
Citation: Sial, M.B.; Zhang, Y.; Wang,

S.; Ali, S.; Wang, X.; Yang, X.; Liao, Z.;

Yang, Z. Bearing-Based Distributed

Formation Control of Unmanned

Aerial Vehicle Swarm by Quaternion-

Based Attitude Synchronization in

Three-Dimensional Space. Drones

2022, 6, 227. https://doi.org/

10.3390/drones6090227

Academic Editors: Xiwang Dong,

Mou Chen, Xiangke Wang

and Fei Gao

Received: 27 July 2022

Accepted: 26 August 2022

Published: 30 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Bearing-Based Distributed Formation Control of Unmanned
Aerial Vehicle Swarm by Quaternion-Based Attitude
Synchronization in Three-Dimensional Space
Muhammad Baber Sial 1,*, Yuwei Zhang 1 , Shaoping Wang 1,2,3 , Sara Ali 4,5 , Xinjiang Wang 1,2,3 ,
Xinyu Yang 6 , Zirui Liao 1 and Zunheng Yang 1

1 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
2 Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University,

Beijing 100191, China
3 Ningbo Institute of Technology, Beihang University, Ningbo 315800, China
4 School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology,

Islamabad 44000, Pakistan
5 Human-Robot Interaction (HRI) Lab, School of Interdisciplinary Engineering & Science (SINES),

Islamabad 44000, Pakistan
6 School of Energy and Power Engineering, Beihang University, Beijing 100191, China
* Correspondence: babersial@buaa.edu.cn

Abstract: Most of the recent research on distributed formation control of unmanned aerial vehicle
(UAV) swarms is founded on position, distance, and displacement-based approaches; however, a very
promising approach, i.e., bearing-based formation control, is still in its infancy and needs extensive
research effort. In formation control problems of UAVs, Euler angles are mostly used for orientation
calculation, but Euler angles are susceptible to singularities, limiting their use in practical applications.
This paper proposed an effective method for time-varying velocity and orientation leader agents
for distributed bearing-based formation control of quadcopter UAVs in three-dimensional space. It
combines bearing-based formation control and quaternion-based attitude control using undirected
graph topology between agents without the knowledge of global position and orientation. The
performance validation of the control scheme was done with numerical simulations, which depicted
that UAV formation achieved the desired geometric pattern, translation, scaling, and rotation in 3D
space dynamically.

Keywords: formation control; UAV swarm; quadrotor UAVs; VTOL UAVs; attitude synchronization;
orientation estimation; bearing-based formation control

1. Introduction

Nature has always inspired many great scientific triumphs and countless feats in the
advancement of technology. Observation of natural formations of creatures such as a flock
of birds, a school of fish, and formations of ants makes us realize that each entity in the
formation controls its place in the formation just by aligning itself with respect to each
other’s bearing angle without knowledge of its global position or orientation. The same is
true for aerobatic displays of piloted jet aircrafts in formation flying, where each aircraft
is flown at a specific angle with other aircrafts of the formation. Design and control of
distributed agent formations have become a keystone to solving multifarious complex
applications such as coordination of mobile robots [1], satellite formation flying [2], and
search and rescue [3]. A group or formation of UAVs, also referred to as a UAV swarm, has
received compelling attention in military and civilian applications [4–6]. The process in
which a group of agents obtains and maintains a predetermined geometric shape in space
is called formation control [7].
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UAV formations are all set to become one of the most essential tools for future military
and civilian operations [8]. Formation control strategies, in which spatial constraints are
defined among agents, are a powerful instrument in multi-robot systems [9]. Many kinds
of consensus algorithms related to formation control for multi-agent systems can be found
in the literature, mainly categorized as leader–follower [10], virtual structure [11], and
potential field methods [12]. The leader–follower configuration is a widespread technique
in formation control literature [13]. This configuration is ideal yet nontrivial in the case of
distributed multi-agent systems, where a central controller such as a ground station is not
present to centrally control all the agents. The leader follows a specific path or reference
trajectory while all the followers are bound to adjust their position with respect to the leader.
Because only knowledge about neighboring robots is required to define the formation, the
leader–follower architecture best fits distributed schemes by enabling formation control
relative to agent poses [14].

The current formation control methods, as per sensed and controlled variables, can
be categorized into three groups: (1) position-based, (2) distance-based, and (3) bearing-
based [9]. Position-based methods are currently most employed because they utilize
the fact that each agent in the formation can obtain its position with respect to the global
coordinate frame [15–17]. This means the agents rely on the global positioning system (GPS)
or other related sensor information, forcing them to rely on external information to help
conform themselves in a formation. However, in many situations, such as urban indoor or
subterranean environments, the external signals cannot be obtained and position accuracy
is uncertain, making it inadvisable to rely on such information. It is preferred to rely on an
agent’s onboard sensors rather than external sources for measurements. Trinh et al. [18,19]
have verified that distance-based rigid formation control could not achieve global stability;
furthermore, flip ambiguities commonly occur in distance-rigid graphs [20]. Additionally,
compared to other approaches, the bearing-only approach has some advantageous features,
such as relying less on the sensing ability of each robot [21]. The problem of bearing-based
formation control of non-holonomic robots was considered by Li et al. [21] in 3D space
using the Euler–Lagrange model using Euler angles to express 3D rotations of agents.
Initial research on bearing-based formation control [22,23] was restricted to 2D space and
primarily intended to control the bearing between agents to achieve the desired formation
configuration. As per the proposed bearing rigidity theory, an almost globally stable control
law was proposed for the single integrator robot with or without the inertial reference
frame [24]. It is also important to mention that most of the reported research [24–26] has
modeled their agents as a single or double integrator with randomly controlled velocity and
acceleration. Using bearing rigidity-based control architecture also uniquely determines
the formation’s shape [24]. Additionally, it is paramount that orientation dynamics are
independent of the position dynamics but not the other way around [24]. The bearing can
also be calculated by employing the agent’s onboard cameras [27] or vision sensors and
sensor arrays [28,29].

Complete formation maneuver control and time-varying formation control using
bearing-only measurements have not been realized yet [21]. Bearing rigidity theory to solve
nonlinear robotic systems has generally only used the Euler–Lagrange model [21], where
systems subjected to non-holonomic constraints are discussed. Quaternions are preferred
over Euler angles because the latter are prone to gimbal lock when two out of three axes
align during interpolation. Simple linearization using Euler angles overcompensates the
errors in environments susceptible to unknown errors. Furthermore, if the inclination in
disturbances is too large, the linear conditions are not met. However, using quaternions
instead of Euler angles, even hard inclinations can also be sustained. Robustness against
external disturbances is also a key factor for preferences of quaternions over Euler angles.
Furthermore, it has also been observed that conversion of quaternions into a matrix is also
efficient. Their mathematical simplicity comes from the fact that for modeling rigid body
dynamics, no trigonometric functions are required [30]. As per the reviewed literature,
directed graph topology takes less of a toll on the overall computation complexity of the
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formation but is not as robust as undirected graphs. In undirected graphs, bidirectional
control of relative bearing measurements makes the formation more robust.

Motivated by the above observations, the significance of this article is such that
we proposed a singularity-free novel quaternion-based relative attitude synchronization
control scheme to reinforce undirected bearing-based control of a UAV swarm. Each
agent’s relative attitude and bearing were measured locally with its neighbor; hence, the
dependence on the global coordinate frame was eliminated. The proposed approach
validated its effectiveness on time-varying velocity and time-varying orientation leader
agents in 3D space.

The main theoretical contributions of this article are:

1. A novel cascaded approach for distributed formation control of quadcopter UAVs
was presented, consisting of an undirected bearing-based controller and a quaternion-
based attitude synchronization controller working together in unison.

2. The distributed attitude synchronization and bearing-based formation control law
were designed for 3D formation control as compared to [22,23], which have only
designed bearing-based controllers for 2D space. Moreover, the proposed scheme
uses quaternion-based attitude control, which is much more robust than research that
has used Euler angles such as [21,31].

3. This work investigated and implemented the distributed formation control for time-
varying velocity and time-varying orientation leader agents, which has not been
accomplished yet in the domain of bearing-based formation control as compared
to [21,31,32].

4. We designed our control method based on dynamic models of UAVs and undirected
graph topology, a more robust technique as compared to [21,24,31], which only have
used directed graph communications and kinematic models. The practical validation
of the model was done using numerical simulations in MATLAB.

The remainder of this paper is organized as follows. In Section 2, preliminaries
and problem formulation are given. Section 3 presents the system model and proposed
control design. Section 4 covers the simulations and analysis, whereas discussion and the
conclusions are drawn in Sections 5 and 6, respectively.

2. Preliminaries

In this section, we discuss some necessary background concepts about quaternions,
the UAV quadcopter dynamical model, graph theory, and bearing rigidity theories that
form a basis for problem formulation and design of our proposed control scheme.

2.1. Quaternions

This section briefly covers the mathematical background of quaternions, which are four-
dimensional algebraic constructs that extend the concept of complex numbers. While quater-
nions are less comprehensible than Euler angles, quaternions lead to more efficient and accurate
computation of rotations [33]. A quaternion is expressed formally as q = q0+q1i+ q2j+ q3k,
where q0 represents the real part or the scalar part and q1i+ q2j+ q3k represents the vector
part in R3. Similarly, a pure quaternion’s real part is zero. The conjugate of a quaternion is
q∗= q0− q1i− q2j− q3k, whereas its norm is

‖ q ‖=
√

q⊗ q∗ =
√

q0
2+q1

2+q2
2+q3

2 (1)

The norm is calculated by taking the Kronecker product of a simple quaternion and its
conjugate. Similarly, the quaternion inverse can be given by

q−1 =
q∗

‖ q ‖ (2)
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The quaternion conjugate can also be expressed as q∗= q0 − q, and similarly, the
quaternion inverse can be obtained by q−1 =

q∗

‖q‖ hence q−1= q∗. We assumed that only
unit quaternions are used for quadrotor attitude representation for this work. Rotation
from one coordinate frame A to another coordinate frame B can be expressed by conjugate
operation; a quaternion expresses a rotation qR with an added condition that its norm is
equal to 1. Therefore, if qA is a quaternion expressed in frame A, then the same quaternion
can be expressed in frame B as:

qB= qRqAq∗R (3)

We compute the multiplication of quaternions to change a coordinate frame

qRqAq∗R= (q 0+q1i + q2j + q3 k)(xi + yj + zk)(q 0 − q1i− q2j− q3 k) (4)

The product collected in one quaternion gives us

qRqAq∗R= (x(q 2
0+q2

1 − q2
2 − q2

3) + 2y(q 1q2 − q0q3) + 2z(q 0q2+q1q3))i+
(2x(q 0q3+q1q2) + y(q 2

0 − q2
1+q2

2 − q2
3) + 2z(q 2q3 − q0q1))j+

(2x(q 1q3 − q0q2) + 2y(q 0q1+q2q3) + z(q 2
0 − q2

1 − q2
2+q2

3))k
(5)

Quaternions in formation control circulated around simply using quaternions for
representation of the orientation of each agent with respect to a global frame [34] or one of
the other agents serving as an orientation reference [35]. As per the Euler theorem for rigid
bodies [32], the rotation of a body around an axis in R3 can be expressed in quaternions.
The attitude of the ith quadrotor defined by the unit quaternion is given as

Q =

[
q
η

]
=

[
‖ e ‖ sin θ2

cos θ2

]
(6)

where ‖ e ‖ represents a unit axis in Euclidean space on which the agent is rotated, and
θ is the magnitude of rotation. As the quaternion norm is equal to 1, it is used as the
rotation operator. q represents the vector part and gives the magnitude of rotation, and η
represents the scalar part and gives the axis of rotation. While some conventions also use
the representation where the rotation is expressed later than the axis such as Q =

[
η q

]T,
it is of less significance and varies from one method to another. The unit quaternion Q can
also be transformed into its equivalent rotation matrix by the Rodrigues formula which is

R(Q) =
(
η2 − q>q

)
I3+2qq> − 2ηS(q)

S(q) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (7)

where S( .) is the skew-symmetric matrix operator.

Quadcopter UAV Attitude Dynamics

Considering a swarm of n number of UAVs, the dynamics of the ith agent can be given
as in [36].

.
pi= vi

mi
.
vi= migê3 − ΓiR(Q i

)Tê3.
Qi =

1
2 T(Q i)ωi

Jiώi= τ− S(ω i)Jiωi

(8)

For i ∈ N := {1, 2 . . . . . . , n}, pi denotes the position, vi denotes the velocity, mi de-

notes the mass of the ith UAV, Qi =
(
qT

i ηi
)T is the agent’s orientation, and

ωi = [ωx,ωy,ωz]T ∈ R3 is the angular velocity denoted by the skew-symmetric ma-
trix operator from R3 to a matrix in R3 × 3. The positive scalar Γ denotes the total thrust
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by all four rotors in the direction ê =
(
0 0 1

)T unit vector in the body coordinate frame,
and τ is the control input torque. T(Q) can be given as

T(Q) =

(
ηI3+S(q)
−q>

)
(9)

For a UAV leader–follower configuration, the relative attitude between the ith agent

(leader) and jth agent (follower) expressed by the unit quaternion Qij =
(

qT
ij ηij

)T
can be

defined as
Qij= Q−1

j �Qi (10)

The relative attitude between the two agents can be expressed as

.
Qij =

1
2 T(Q ij)ωij, T(Q ij) =

(
ηiI3+S(q ij

)
−qij

>

)
(11)

whereωij is the relative angular velocity of the ith agent’s body frame with respect to the
jth agent’s body frame expressed in the ith agent’s body frame given as

ωij= ωi − R
(

Qij

)
ωj (12)

where the rotation matrix R
(

Qij

)
represents the rotation from the jth agent’s body frame to

the ith agent’s body frame such as

R
(

Qij

)
= R(Qi)R

(
Qj

)>
(13)

Figure 1 shows the representation of a UAV in the inertial reference frame OW and
the body-fixed frame OB. Figure 1a shows a dynamic model of a quadrotor UAV in Euler
angles and depicts the different actuator level entities affecting flight dynamics. Each of the
four propellers rotates with an angular speedωi, producing thrust force Fi upwards and
with opposite rotor spins. Figure 1b shows the quaternion representation of the same UAV
in 3D space.
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2.2. Graph and Bearing Rigidity Theories

Consider an individual UAV n in which (n ≥ 2) can be considered as a swarm of
UAVs. An undirected graph G = (V, E) characterizes a dynamic undirected interaction
network among multiple UAVs in the swarm representing a set of nodes V = {1, 2, . . . , n}
representing UAVs, and the interaction among UAVs is represented by a set of edges
E = {e ij: i = 1, 2, . . . , n, j ∈ Ni

}
, with the neighbor set Ni of UAVs. The graph is directed

if (v i, vj) ∈ E, (v j, vi

)
/∈ E and undirected if otherwise.

It is problematic to inspect the distinctiveness of the formation shape determined by
distance rigidity because the rank condition of infinitesimal distance rigidity cannot assure
the formation shape to be unique [37]. However, in bearing rigidity theory, the rank condi-
tion and formation shape distinctiveness are considered adequate. In any coordinate frame,

pi(t) = [p x
i , py

i , pz
i
]T ∈ R3 being the position of the ith UAV C = [p T

1 , pT
2 . . . . . . pT

n

]T
∈ R3

shows the configuration of the formation, and similarly, the desired configuration can be
expressed as C∗= [p ∗T

1 , p∗T
2 . . . . . . p∗T

n
]T ∈ R3. A UAV formation, represented by (G, C), is

a blend of graph G and a configuration C, where every vi ∈ V is related to a position pi in
the configuration [38]. Therefore, for (G, C), define

eij , pj − pi

gij ,
eij
‖eij‖

(14)

where eij denotes an edge vector and gij represents a unit vector, which gives the bearing
from pj to pi. This unit vector representation represents both the azimuth angle and altitude

angle in R3. The objective of a UAV formation is to transform into a desired geometrical
shape or final configuration by controlling the bearing constraints of its agents, where
bearing constraints can be defined as

βG =

g∗ij =
(

p∗j − p∗i
)

‖ p∗j − p∗i ‖
(
vj, vi

)
∈ E

 (15)

In a UAV swarm, the desired distance between two agents is given by d∗21 =‖ p∗1−p∗2 ‖,
while βG is a set of bearing constraints, and the target position of the next agent can be
defined as p∗2= p∗1−d∗21g∗21; here, d, p, and g represent distance, position, and bearing of the
agents, respectively. Inspired by [37], an orthogonal projection operator Pgij

is introduced
to geometrically project any vector at the orthogonal compliment of x; moreover, the
Null(P gij

) = span{x} and the eigenvalues of Pgij
are {0, 1 (d−1)

}
, such that for any vector

x > 0, x ∈ Rd(d ≥ 2), the operator Pgij
: Rd → Rdxd is defined as

Pgij
, Id −

(
x
‖x‖

)(
x
‖x‖

)T

Pgij
, I3 − gijg

T
ij

(16)

The orthogonal projection matrix provides an efficient way to define the parallel
vectors in bearing rigidity theory. To define the target formation, we introduce a bearing
Laplacian matrix as introduced in [24], which is

[B(G(p∗))]ij =


0dxd, i 6= j, (i, j) /∈ ε
−Pg∗ij

, i 6= j, (i, j) ∈ ε
∑

k∈Ni

Pg∗ik
, i = j, i ∈ V

(17)
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This bearing Laplacian matrix B describes the inter-agent topology and bearings
between agents. Similarly, the bearing Laplacian matrix can be explained as

B =

[
BLL BLF
BFL BFF

]
(18)

where every part can be explained as BLL ∈ RdnLxdnL , BLF ∈ RdnLxdnF , BFL ∈ RdnFxdnL ,
and BFF ∈ RdnFxdnF is significant and useful, being symmetric positive semidefinite. We
also need to ensure that the framework is unique and rigid; therefore, we employ the
infinitesimal bearing rigidity theory introduced by [24]. This theory states that: if a frame-
work (G, C) is infinitesimally rigid, it depicts two vital properties: (1) the positions of the
vertices can be distinctively calculated up to a translational and a scaling factor, and (2) the
configurations are infinitesimally bearing rigid in a d-dimensional space if and only if the
bearing rigidity matrix satisfies: Null

(
GB

ij (C)
)
= span{1n ⊗ Id, p} or

rank
(

GB
ij (C)

)
= dn− d− 1 (19)

where n number of agents in a swarm are expressed in Rd, comprising dn coordinates, d
specifying the centroid, and 1 specifying the scale and being subtracted, and if the resulting
value is equal to the rank of GB

ij (C), it means that the formation is infinitesimal bearing
rigid. Due to these two properties [24], infinitesimally bearing rigid configurations not only
have unique geometric shapes but can also be mathematically inspected. The centroid and
scale [38] can be defined as

c(p∗(t)) = 1
n

n
∑

i=1
p∗i (t)

s(p∗(t)) =
√

1
n ∑n

i=1 p∗i (t)− c(p∗(t))2
(20)

For bearing rigidity, it is vital to determine if two given bearings are equal; thus,
the orthogonal projection operator provides an upfront approach. Figure 2 illustrates the
difference between rigid and non-rigid graphs and shows the topology used in this work.
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2.3. Problem Formulation

We designed a cascaded model for formation control of a UAV swarm, considering
the dynamic model of quadrotor UAVs. In the upper cascade, we gave the bearing-based
law, and in the lower cascade, we designed the attitude synchronization controller that
improves the performances of [21,24,31] by the use of quaternions instead of Euler angles.
This complete cascaded structure was then used to simulate a UAV swarm’s translation,
scaling, and rotation in 3D space.

We formulated the problem as follows.

Problem 1. Consider a UAV swarm with n number of agents in R3 under assumptions 1–3,
where the positions and velocities of leader agents are time-varying. Based upon relative bearing
measurements gij , relative distance measurements such as dij , and relative velocity measurements
vij(t) , design an acceleration input ui(t) for each agent such that gi

ij(t)→ g∗ij exponentially as
t→ ∞, ∀i= 1, 2, . . . , n .

Assumption 1. In this work, we assume that all UAVs are equipped with sensor packages, such
as onboard-calibrated vision-based sensors, rate gyroscopes, accelerometers, and magnetometers,
for accurate orientation calculation and also with communication modules to communicate with
neighboring UAVs.

Assumption 2. Only the leader agent has the right to use the inertial reference frame; therefore, we
assume other agents do not have this information. Another limitation on the leader agent is that it
can only use that data to calculate its attitude in Euclidean space.

Problem 2. Consider a UAV swarm with n number of agents in R3 with {p(0)}i∈V as initial
positions and {Q(0)}i∈V as initial orientations under assumptions 1–2, and design an attitude syn-
chronization law based on control inputs based on relative attitude and angular velocities of agents
such that {q ij(t)}i∈V

→ 0 , qi → qj and ωi → ωj exponentially as t→ ∞, ∀i= 1, 2, . . . , n .

3. Proposed Control Scheme

We designed a control scheme utilizing the information from both bearing and attitude
controllers to control a swarm of quadcopter UAVs to form a specific formation shape,
translate, and scale in 3D Euclidean space.

Figure 3 illustrates the block diagram of the proposed control structure depicting the
flow of control inputs and outputs as well as their interaction with both controllers. The
overall architecture of the control scheme and the designated operations of all UAVs are
depicted in Figure 4.
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The interaction between each UAV, the flow of information, and designed operational
tasks of all UAVs in a distributed manner are also explained in Figure 4. The formation
was designed in such a way that each agent in the formation aligns itself with the spawned
body frame of the leader agent. All control actions in 3D space such as formation ac-
quisition, translation, scaling, and rotation were achieved by employing both controllers
in unison. Therefore, bearing control and attitude synchronization were achieved in
seamless harmony.

3.1. Bearing-Based Controller

To compute relative bearing between quadrotors in Euclidean space, considering
assumptions 1–2, the position and velocity errors of agents are given as

δp(t) = pi(t)− p∗i (t), δv(t) = vi(t)− v∗i (t) (21)

Given problem 1, the control objective was to design a control law for all agents in
formation to make the complete formation do translational, rotational, and scaling maneuvers
by enforcing δp(t)→ 0 and δv(t)→ 0 as t→ ∞,∀i = 1, 2, . . . , n . It should be noted that only
leaders know the desired translational, rotational, and scaling maneuvering information.

To accomplish the control objective, we propose a control structure where the target
formation is tracked with time-varying velocity and time-varying orientation leaders. In
this sub-section, we only consider the case of time-varying velocity leaders, and in the
following sub-section (attitude controller), we consider the time-varying orientation leaders.
According to [26], when the leader’s velocity vl(t) is time-varying, formation tracking
errors might not converge to zero; therefore, a supplementary acceleration feedback term
is required to be added in the controller. The following controller is proposed for the
time-varying velocity leader case

ui= −ξ−1
i ∑

j∈Ni

Pg∗ij
[kp(pi − pj) + kv(vi − vj)−

.
vj] (22)

where ξi = ∑
i∈Ni

Pg∗ij
and Pg∗ij

= Id − g∗ij
(

g∗ij
)T

was defined earlier as an orthogonal projection

matrix, while kp and kv are position and velocity positive control gains, respectively, and
.
vj is the acceleration of the neighboring agent. The controller in (22) was inspired by
consensus algorithms proposed in [39]. It can be proved that ξi is non-singular because the
target formation to be tracked is unique.
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Lemma 1. The constant matrix ξi is non-singular for all follower agents if the acquired formation
is distinct and unique.

Proof of Lemma 1. Firstly, the matrix ξi is singular when the bearings g∗ij are aligned because

for any x ∈ Rd, xTξix = 0⇔ ∑
j∈Ni

xTPg∗ij
x = 0⇔ Pg∗ij

x = 0, ∀ j ∈ Ni . Null
(

Pg∗ij

)
= span

{
g∗ij
}

;

therefore, xTξix = 0 when x and g∗ij are aligned. If g∗ij is aligned, the follower position p∗i
cannot be estimated because p∗i moves on the straight line aligned with g∗ij. Resultantly, it can
be established that ξi is singular.
The stability analysis of control law (22) is given; hereby, �

Theorem 1. For the time-varying velocity leader, the position and velocity errors defined in (21)
converge exponentially to zero.

Proof of Theorem 1. Multiply ξi on both hand sides of the control law (22). ui =
.
vi; therefore,

ξi
( .
v i −

.
vj) = ξiξi

−1 ∑
j∈Ni

Pg∗ij
[−kp(p i−pj)− kv(v i − vj)]

∑j∈Ni
Pg∗ij

( .
vi −

.
vj
)
= ∑j∈Ni

Pg∗ij
[−kp(p i − pj)− kv(v i − vj)]

(23)

In terms of the bearing Laplacian matrix form,

BFF
.
vF+BFL

.
vL = −kp(BFFpF+BFLpL)− kv(BFFvF+BFLvL)

= −kpBFFδp − kvBFFδv
(24)

With this, it can be shown that
.
vF = −kpδp − kvδv − B−1

FF BFL
.
vL , and therefore, the

error terms are
.
δp =

.
δV and

.
δV =

.
VF + B−1

FF BFL
.
vL = −kpδp + kvδv, which can be shown in

state space form as [ .
δp.
δv

]
=

[
0 I
−kpI −kvI

][
δp
δv

]
(25)

The eigenvalue of this state matrix is λ = (− kv ±
√

k2
v±4kp)/2, which proves to be

in the left-half plane for any kp, kv > 0. Therefore, convergence is achieved. �

3.2. Attitude Synchronization Controller

The orientation of follower UAVs is determined with respect to the orientation of the
leader agent. As per problem 2, our objective was to guarantee attitude synchronization

when ωij → 0 , Qij → ±QI and R
(

Qij

)
→ I3 ∀ i, j ∈ N. As Qij =

(
qT

ij ηij

)T
is a unit

vector representing the attitude from the ith agent (leader) and jth agent (follower), its
inverse or conjugate can be written as

Q−1
ij =

(
−qij
η

)
(26)

such that
Qij �Qij

−1= Qij
−1 �Qij= QI (27)

where QI is the unit quaternion identity and can be expressed as

QI =

[
03
I

]
(28)
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Similarly, it can be seen that R
(

Q−1
ij

)
= R(Q ij

)T
. It is adequate to say that when

qij → 0 , it implies that the attitude synchronization or alignment between agents has taken
place. Furthermore, the relative attitude approximation is based on special orthogonal
groups SO(3), which guarantees accurate approximation for all UAVs in the formation.
For translation of a UAV swarm in 3D space, the UAVs must track a reference trajectory;
therefore, it is necessary to define an attitude tracking error. To do this, we define the
desired attitude Qd =

(
qT

d ηd
)T with components of the unit quaternion described as

.
Qd =

1
2

T(Q d)ωd (29)

where T(Qd) is defined similarly to Equation (9). The attitude tracking error Q̃i =
(

q̃>i η̃i

)T

can be defined as
Q̃i= Q−1

d �Qi (30)

Therefore, the relative attitude tracking can be written similarly to equation (11) as

.
Q̃i =

1
2 T
(

Q̃i

)
ω̃i, T(Q̃i) =

(
η̃iI3 + S(q̃i)

−q̃>i

)
(31)

where the angular velocity tracking vector can be defined as

ω̃i= ωi − R
(

Q̃i

)
ωd (32)

The rotation matrix associated to Q̃i is given as

R
(

Q̃i

)
= R(Qi)R(Qd)

> (33)

For attitude synchronization and alignment of all UAVs in the swarm, the control
input of each UAV has to be based upon relative attitudes and relative angular velocities
among neighboring agents. Inspired by [40] and with the aim that all UAVs in the swarm
align their attitudes and angular velocities in an undirected graph, the following attitude
synchronization controller is proposed

τi= ωi×Jiωi − Ji

n

∑
j=1

aij

[
kqqij+kω

(
ωi −ωj

)]
(34)

where aij is the value of a weighted adjacency matrix representing information exchange
between UAVs, kq and kω are positive scalar gains, and the value of inertia matrices
J ∈ R3x3 should be known for all UAVs in the swarm, which means that the controller can
be implemented on heterogeneous quadcopter UAV swarms.

Theorem 2. For a time-varying orientation leader under the action of control law (34), the relative
attitude and angular velocity between two neighboring UAVs should reach qij → 0 , qi → qj , and
ωi → ωj asymptotically as t→ ∞, ∀i = 1, 2, . . . , n .

Proof of Theorem 2. Select a Lyapunov candidate function, such as:

V =
1
2

n

∑
i=1

n

∑
j=1

aijkij ‖ qij − qI ‖
2 +

1
2

n

∑
i=1
ωT

i ωi (35)



Drones 2022, 6, 227 12 of 19

Under the dynamics of unit quaternions, the derivative of V becomes

.
V =

1
2

n

∑
i=1

n

∑
j=1

aijkij
(
ωi −ωj

)Tqij +
n

∑
i=1
ωT

i (τ i −ωi×Jiωi) (36)

AsωT
i (ω i×Jiωi) = 0, and under the fact that in an undirected graph aij= aji,

.
V = 1

2

n
∑

i=1

n
∑

j=1
aijkij

(
ωi −ωj

)Tqij

= 1
2

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)
− 1

2

n
∑

i=1

n
∑

j=1
aijkijω

T
j qij

= 1
2

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)
− 1

2

n
∑

i=1

n
∑

j=1
ajikjiω

T
j qij

= 1
2

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)
+ 1

2

n
∑

j=1

n
∑

i=1
ajikjiω

T
j qij

= 1
2

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)
+ 1

2

n
∑

j=1
ωT

j

(
n
∑

i=1
ajikjiqij

)
=

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)

(37)

Resultantly, Equation (36) becomes

.
V =

n

∑
i=1
ωT

i

(
n

∑
j=1

aijkijqij+τi

)
(38)

n
∑

i=1
ωT

i

n
∑

j=1
aijkij

(
ωi −ωj

)
= 1

2

n
∑

i=1

n
∑

j=1
aijkij ‖ ωi −ωj ‖2; therefore, the derivative of V

becomes negative semidefinite

.
V =− 1

2

n

∑
i=1

n

∑
j=1

aijkij ‖ ωi −ωj ‖2≤ 0 (39)

By LaSalle’s invariance principle, it is established that qij → 0 , qi → qj , and ωi → ωj
asymptotically. �

4. Simulation Results

In this section, we share numerical simulation results demonstrating the effectiveness
of our proposed model on a swarm of quadrotor UAVs. This swarm of UAVs contained
four quadrotors depicting an undirected leader–follower topology. The formation consisted
of two leaders and two follower UAVs. To highlight the operations of the formation in a
simple way, a square-shaped geometric configuration was selected, and the communication
topology is described in Figure 3, which depicts leader agents as VL= {1, 2} and followers
as VF= {3, 4}. The model information and specifications are given in Table 1.

In this work, we assumed that the formation encounters various kinds of obstacles in
its path while translating in an underground environment, e.g., narrow passages, pipes,
tunnels, etc., and negotiates those obstacles while keeping the formation intact. Figure 5
depicts the entire time-lapse of the formation translation and different maneuvers. The
formation was designed to carry out four distinct actions, and the case-wise details of all
actions and maneuvers achieved by the formation are given below.
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Table 1. Model Information and specifications.

Parameter Value

m 0.80
J(kgm 2

)
[1,0.1,0.1; 0.1,0.1,0.1; 0.1,0.1,0.9]

aij [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,1,1,0]
kq 1
kω 10
kp 0.5
kv 2
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4.1. Case 1—Formation Acquisition

(1) Objective: a swarm of four UAVs at random positions takes off and acquires a specific
square shape under the control of proposed laws.

(2) Results: the target formation formed a designated square shape and was attained by
implementing pre-defined bearing constraints between the agents as g∗21 = −g∗12,

g∗31 = −g∗13, g∗12 =
[
−1 0 0

]T, g∗13 =
[
0 0 −1

]T, g∗14 =
[
−
√

2
2 0 −

√
2

2

]T
,

g∗41 = −g∗14, g∗23 =
[√

2
2 0 −

√
2

2

]T
, g∗32 = −g∗23, g∗42 =

[
0 0 1

]T, and g∗24 = −g∗42.
The formation trajectories are given in Figure 5. The formation tracking error ‖ δi ‖ is
shown in Figure 6 (section highlighted in blue), which asymptotically converged to
zero from t = 0 to 20 s.

4.2. Case 2—Formation Scaling

(1) Objective: to verify that formation can scale down (decrease size) and scale up (in-
crease size) while translating in 3D space by still keeping formation-bearing con-
straints, inter-agent distances, and heading direction intact.

(2) Results: the formation continued translation on the x-axis, scaled down at t = 40 s, and
scaled up at t = 80 s to negotiate imaginary obstacles. This was achieved by adjusting
and altering the distance and velocities of two leaders. Figure 5 depicts both scaling
operations, and Figure 6 shows the convergence of formation tracking errors to zero
(highlighted with yellow color for scaling down and with green color for scaling up).
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4.3. Case 3—Altitude Maneuver

(1) Objective: to verify that UAVs in the formation can also make an altitude descent
while staying in the desired formation to negotiate an obstacle or follow a specific
trajectory involving sudden altitude descent.

(2) Results: after the scaling operation while translating in the x-axis direction, the
formation abruptly descended its altitude in the z-axis direction in 3D space at t = 100
to 110 s by altering the velocity of leaders. The trajectory plot of UAVs is given in
Figure 5, and the formation tracking error converged to zero asymptotically as shown
in Figure 6 (highlighted with grey color).

4.4. Case 4—Formation Translational Rotation

(1) Objective: to verify that formation while translating in 3D space can rotate its heading
direction by altering the velocity of agents such that the swarm stays dynamically intact.

(2) Results: in Figure 5 at t = 150 to 180 s, it can be seen that the final formation was
rotated from the initial formation heading direction by altering the leader’s orientation
so that the formation takes a translational rotation. The formation tracking error also
converged to zero as shown in Figure 6 (section highlighted in orange color).

Both the bearing-based controller and attitude controller ensured the performance
of the formation during the entirety of the operation. The attitude controller aligned the
attitude of all follower UAVs as per the attitude of leader UAVs at every stage of formation
operation as shown in Figure 7. As can be seen in the figures, the different cases of formati
on operations are shown at different time intervals such as formation acquisition (t = 0 to
20 s), scale-down (t = 0 to 20 s), scale-up (t = 0 to 20 s), altitude descend (t = 0 to 20 s) and
translation maneuver (t = 0 to 20 s).

The linear velocity of all follower UAVs achieved consensus as per the linear velocity of
the leader UAV, as shown in Figure 8 for all cases. Figure 8a,b illustrates the linear velocity
profile of all agents in the x and y-axis where it can be noticed that Leader-2 (agent 2) had
the maximum deviation; this is because as per configuration, agent 2 lay at the farthest end
and had to align itself with the rest of the agents. Therefore, the controller action forced
agent 2 to rapidly align with the rest of the formation, ensuring the formation configuration
is intact. Similarly, in Figure 8c, it can be noticed that the velocity profile of agents 1 and 2
and agents 3 and 4 were identical; this is because of the formation configuration as can be
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seen in Figure 5. The angular velocity of all followers converged to that of the leader UAV,
as can be seen in Figure 9 for all cases, while the formation tracking error remained at zero
despite the hard inclination in maneuvers.
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The orientation of the leader is time-varying because of changing maneuvers; therefore,
in Figure 10, it can be seen that all followers aligned their orientation to that of the leader
as per changing maneuvers; hence, the attitude error was maintained at zero. The same is
represented in Figure 11 in terms of roll, pitch, and yaw angles.
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5. Discussion

From the results of the case studies and simulations above, it can be established that
the formation carried out the specified tasks efficiently. The leader aligned its body frame
with the inertial reference frame and moved in the 3D Euclidean space without any further
constraints while followers followed the leaders as per the designed topology. All UAVs in
the swarm were responsible for maintaining bearing vectors; hence, the desired formation
and maneuvers were done in an undirected manner. The formation could avoid narrow
obstacles and pass through tight corners and obstacles because the scale, orientation, trans-
lation, and velocity could be adjusted. Moreover, the attitude synchronization controller
was designed in such a way that it can be implemented not only on homogeneous quadrotor
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formations but can also support heterogeneous quadrotor formations. For bearing-based
UAV formation control problems, the orientation parameters are often neglected or cal-
culated using a primary de facto method of Euler angles for attitude representation. The
quaternion-based orientation approximation provides robust, unambiguous, and compu-
tationally efficient attitude calculation. Attitude calculations by quaternions ensure that
agents in the swarm do not suffer from gimbal lock and singularities, improving the control
scheme’s overall robustness. Calculating attitude and bearing in the local body frames of
each agent is advantageous because agents do not have to depend on the global frame, as
GPS signals may be faulty in subterranean environments (e.g., indoors, underwater, deep
space, etc.). Many previous works such as [31,41] have assumed that the body frame of the
UAV should coincide with the center of mass, while we suggested that it should coincide at
the geometrical center of the UAV for accurate position and orientation measurement.

6. Conclusions

This work investigated the joint operation of bearing-based and attitude synchroniza-
tion controllers to control a quadcopter UAV swarm in 3D space by using undirected graph
topology. This combination of controllers added to the overall robustness of formation
during complicated maneuvers. Since this work focused on the distributed formation
control by depicting various motions of the formation in 3D space, its limitation is that ob-
stacle avoidance was not considered during practical implementation. Further performance
improvement for more complex maneuvers such as curved trajectories and implementation
of this work on experimental platforms are treated as future works.
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