH.

As mentioned earlier, this paper focuses on the ability of multi-legged robots to
track planar trajectories. To this end, it is set that the center of body of WelCH is always
kept at the initial height, Hver ≡ |pz,0| = L3 + L4, when moving. Thus, according to
the geometric diagram (shown in Figure 7) and simple algebraic calculation, it can be
known that the maximum length of horizontal stretch from the foot end to the hip joint is

Shor,max = L1 +
√

L2
2 + 2L2L3(sin q3)max ≈ 0.35, which is jointly determined by the robot’s

link length Li and the joint angle qi.

𝐿1
𝐿2

𝐿3

𝐿4

𝒒𝟏
𝒒𝟐
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𝒒𝟐

𝒒𝟑

𝒒𝟒
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𝛼𝑗

|𝑝f2h, 𝑥|

|𝑝f2h, 𝑦|

𝑆hor

(a) Front view (b) Top view

Figure 7. Schematic diagrams of the kinematics of a single limb.

To test the omnidirectional tracking ability of the multi-legged robot, the selected
reference trajectory is composed of multi-segment time-varying curves, which are defined
as follows:

0 ≤ t ≤ 30 [s]
Xr = 0.15t [m]
Yr = 1.5 cos( π

15 t) [m]
Θr = Atan2(Ẏr, Ẋr) [rad]


30 < t ≤ 40 [s]
Xr = Xr

t=30 + 0.30(t− 30) [m]
Yr = Yr

t=30 [m]
Θr = 0.0 [rad]


40 < t ≤ 50 [s]
Xr = Xr

t=40 [m]
Yr = Yr

t=40 − 0.25(t− 40) [m]
Θr = 0.0 [rad]

(21)

where (Xr
t=30, Yr

t=30) and (Xr
t=40, Yr

t=40) represent the reference positions of the robot
at 30 s and 40 s, respectively.

The cyan curve in Figure 8 shows the complete plot of this composite reference
trajectory. Its first part (0 ≤ t ≤ 30 s) is a directed curve and the reference orientations are its
tangential angles (as shown by the green arrows on the left side in Figure 8); and the second
part (30 s < t ≤ 50 s) is an undirected polyline trajectory for which the corresponding
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reference orientation always remains unchanged (as shown by the green arrows on the
right side in Figure 8). In addition, the key segmentation points obtained according to the
method proposed in Section 4.1 are also marked by the pink solid points in Figure 8.

0 1 2 3 4 5 6 7 8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

reference trajectory
segmentation point
reference orientation

Directed Curve Trajectory Undirected Polyline Trajectory

Figure 8. A composite reference trajectory composed of directed curve and undirected polyline.

5.2. Effect of the Constraints and the Replanning Strategy

Suppose the actual starting pose of the robot relative to the world coordinate system
is set as z0 = [X0, Y0, Θ0]

T = [0.0 m,−1.0 m, 0.0 rad]T. The simulation process runs at
a frequency of 100 Hz (i.e., ts = 0.01 s). Based on the trial and error method [18], the
parameters related to MPC are set as: Np = 30, Nc = 2, Q = 10I3, and R = 500I3. In the
following, the role and influence of the limb constraints established in Section 3.1 and the
replanning strategy of stride proposed in Section 4 in the trajectory tracking of multi-legged
robots are illustrated by simulations in MATLAB.

First, let us look at the role of limb constraints. Assuming that the same reference
stride and the same controller parameters are used in the comparison cases, the simulation
results with and without limb constraints are shown in Figures 9 and 10. Figure 9 shows
that, after a period of time, both the control methods with and without limb constraints
can track the reference trajectory well. In addition, at the beginning stage of the tracking
process, the motion trajectory without limb constraints can approach the reference position
trajectory faster. However, this “seemingly better” tracking result ignores the robot’s
locomotion ability. As shown in Figure 10, the angles of Joint3 calculated by the model
without limb constraints exceed its rotational range. This means that when the stretch
and yaw constraints of limbs are not considered, the model predictive controller outputs
excessive strides in order to get closer to the reference trajectory faster, which exceeds
the actual motion capability of the robot, and thus easily damages the robot’s structure.
Figure 10 intuitively shows that all joint angles corresponding to the control method with
limb constraints vary within their respective feasible ranges, which fully demonstrates that
it is crucial to pay attention to limb constraints in controller design in this paper.
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Figure 9. Comparison of body-level trajectory tracking with/without limb constraints.
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Figure 10. Curves of joint angles with/without limb constraints.

Next, let us analyze the effect of stride replanning. Using the same constrained
predictive controller (14)–(15), the trajectory tracking results of the robot under the action
of the common reference stride (19) and the replanned reference stride (20) are shown
in Figures 11 and 12. Figure 11 shows that when the initial error of the robot’s pose is
large, the common reference stride defined by the reference trajectory easily leads to the
robot sacrificing the position tracking accuracy in pursuit of smaller yaw error and smaller
orientation error, resulting in low tracking efficiency. While the replanned reference stride
can guide the robot to move towards the reference trajectory faster, because the robot can
dynamically adjust its movement direction in time according to its real-time pose. Figure 12
demonstrates the above point more intuitively from the perspective of pose tracking error.
That is, the tracking errors corresponding to the replanned reference stride are smaller than
that of the common reference stride regardless of the translation or rotation on the plane.
This means that the proposed replanning method of reference stride can effectively improve
the tracking efficiency and tracking quality of the omnidirectional reference trajectory of
the multi-legged robot.
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Figure 11. Comparison of body-level trajectory tracking with/without replanning.
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Figure 12. Comparison of trajectory tracking errors with/without replanning.

5.3. Tracking Test

To reduce the loss of components and the cost of experiments, a virtual robot prototype
with the same properties as the physical machine and as realistic as possible is built in the
virtual robot experiment platform CoppeliaSim (also known as V-REP), and further used to
test the practical application effect of the proposed constrained MPC algorithm.

We enable the Newton Dynamic engine in the CoppeliaSim environment, and set the
robot WelCH to perform periodic rhythmic motion with tripod gait. Then, we directly
transplant the tracking control algorithm proposed in this paper and the control parameters
set in the numerical simulation to the robot prototype. Through the synchronous commu-
nication mechanism between MATLAB and CoppeliaSim to control the robot movement,
the tracking results of WelCH in the simulation environment can be obtained, as shown in
Figure 13. Figure 13a shows several snapshots of the robot WelCH during tracking of the
reference trajectory. In addition, Figure 13b is a complete overview of the robot tracking
the composite reference trajectory, which is consistent with the expected effect. Moreover,
the actual position of the robot and the real-time replanning results recorded during the
test are plotted in Figure 14. The experimental data again intuitively show that under the
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guidance of the MPC algorithm designed in Section 3 and the replanning strategy proposed
in Section 4, the hexapod robot WelCH can effectively carry out omnidirectional motion and
track any omnidirectional reference trajectory quickly and accurately. This proves that the
tracking control algorithm proposed in this paper has strong portability and practicability.

① ②

③ ④

⑤ ⑥

(a) Snapshots

RRRReeeffeeerrrreeennnnnncccceeee  TTTTrrrraaaajjjeeeeeeccctttooorrryyyy

Actuaaall TTrraajjeeccccttory

t = t 0000 ss

ttttt === t 11110000 s

t == t 20000 ss

t = t 33300  ss tt ==== tt 440 s

ttt === ttt 55550000 ssssss

(b) Overview

Figure 13. Experimental results of the hexapod robot WelCH tracking a composite reference trajectory
with tripod gait.

Figure 14. Real-time feedback and replanning results of the experiment of trajectory tracking.
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6. Conclusions

In this paper, an MPC-based algorithm is proposed to solve the trajectory tracking
problem of an unmanned hexapod robot with nonlinear stride constraints. For a hexapod
robot that takes motion stride as control input and moves with tripod gait, the models
of body-level-tracking control and the stretch and yaw constraints of limb about stride
variables are studied and established. These constraints, together with input saturation
constraints, serve as quantitative restrictive conditions for designing the optimal predictive
controller to ensure that the robot moves without violating its own structural limits. In
addition, in order to give full play to the movement capability of the robot in its feasible
motion space, the reference stride length defined by the integral mean of surface is proposed;
then, the variable stride periods and the key segmentation points of reference trajectory are
determined, and then, the real-time replanned reference strides are calculated based on it,
which effectively weakens the influence of the deviation of reference inputs on the tracking
control. The hexapod robot WelCH adopting the designed tracking control strategy realizes
the omnidirectional accurate tracking of composite trajectories, which demonstrates the
rationality and effectiveness of the proposed tracking scheme.

Based on the research ideas and results presented in this paper, there are still some
more challenging works worthy of further exploration. Firstly, this work only considers
the stride constraints when the hexapod robot moves with the tripod gait. Does this
quantitative result also apply to other rhythmic or free gaits? If not, how to make such a
modification and generalization? Secondly, how to quantify the anti-collision constraints
between multiple limbs and the physical constraints related to the self-collision between
the robot’s components by using motion stride? In addition, in scenarios that focus on the
stationarity and safety of robot motion, how to model dynamic constraints such as torque
saturation and friction cone constraints of the support feet? Furthermore, if the degrees of
freedom of the body’s fluctuation and pitching are also considered, how should the process
of modeling and control in this paper be optimized and perfected?

Author Contributions: Conceptualization, Y.G. and W.W.; methodology, Y.G. and D.W.; software, Y.G.
and Q.Y.; validation, Y.G., X.L. and D.W.; formal analysis, Y.G.; writing—original draft preparation,
Y.G. and D.W.; writing—review and editing, Y.G. and W.W.; visualization, Y.G. and Y.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 61573148), and the Science and Technology Planning Project of Guangdong Province, China
(grant numbers 2015B010919007, 2019A050520001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature
[xB, yB, θB]T Instantaneous relative pose of the center of body

[Xi−1, Yi−1, Θi−1]
T Absolute pose of the center of body at the initial time of the i-th stride

period
[X, Y, Θ]T Instantaneous absolute pose of the center of body
[Ẋ, Ẏ, Θ̇]T Velocity of the center of body relative to the world coordinate system

Sl , Sr
l

Total stride length of the body movement in a stride period, and its
reference value

Ψ, Ψr Total yaw angle of the point O0,i away from x0,i−1 axis, and its
reference value

Sz, Sr
z Total rotation angle of the body around z0,i−1 axis, and its reference value

ΓB, Γ̇B Interpolation function of the body movement, and its time derivative
z, zr State variable, and its reference value
u, ur Control input, and its reference value
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ξ Pose tracking error of the center of body
υ Stride error

[px,0, py,0, pz,0]
T Initial position coordinate of the foot relative to the body coordinate

system

Om pst, Om psw
Homogeneous position coordinates of the stance phase and the swing
phase relative to the frame {Om}, respectively

Om pfoot,[pf,x, pf,y, pf,z, 1]T
Unified homogeneous position coordinate of each foot relative to the
frame {Om}

Om phip,[ph,x, ph,y, 0, 1]T
Homogeneous position coordinate of the hip joint relative to the
frame {Om}

[Om pf2h,x, Om pf2h,y]
T Horizontal position coordinate from the foot end to the hip joint

Ls Horizontal stretch length of a limb described by the motion stride
Shor,max Maximum horizontal stretch length from the foot end to the hip joint
αj Azimuth angle of the j-th limb relative to the body system

ξk, υk,Mυk
Pose error, stride error and stride error increment at time k, respec-
tively

ξk+m|k State variable at the time k + m predicted at time k

υk+n|k,Mυk+n|k
Control variable and control increment at the time k + n predicted at
time k, respectively

ξ̃k, υ̃k,Mυ̃k
Predictive state vector, predictive control vector and its increment at
time k, respectively

ts Sampling step size
Nx, Nu Dimensions of the state variable and the control variable, respectively
Np, Nc Preview horizon, and control horizon
Jk Objective function at time k

Q, R
Weight matrices corresponding to the predictive state vector and the
predictive control increment, respectively

Sl,max, Sl,max Effective maximum stride length, and its integral mean
Tsp,i Duration of the i-th stride period
ur

i,[Sr
l,i, Ψr

i , Sr
z,i]

T Reference stride in the i-th stride period
up

i ,[Sp
l,i, Ψ

p
i , Sp

z,i]
T Replanning reference stride in the i-th stride period

q1, q2, q3, q4 Joint angles of the four active pairs on one leg
L1, L2, L3, L4 Lengths of the four links on one leg
Hver Height from body center to support surface
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