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Abstract: Autonomous Unmanned Aerial Vehicle (UAV) landing remains a challenge in uncertain en-
vironments, e.g., landing on a mobile ground platform such as an Unmanned Ground Vehicle (UGV)
without knowing its motion dynamics. A traditional PID (Proportional, Integral, Derivative) con-
troller is a choice for the UAV landing task, but it suffers the problem of manual parameter tuning,
which becomes intractable if the initial landing condition changes or the mobile platform keeps mov-
ing. In this paper, we design a novel learning-based controller that integrates a standard PID module
with a deep reinforcement learning module, which can automatically optimize the PID parameters for
velocity control. In addition, corrective feedback based on heuristics of parameter tuning can speed
up the learning process compared with traditional DRL algorithms that are typically time-consuming.
In addition, the learned policy makes the UAV landing smooth and fast by allowing the UAV to adjust
its speed adaptively according to the dynamics of the environment. We demonstrate the effectiveness
of the proposed algorithm in a variety of quadrotor UAV landing tasks with both static and dynamic
environmental settings.

Keywords: deep reinforcement learning; interactive learning; DDPG; PID; UAV landing

1. Introduction

Unmanned Aerial Vehicles (UAVs) have been widely used in a variety of real-world
applications, such as civil engineering [1], precision agriculture [2], and monitoring in
mining areas [3]. One advantage of using UAVs is that they can fly to and land on complex
terrains that are more difficult to reach through the ground traverse. However, UAVs
have drawbacks of relatively short flight time and low load limit compared with ground
platforms such as Unmanned Ground Vehicles (UGVs). Alternatively, collaborating UAVs
and UGVs is a more efficient and effective way to solve complex field tasks [4]. On the
one hand, UAVs can fly up to a certain height and provide a global map that aids UGVs in
planning and choosing the nearest path to the destination. On the other hand, UGVs can
provide UAVs with charging facilities that guarantee the flight time as needed.

However, the autonomous landing of a UAV on a UGV is still challenging, as discussed
in [5]. Specifically, the motion dynamics of the UGV are unknown for the UAV that has to
perform the landing task with high uncertainty. To solve the landing problem, a variety of
methods have been proposed, such as fuzzy control [6], Model Predictive Control (MPC) [7],
PD (Proportional, Derivative) [8] control, PID (Proportional, Integral, Derivative) control [9],
vision-based control [10] together with reinforcement learning [11–14].

Some of the approaches only considered UAV landing on static platforms [6,8] or
in simulation [7]. A basic PID controller was used to design a collaborative UGV-UAV
system for data collection in the application of the construction industry [9]. One drawback
of the PID controller is that a fixed gain cannot provide an immediate response to over-
come the nonlinear thrust effect with decreasing altitude. In addition, the parameters of

Drones 2022, 6, 238. https://doi.org/10.3390/drones6090238 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6090238
https://doi.org/10.3390/drones6090238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-0452-2602
https://orcid.org/0000-0003-0161-0591
https://orcid.org/0000-0002-5788-6573
https://doi.org/10.3390/drones6090238
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6090238?type=check_update&version=3


Drones 2022, 6, 238 2 of 17

traditional PID controllers are all constant numbers that need manual tuning. Therefore,
such controllers can hardly handle dynamic situations such as landing with various initial
conditions or landing on a moving platform.

Alternatively, learning-based methods have been integrated with the traditional PID
controller for solving tasks in dynamic environments. Specifically, Reinforcement Learning
(RL) has become popular and has been combined with PID to improve the accuracy of path
planning for mobile robots [15,16]. The results of combining Q-learning [17] and PID have
proved better than Q-learning or PID alone. However, tabular Q-learning requires discrete
states and actions that can hardly handle high-dimensional or continuous control problems
in many real-world tasks. Recently, more advanced Deep Reinforcement Learning (DRL)
algorithms, such as Deep Deterministic Policy Gradient (DDPG) [18], Proximal Policy
Optimization (PPO) [19], and Soft Actor-Critic (SAC) [20], can output continuous actions
based on high-dimensional sensory input. Specifically, DDPG was found effective in
handling disturbances for vision-based UAV landing [12]. The controller was trained in
simulation and transferred to a real-world environment, but the output would be the same
even if the heights were different because the altitude (z-direction) was not considered
in the state representation. Another work [14] solved this problem by considering three-
dimensional directions in the state representation and also chose DDPG for vision-based
UAV landing on a moving platform. However, these methods suffer the same problem
as most deep reinforcement learning algorithms that rely on heavy offline training with
high-quality samples.

Corrective feedback from a human teacher can possibly speed up the learning process
if the teacher has a good understanding of the task as well as the dynamics of the envi-
ronment. The DAGGER method required the human expert to label each queried state
visited by the learner [21]. HG-DAGGER reduced the alertness burden on the expert by
executing a human-gated mixed control trajectory and using the human-labeled portions
of the data as the online batch update [22]. In a more natural and efficient manner, the
EIL approach made use of non-intervention in addition to the intervention of human
feedback [23]. In another work, the TAMER framework allowed a human to interactively
shape an agent’s policy via evaluative feedback [24]. The credit assignment mechanism
associated the feedback with the relevant data of state-action pairs. Based on the structure
of TAMER, the COACH framework advocated using the feedback in the action domains,
and past feedback was considered for adjusting the amount of human feedback that a given
action received adaptively [25]. Furthermore, corrective feedback was used to construct
action exploration strategies in continuous spaces [26,27]. However, the human teacher
would not always be able to give appropriate feedback for problems with fast and complex
transitions in high-dimensional action spaces, e.g., learning to control a UAV landing on a
mobile platform. In that case, the learning curve would be similar to pure reinforcement
learning since few feedback signals would be given by the teacher [26].

In this paper, we solve the quadrotor UAV landing task in dynamic environments
using the PID controller combined with deep reinforcement learning as well as corrective
feedback based on heuristics. Similar to a recent study [28] that uses an adaptive learning
navigation rule for UAV landing on a moving vehicle, the heuristics in this paper are in
terms of rules based on the experience of a human expert. We note that there are many
choices of reinforcement learning algorithms that can handle high-dimensional states and
continuous actions, and we choose the DDPG algorithm without the loss of generality. As
a result, our method can automatically learn the optimal parameters of the PID controller
so that the human operator can be relieved from the heavy workload of manual parameter
tuning of the PID controller. Compared with the previous work [15,16], our method has
better generalization capability for landing with uncertain initial conditions, as well as
landing with reliable performance on mobile ground platforms. In addition, our method
has the advantage of high efficiency over the vision-based deep reinforcement learning
methods [12,14] due to the use of heuristics for parameter tuning, which speeds up the
learning process with immediate feedback rather than waiting for sparse rewards, as in
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many RL algorithms. Different to the interactive learning literature in which a human
typically intervenes occasionally [21,23–25], our corrective feedback is available at every
time step if needed for the PID controller.

From the perspective of designing an intelligent control system with respect to human–
computer interaction, the main innovation of our work is that we have decoupled the
UAV landing control problem using a hierarchical framework. Specifically, a low-level
PID controller is responsible for providing fast reactive signals to control the speed of the
upward rotors, while a high-level agent or human corrective feedback does not need to
pay attention to the rotor control. However, the PID controller is known for its difficult
parameter tuning issue, and human designers are usually needed to fine-tune the PID
gains, which is a time-consuming and challenging task for the risky UAV landing problem.
In this work, the gains would be adapted by the high-level learning agent if the operation
conditions were changed. To achieve the fine-tuning of the PID gains, the agent does
not need to learn from scratch, as the human corrective feedback can regulate the agent’s
action selection. On the one hand, the human’s knowledge about the landing task can be
incorporated before the task starts to improve the safety of the UAV. On the other hand,
the real-time feedback from a human can accelerate the convergence of the task learning
process.

The remainder of the paper is organized as follows. Section 2 briefly introduces
reinforcement learning. Section 3 proposes our approach, followed by experiments and
results in Section 4. Finally, we conclude the paper in Section 5.

2. Preliminaries
2.1. Reinforcement Learning

A Reinforcement Learning (RL) agent manages to find optimal actions in given states
by maximizing the expected accumulated rewards through trial-and-error interaction with
the environment. Typically, an RL problem can be described by five elements S, A, P, r and
γ, where S denotes the state space and a specific state s ∈ S, A denotes the action space and
an action a ∈ A, r denotes the reward function, and Rt stands for the accumulated reward
Rt = ∑T

i=t γi−tr(si, ai) received from the time step t to T. P represents the state-transition
model, and γ is a discount factor.

The state-value function Vπ of a state st following a policy π is defined as the expected
accumulated reward as follows

Vπ(st) = E[Rt|s = st, π]. (1)

Similarly, the action-value function Qπ of (st, at) following a policy π is defined as
follows

Qπ(st, at) = E[Rt|s = st, a = at, π]. (2)

The expected reward J(π) is an evaluation function of a policy π defined as follows

J(π) = E[Rt|π]. (3)

The optimal policy π∗(at|st) means that an optimal action a∗ would be selected in the
state st, which maximizes the Q-value function as follows

a∗ = arg max
at

Qπ(st, at). (4)

Q-learning [17] is a popular algorithm for finding the optimal action selection policy
for discrete states and actions. Based on Q-learning, a variety of algorithms such as
DQN [29], double DQN [30] and dueling DQN [30] have been proved effective in solving
high-dimensional problems.
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2.2. Deep Reinforcement Learning

Many real-world control problems have to be solved in continuous state and action
spaces. Function approximators have been used to represent the state-value and action-
value functions, trying to alleviate the issue of the curse of dimensionality. Neural networks
have become a popular choice of function approximators, especially due to the power of
deep neural networks such as CNN. Accordingly, we can optimize the parameters θQ of a
neural network by a loss function as follows:

L(θQ) = E[(yt −Q(st, at|θQ))2], (5)

where yt = r(st, at) + γQ(st+1, at+1|θQ). If π is an arbitrary deterministic policy, we
describe it as a mapping from states to actions µ : S→ A and omit the expectation:

Qµ(st, at) = r(st, at) + γQµ(st+1, µ(st+1)). (6)

Then, we define an actor function µ(s|θµ) as a mapping from every state to a particular
action. The actor function represented by a neural network is updated based on the
expected return J(π) as follows

∇θµ J(π) ≈ E[∇θµ Q(s, a|θQ)|s=si ,a=µ(si |θµ)]

= E[∇aQ(s, a|θQ)|s=si ,a=µ(si)
∇θµ µ(s|θµ)|s=si ].

(7)

The DDPG [18] algorithm concurrently learns a Q-function and a policy using two
neural networks, one for the actor and one for the critic. The actor network takes the current
state as input and an action as output in the continuous action space. The critic evaluates
the current state and action of the actor by calculating the corresponding Q-value. However,
simultaneously updating the two neural networks is unstable and can cause divergence.
Another two target networks, for both the actor and the critic, are employed to generate
the targets for computing the Time Difference (TD) errors for the learning. As a result, the
stability of the algorithm is increased.

The target networks have the same structures as the two actor and critic networks.
In practice, a random disturbance is added to every action for exploration. After each
action execution, the transition (sstep,astep,rstep,sstep+1) is stored in a replay buffer. The critic
network is updated based on Equation (8) when the replay buffer is full, where B is the
size of a sampled batch,

L =

(
1
B

)
∗∑

i
(yi −Q(si, ai|θQ))

2
. (8)

For every step, the actor network is updated as follows

∇θµ J ≈ 1
B ∑

i
∇aQ(s, a|θQ)|s=si ,a=µ(si)

∇θµ µ(s|θµ)|.si
(9)

Then, we can update the target networks,

θQ′ = τθQ + (1− τ)θQ′ , θµ′ = τθµ + (1− τ)θµ′ . (10)

After training with sufficient episodes, the converged target networks can be used to
solve the problems.

2.3. Reinforcement Learning with Corrective Feedback

As an RL agent typically requires trial-and-error interactions with the environment
to collect sufficient experiences so as to optimize its control policy, learning from scratch
requires exploring the entire state and action spaces, which can take quite some time.
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Similar to the interactive learning framework COACH [25], we use corrective feedback in
terms of a binary signal, i.e., to increase or decrease the action selected by the RL agent, to
speed up the RL process (see Figure 1).

agent Env M

parameter update

corrective feedback

at
′ at = at

′ + ah (st, at, rt, st+1)
ah

1

Figure 1. RL with corrective feedback based on the human experience of the task.

The corrective feedback serves as a guidance for action selection during reinforcement
learning. In other words, the agent selects an action a′t, and the feedback of bias ah would be
added to decide a final action at. It is expected that the human has a better understanding
of how well the task is performed and, therefore, can provide an immediate positive or
negative reward to generate an appropriate action advice ah towards the optimal action,
as shown in the literature [25–27]. However, the human advice can not be guaranteed to
be always correct or accurately associated with the situations to be improved. In contrast,
we design the corrective feedback as a module of heuristic rules that define when and
how the actions should be biased (see Section 3.4). After the action at is performed, the
agent observes a reward rt and a new state st+1, and the data (st,at,rt,st+1) is saved in a
memory buffer M. Then, M can be used by a deep reinforcement learning algorithm using
the experience replay mechanism. Typically, the function approximation technique can be
used to represent the actor and critic. If M is full, the critic and actor networks are updated
one time per episode. The parameters are updated in an online learning fashion.

3. Approach

In this section, we first introduce the UAV dynamics and present how we use the
standard PID controller for UAV landing. Then, we explain how to combine PID with RL.
Finally, we modify the learning-aided PID control with corrective feedback.

3.1. Uav Dynamics

In order for the UAV to land on the ground vehicle, the UAV estimates its relative
position to the landing platform using a camera installed underneath the UAV. We use the
North East Down (NED) frame and a body frame to describe the UAV landing process.
Since the UAV is a rigid body, the NED frame {oe, xe, ye, ze} is the inertia frame based on
the earth, and oe denotes the center of the earth. The body frame {ob, xb, yb, zb} is attached
to the UAV fuselage, and ob indicates the mass center of the UAV.

To describe the rotational motion, we define the rotation matrix R ∈ R3×3 and the
Euler angles [φ, θ, ψ]T that represent the pitch, raw and yaw, respectively. The rotation
matrix can be obtained based on the Euler anglers,

R =




cθcψ sθcψsφ− sψcφ sθcψcφ + sψsφ
cθsψ sθsψsφ + cψcφ sθsψcφ− cψcφ
−sθ cθsφ cθcφ


, (11)

where the operators s and c denote sin(·) and cos(·) for the sake of simplicity. The kinemat-
ics of the UAV can be described as follows
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ṗ = v
v̇ = −ge3 +

T
m Re3 +

Td
m

Wγ̇ = ω

Jω̇ = −ω× Jω + τ + τd.

(12)

Here we use p =
[
px, py, pz

]T , v =
[
vx, vy, vz

]T , and ω =
[
ωx, ωy, ωz

]T to denote the
position, the linear velocity, and the angular velocity of the UAV according to the body
frame, respectively. With regard to the acceleration, g indicates the local gravitational
acceleration, m is the total mass, T is the applied thrust along the vector e3 = [0, 0, 1], and
Td represents disturbance. The angular velocity can be calculated based on the Euler angers
γ = [ψ, θ, φ]T , and the attitude transition matrix W is defined as

W =




1 0 − sin θ
0 cos φ sin φ cos θ
0 − sin φ cos φ cos θ


. (13)

In Equation (12), J means the inertial matrix according to the UAV body frame, and τ
and τd represent the applied torque and the disturbance torque, respectively.

3.2. Baseline: Standard PID for UAV Landing

A PID controller provides a low-level control loop that calculates control actions based
on the error signal e(t), which is the deviation between the desired set-point and the current
measurement. The structure of a standard PID controller is shown in Figure 2.

e(t)
∑

P kPe(t)

I kI
t∫
0

e(τ)dτ

D kD
de(t)
dt

u(t)

1

Figure 2. Standard structure of a PID controller.

The PID controller continuously corrects the output based on the three control parame-
ters, i.e., proportional, integral and derivative gains, denoted by kP, kI and kD, respectively.
The three parameters are updated according to the error signal, and the control signal u(t)
is obtained as follows

u(t) = kPe(t)+kI

t∫

0

e(τ)dτ+kD
de(t)

dt
. (14)

In this work, we employ velocity control for safe landing, and thus, the commands
will be sent to the UAV to adjust its velocities until it reaches the landing platform. Here
the error signal e(t) reflects the distance between the UAV and the centroid of the landing
area, which is detected and localized using a vision-based method. The control variables
are calculated based on the detected errors and the PID gains.

3.3. PID with RL for UAV Landing

The framework of PID integrated with RL is shown in Figure 3. The framework
consists of two modules. The RL module is shown within the blue dashed lines, and the
PID module is shown within the green dashed lines.
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∑

PID controllerAgent Robot

reward function

−+

x

ReinforcementLearning PID control

Ref x

r a u

s

1

Figure 3. The framework of PID with RL.

Denote by puav = (px, py, pz) the position of UAV in the 3D world coordinate sys-
tem, and x = (px, py, pz). The reference signal Re f indicates the goal position pg =
(pgx, pgy, pgz) of the UAV, i.e., the horizontal surface center of the ground vehicle. The state
vector s = (dx, dy, dz) is three-dimensional, indicating the distances from puav to pg in the
x, y and z directions, respectively. The output of the PID controller is u = (vx, vy), where
vx and vy are the velocities in the x and y directions.

The action of the agent a consists of the three PID parameters kP, kI , kD that can be
adjusted by the RL module at any time step if needed. In this paper, we use PID to control
the velocities in the x and y directions, assuming the velocity in the vertical z direction
as constant for safety reasons. In other words, the action a = (kvx

P , kvx
I , kvx

D , k
vy
P , k

vy
I , k

vy
D ) is

six-dimensional.
The reward function rt is defined as follows

rt =





1, if successful
−1, if failed

dt−1 − dt, otherwise
, (15)

where dt indicates the distance between the UAV and the goal position at the time step
t. If the UAV reaches the target position and lands successfully, the reward is 1, and the
episode ends. If the UAV fails, the reward is −1, and the episode also ends. Otherwise, the
reward is the difference between the distance between the last time step and the current
time step. We note that this reward function encourages fast landing towards the goal
position and punishes fast landing away from the goal position. Due to the contribution of
the RL module, the PID controller is expected to be more adaptive to changing situations.

3.4. Rl with Corrective Feedback for UAV Landing

Although the RL algorithm enables automatic parameter turning of the PID controller,
the learning process is time-consuming. We assume that the human is likely to have a good
understanding of how the landing task should be carried out and can therefore provide
heuristics to influence the action selection of the UAV towards faster learning of the optimal
landing policy.

According to the experience of the human expert, the P-gains of the PID controller
have significant influence on the UAV landing task, i.e., kvx

P and k
vy
P . Higher values of

kvx
P and k

vy
P may result in a greater change in speed in the x and y directions. When the

UAV is far from the goal position, i.e., the error signal e(t) is high, then higher values
of kvx

P and k
vy
P are preferred for decreasing e(t) faster. However, if the P-gain is too high

(e.g., higher than 1.0), it might result in high velocity so that the UAV would easily lose
sight of the ground vehicle. On the other hand, if the P-gain is too small (e.g., smaller than
0.2), it would have little impact on the velocity change; therefore, the P-gain needs to be
increased.
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We illustrate the proposed approach of PID with DDPG [18] and corrective feedback
in Algorithm 1. We note that many other reinforcement learning algorithms should also
work with the method illustrated in Figure 3.

Algorithm 1 PID with DDPG and corrective feedback

1: Randomly initialize critic network Q(s, a|θQ) and actor network µ(s|θµ) with weights
θQ and θµ

2: Initialize target network Q(s, a|θQ′) and µ(s|θµ′) with weights θQ′ ,θµ′ , where θQ →
θQ′ ,θµ → θµ′

3: Initialize the replay buffer M
4: for episode = 1 to N1 do:
5: Receive initial observation state st
6: for t = 1 to N2 do:
7: Select a primary action a′t = µ(s|θµ) according to the current policy
8: Receive corrective feedback ah
9: Select the action at = a′t + ah

10: Update the parameters of the PID controller with at
11: Observe the reward rt and the new state st+1
12: Save the transition (st,at,rt,st+1) in M
13: Sample a random mini-batch of (si,ai,ri,si+1) from M
14: Set yi = ri + γQ′(si+1, µ′(s|θµ′ |θQ′))
15: Update the critic network using Equation (8)
16: Update the actor policy using Equation (9):
17: Update the target network using Equation (10)
18: end for
19: end for

We assumed that the range of the RL agent’s action a′t was (0, 0.6), and the corrective
feedback was ah = −0.2 or ah = 0.2. As mentioned above, if the human considered that
the velocity of the UAV could be increased, then ah = 0.2. As a result, the UAV would
accelerate towards the target position. Otherwise, if the human considered that the velocity
of the UAV should be decreased, then ah = −0.2. The following heuristics were used to
construct the following rules of corrective feedback:

• If kvx
P > 1 or k

vy
P > 1, then ah = −0.2.

• If kvx
P < 0.2 or k

vy
P < 0.2, then ah = 0.2.

4. Experiments and Results
4.1. Environmental Settings

We first carried out the quadrotor UAV landing task in a simulated environment using
the Gazebo simulator [31] (see Figure 4). The UAV was controlled by the ROS package [32].
The velocity of the UAV in the z direction was set to 0.2 m/s by default.

The ground vehicle could move forward and backward and turn at a certain angle.
The size of the ground vehicle (0.6 m× 0.8 m× 0.2 m) was larger than that of the UAV
(0.4 m× 0.4 m) to leave enough space for landing. We stuck a designed marker (0.6 m×
0.8 m) on top of the horizontal surface of the mobile ground vehicle. It was recognized by
the UAV’s downside camera for the purpose of detection and estimation. The marker had
smaller circular patterns at its center, used for localization when the UAV was close to the
ground vehicle.
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(a) (b)

Figure 4. A quadrotor UAV landing task in the simulation environment. (a) Environmental setting.
(b) Recognized marker on the mobile vehicle.

In this work, since the UAV needs to land on the ground vehicle, we develop a vision-
based method to detect the landing platform. As shown in Figure 4, a designed landmark
is placed on the surface of the platform for the UAV to recognize. In order to achieve a
lightweight visual-based detection, the relative position of the platform is estimated based
on the circle of the landmark. We first convert the RGB images captured by the UAV camera
to the HSV color model so as to eliminate other colors, with the exception of the blue color.
Then, the HSV mask can convert the RGB image to a grey image, and a binary image of
the landmark can be obtained by threshold segmentation of the grey image. Finally, we
can identify the circular feature and estimate the center (xc, yc) and the diameter of the
detected circle. In addition, the altitude of the UAV can be calculated based on the focal
length of the UAV’s camera and the size of the detected circle in the UAV’s camera view.

For the three learning-based approaches, i.e., RL (DDPG), PID with RL (RL-PID) and
PID with RL and corrective feedback (RLC-PID), we trained the agent for 400 episodes,
where p0 = (0, 0, 4.0) and pg = (0, 0, 0.2). We expect that the UAV could always keep track
of the marker for localization. If the marker was out of sight, it would be considered a
failure, and the UAV started a new episode. The ground vehicle was assumed static during
training for the purpose of faster policy learning. Then, it was allowed to move during
the testing to compare the performance of the controllers in dynamic situations. We note
that the UAV hovered for a while before landing towards pg. Due to the hovering error,
the actual initial position of training was within a radius of about 0.1 m around p0 in the
three-dimensional space. The introduced uncertainty made the problem more challenging
than landing from exactly the same initial position.

The parameters of DDPG were set empirically as follows. The learning rates for
both the actor and critic networks were 0.0001. The target network was updated every
100 time steps. The discount factor of the reward was 0.9. The memory buffer M = 2000,
and the mini-batch size was 64.

4.2. Training in the Simulation Environment

The success times and training time (in minutes) were compared among RL(DDPG),
RL-PID and RLC-PID in Figure 5. The RL-PID method succeeded more than the RL method,
and the RLC-PID method was even better, with a near 100% success rate. We note that the
RL approach resulted in many failures in which the UAV lost track of the marker; therefore,
it was terminated earlier and took less time than RL-PID. The required training time of
RLC-PID was also the shortest. The reason is that the RL module encouraged the UAV to
optimize the PID parameters for fast learning of a stable landing policy. In addition, the
corrective feedback can further speed up the parameter optimization process.
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Figure 5. Comparison of success times and total used time (in minutes) among RL, RL-PID and
RLC-PID during training, Ntrain = 400, p0 = (0, 0, 4.0).

In order to demonstrate the stability and convergence of the proposed method, we
compared the accumulated reward of RL, RL-PID and RLC-PID in Figure 6, and we also
compared the loss of RL, RL-PID and RLC-PID in Figure 7. The RL approach had the lowest
reward, and RL-PID was close to RLC-PID during the training. Finally, the loss of the three
approaches was close to zero, indicating that the learned policies became stable, although
without guarantee of the high quality of the policies.

Figure 6. Comparison of the accumulated reward among RL, RL-PID, RLC-PID during training,
Ntrain = 400, p0 = (0, 0, 4.0).
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Figure 7. Comparison of loss among RL, RL-PID, RLC-PID during training, Ntrain = 400, p0 =

(0, 0, 4.0).

4.3. Testing in the Simulation Environment
4.3.1. Testing with a Static Vehicle

We tested the learned controllers together with the PID controller in a static scenario,
with two initial landing conditions p0 = (0.2, 0.2, 4.0) and p0 = (1.0, 1.0, 4.0). The results of
success times are compared in Table 1. It illustrated that the PID parameters of RLC-PID
resulted in the best performance among the three approaches.

Table 1. Success times of landing on a static ground vehicle during testing, Ntest = 100.

Approach PID RL RL-PID RLC-PID

p0 = (0.2, 0.2, 4.0) 90 25 100 100

p0 = (1.0, 1.0, 4.0) 52 0 55 92

The condition p0 = (0.2, 0.2, 4.0) was relatively easy because it was close to the
condition p0 = (0, 0, 4.0) used for training. In other words, the marker was close to the
center of field of view (FOV) of the UAV and easily tracked by the UAV. Accordingly, PID,
RL-PID, RLC-PID solved it with high success rates, except that RL alone failed many times.
In contrast, the condition p0 = (1.0, 1.0, 4.0) was more difficult as the marker was close to
the boundary of the UAV’s FOV. In other words, the UAV would lose track of the marker if
it flew in the wrong direction. As a result, the performance of PID and RL-PID dropped
almost by half while RLC-PID still maintained high performance.

The trajectories of PID, RL, RL-PID and RLC-PID were also compared in Figure 8. We
note that the RLC-PID approach encouraged a circular landing pattern compared with
other approaches that showed longer trajectories of a vertical landing pattern. In other
words, RLC-PID suggested the UAV speed up in the x and y directions in the beginning
when the UAV was far from the goal location, and it suggested the UAV slow down in the
end when it was close to the destination.
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(a) From p0 = (0.2, 0.2, 4.0). (b) From p0 = (1.0, 1.0, 4.0).

Figure 8. Trajectories of landing on a static vehicle (PID, RL, RL-PID, RLC-PID).

The PID parameters of (kvx
P , kvx

I , kvx
D , k

vy
P , k

vy
I , k

vy
D ) were compared for PID, RL-PID and

RLC-PID (see Figure 9). The P-gains of kvx
P and k

vy
P showed different behaviors while other

parameters almost remained unchanged.

(a) PID parameters of velocity control (PID) (b) PID parameters of velocity control (RL-PID).

(c) PID parameters of velocity control (RLC-PID)

Figure 9. PID parameters when landing on a static ground vehicle during testing.

Both kvx
P and k

vy
P of PID remained around 1.0 according to human experience, while

kvx
P and k

vy
P of RL-PID kept increasing monotonically driven by the RL module. Due to
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the use of corrective feedback, kvx
P and k

vy
P of RLC-PID increased rapidly at the beginning

and became slower afterward. On the other hand, the parameters of kvx
I , k

vy
I , kvx

D and k
vy
D

remained close to zero for all three approaches.

4.3.2. Testing with a Moving Vehicle

We tested 100 episodes for UAV landing on the moving ground vehicle from
p0 = (0, 0, 4.0) using PID, RL-PID and RLC-PID methods, in which the vertical speed
of UAV was set to vz = 0.1 m/s and vz = 0.2 m/s, respectively. The moving velocity of
the ground vehicle was set to 0.1 m/s, but this information was unknown to the UAV, and
the ground vehicle could occasionally move backward during the experiment. The PID
parameters were set empirically as in the previous section. The task settings were the same
with the static landing task, except that the ground vehicle was allowed to move back and
forth in a straight line. Thus, it was more difficult for the UAV to land on the moving
vehicle because the environment was changing with uncertainty. The results of success
times were compared in Table 2, in which we can find the success times of each approach
that was tested 100 times. It illustrates that the PID parameters of RLC-PID resulted in the
best performance among the three approaches. Either the PID or the RL approach alone
could hardly solve the landing task. For the RL-PID approach, the vertical speed of the
UAV had a great influence on the success rate.

Table 2. Success times of landing on a moving ground vehicle during testing, Ntest = 100.

Approach PID RL RL-PID RLC-PID

vz = 0.1 m/s 10 0 91 97

vz = 0.2 m/s 5 0 52 93

Figure 10 illustrates the trajectories of the UAV and the UGV in the experiments, where
the blue cross represents the initial position of the UAV, the red line indicates the landing
trajectory of the UAV, the green line represents the moving trajectory of the ground vehicle,
and the purple dot represents the final position of the ground vehicle. An intuitive finding
is that the UAV’s landing trajectory of our approach is more smooth, and it can follow the
motion of the ground vehicle.
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(b) A success (RL-PID).
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(c) A success (RLC-PID).

Figure 10. Trajectories of landing on a moving vehicle (PID, RL-PID, RLC-PID), p0 = (0, 0, 4.0).

Figure 11 shows how the PID parameters of (kvx
P , kvx

I , kvx
D , k

vy
P , k

vy
I , k

vy
D ) were adapted

for RL-PID and RLC-PID during the experiment. Similar to the testing results in the
static vehicle setting, kvx

P and k
vy
P of RL-PID kept increasing monotonically throughout the

experiment, while kvx
P and k

vy
P of RLC-PID changed more rapidly at the beginning, and

changed slower afterward. As a result, the PID parameters had a significant influence on
the landing trajectories and the success rates of the landing task.
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(a) PID parameters of velocity control (RL-PID). (b) PID parameters of velocity control (RLC-PID)

Figure 11. PID parameters when landing on a moving ground vehicle during testing.

4.4. Real-World Experiments

The models and parameters of the RLC-PID approach trained in the simulation were
directly transferred to real-world experiments without any modification. The settings of
real-world experiments were similar to the simulation. Due to safety concerns, we first
tested the learned RLC-PID controller with a static landmark five times (see Figure 12).
Here, the landmark was exactly the same as in the simulation environment. In all five tests,
the UAV successfully landed on the landmark, and the final landing locations were all close
to the center of the landmark.

(a) time = 2 s. (b) time = 12 s.

(c) time = 22 s. (d) time = 32 s.

Figure 12. Real-world UAV landing on a static landmark.

Then, we used a movable landmark pulled by two human operators through two
strings to imitate the case of landing on a mobile platform (see Figure 13). We note that the
UAV had no information about the moving directions of the landmark. During the five
tests, the landmark was pulled back and forth in random directions, and the results show
that the UAV also successfully landed on the landmark, but the final landing positions had
a larger deviation from the center position of the landmark compared with the static cases.
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(a) time = 1 s. (b) time = 8 s.

(c) time = 15 s. (d) time = 22 s.

Figure 13. Real-world UAV landing on a movable landmark.

Finally, we tested the landing performance on a real mobile vehicle (see Figure 14). In
the experiment, the moving velocity of the UGV was set to 0.1 m/s, but its moving direction
was uncertain. We can also see from the figure that since the UAV needed to track and
minimize the distance to the center of the landmark, its trajectory reflected the movement of
the ground vehicle to some extent. In all five tests, we found that the UAV still managed to
land on the ground vehicle successfully, but the final positions were close to the boundary
of the landmark. In comparison with the indoor experiments, the outdoor experiments
were affected by wind and airflow. Therefore, the landing accuracy was slightly worse than
the indoor experiments.

(a) Early stage of landing. (b) Late stage of landing.

Figure 14. Real-world UAV landing on a mobile ground vehicle.

5. Conclusions and Future Work

In this paper, we have proposed an autonomous UAV landing approach by combining
the advantages of the traditional PID control method and reinforcement learning. Specifi-
cally, we have designed an RL-PID framework that allows the RL module to adaptively
adjust the parameters of the PID module in an online fashion. In addition, we have used
corrective human feedback to provide immediate rewards to speed up the learning process.
In both simulation and real-world experiments, we have demonstrated the effectiveness of
the proposed RLC-PID algorithm in terms of success rate. The models and parameters of
the RLC-PID controller trained in simulation could be directly transferred to real-world
experiments without much fine-tuning. In future work, we will incorporate online human
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intervention into our framework, and develop a more sophisticated credit assignment
mechanism.
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