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Abstract: This article proposes an adaptive controller for a quadrotor UAV for carrying unknown
payloads while tracking any trajectory. The proposed adaptive controller is robust to modeling
uncertainties and does not require any a priori knowledge of the bounds of the uncertainties. The
controller is also robust to time-varying delays without any constraint on the derivative of the time
delay. In addition, the stability of the closed-loop system is analyzed via a Lyapunov-like method.
The controller’s performance is verified using a simulated quadrotor model in MATLAB in three
different scenarios with varying time delays and parametric uncertainties.

Keywords: autonomous robots; quadrotor uav; adaptive robust controller; time-delay; nonlinear control

1. Introduction

Quadrotors are potential assistance in autonomous exploration, surveillance, manipu-
lation and disaster mitigation tasks (cf. [1–7]). Due to the shifting trend in the inspection
and maintenance industries, the demand for autonomous drones in confined spaces is
growing rapidly. Deploying quadrotors in tasks such as inspecting tunnels, pipelines,
windmills, and transmission lines, reduces the workload, and ensures human safety in
hazardous environments. The overall control schemes for these quadrotors are critical,
mainly due to the complexity of the operations and the types of equipment they carry that
create a varying payload.

In many of these applications, the drone has to operate in a remote environment with
no access to GPS or other convenient localization systems. In such scenarios, the quadrotor
has to rely on visual–inertial sensors for positioning and navigation. Despite the recent
advancements in the navigation industry to reduce the computational complexities, such
as [8], the out-growing inspection and manipulation applications are demanding intensive
processing. Such heavy processing requirements increase the drone’s mass and consume
much power, which is undesirable for operations involving longer flight time. Moreover,
since technologies such as Edge computing are readily available today, the community is
moving closer to futuristic goals, such as drones over Internet Protocol [9]. Though such
technologies eradicate the need for carrying heavy processors onboard, they introduce new
challenges to control.

One of the fundamental challenges with the quadrotor control in these applications is
the time delays arising from several sources, such as the communication medium, the sen-
sors, the computational units, and the actuators. These individual delays accumulate to
unpredictable time-varying closed-loop delays and thus affect the overall stability of the
quadrotor dramatically. Another inherent challenge to quadrotor control is model uncer-
tainties, due to its complex dynamics and unknown payloads. In these cases, parameter
estimation becomes nearly impossible, especially when the quadrotor carries different
unknown payloads. Along with the design, external factors, such as the wind, would
destabilize the system. Hence, robustness towards delays and parametric uncertainties
becomes inevitable in practical applications.
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The aerial robotics community has comprehensively covered various aspects of un-
certainties using robust control techniques for quadrotors. The controller [10] provides a
pipeline for navigation and tracking for quadrotors with robustness to disturbances using
an optimal control approach, while [8] establishes the robustness using a sliding-mode
tracking controller. Similarly, Ref. [11] proposes a control scheme robust to input uncertain-
ties. However, all these works rely on the complete knowledge of the dynamics without
parametric uncertainties or delays. Further, let us explore the controllers that handle
parametric uncertainties in the model. The robust controllers [12–15] mentioned above
require a decent estimate of the system’s dynamics. However, they introduce chattering
in the dynamics when there is significant variation due to uncertainties. Several adaptive
controllers are proposed to overcome the chattering issue. They are mostly classified into
controllers [16–22] that require an a priori on the model of the system and the ones [23,24]
that do not require any knowledge of the system. For the interested readers, a review
of quadrotor UAVs in the aspects of their applications, architectural design, and control
algorithms are presented in [25] for further reading. However, none of these controllers
address the problem of delays in the closed loop. Thus, let us examine the effects of delays
and the existing control approaches to tackle them.

Time delays have posed exciting challenges to the control research. Delays can cause
different effects leading to instability in the closed-loop system depending on how they
contribute to the system [26–30]. An overview of modelling a delayed system and the
methods to control the system are surveyed in these works [31–33].

The control approaches for delayed systems mostly rely on the linear model of the
dynamics to predict and compensate for the effects of delays. The controllers [34–36]
designed to tackle the time-varying delays in the quadrotor control use a linear model of
the dynamics and require the knowledge of the instantaneous delays. Linear approximation
of the quadrotor’s dynamics constraints it to comply with small angle assumptions, which
reduces the dexterity of the quadrotor, causing instability in the presence of perturbations.
Thus, nonlinear controllers tackling time delays are explored.

Since control of UAVs in the presence of time delays is not well-addressed to the best
of the authors’ knowledge, let us look into commonly addressed Euler–Lagrangian (EL)
systems with delays. Ref. [37] proposes a robust observer-based sliding mode controller for
bilateral latency, while an adaptive controller for the same application is proposed in [38].
A robust controller for a marine robot with input delay is proposed in [39]. Though these
controllers provide a solution to input delays, they still require the knowledge of the
upper bound of the derivatives of the delays, which is infeasible in real-time. These
control approaches would not be suitable for the underactuated dynamics of a quadrotor
with unknown and unbounded modeling uncertainties in the presence of unknown and
varying time delays. Therefore, we proceed with the time delay approach similar to the
one specified in [40], which requires neither a priori knowledge of the bounds nor the
structure of parametric uncertainty. The controller also tackles unknown time-varying
delays without any constraints on its derivative.

From these observations, we infer that an adaptive robust controller for an under-
actuated quadrotor UAV that tackles both unknown parametric uncertainties and time-
varying delays is still missing in the literature. Towards this direction, the following
contributions are proposed.

The first contribution of this work is a novel adaptive control technique for a quadro-
tor UAV for tracking any arbitrary 3D-position and yaw trajectories considering six DoF
dynamics. The quadrotor is modeled using partly decoupled underactuated dynamics to
consider perturbations and delays in both actuated and non-actuated dynamics. The con-
troller needs neither the complete knowledge of the dynamics nor the upper bound of the
uncertainties. Hence, it is robust to unknown modeling uncertainties and external distur-
bances. The adaptive law ensures that the switching gain does not increase monotonically.
The second contribution is that the controller is robust to unknown time-varying delays
with the knowledge only of the upper bound of the time delay without any constraint on
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the derivatives of the delay. The controller’s performance is verified using a simulated
UAV with varying delays and parametric uncertainties. The stability analysis is performed
using a Lyapunov-like method in the sense that the closed-loop trajectories of the system
are uniformly ultimately bounded (UUB) (cf. [41] for the definition of UUB).

The rest of the article is organized as follows. Section 2 introduces the partly decoupled
dynamics of the six-DoF quadrotor with uncertainties and delays, while Section 3 proposes
the control structure of the quadrotor, Section 4 shows the implementation results of the
proposed controller on a simulated quadrotor and Section 5 concludes the contributions
made in the work and gives an insight of the future works. The stability analysis section is
separately mentioned in Appendix A.

Notations and Prelimineries

The following notations are used throughout the article: any variable ρ with a subscript
p, q as ρp, ρq represents that the variable belongs to the position and the attitude sub-
dynamics, respectively. Any variable ρ delayed by an amount h as ρ(t − h) would be
denoted as ρh; λmin(.) and ||.|| represents the minimum eigenvalue and Euclidean norm
of the argument, respectively, while I represents the identity matrix of the appropriate
dimension. From the definition of Young’s inequality, for any nonzero vectors v1, v2, there
exists a constant β > 0 and a positive definite matrix D > 0, such that,

−2vT
1 v2 ≤ βvT

1 D−1v1 +
1
β

vT
2 Dv2. (1)

2. Quadrotor Dynamics

A quadrotor is a non-linear system that can be modelled using Euler–Lagrangian
(EL) dynamics. The states of the quadrotor evolve based on the current states and the
commanded inputs. The overall system delay propagates through the control loop and
reflects in the control signal. Hence, the system can be modelled as a non-linear system
with a delayed input, as given in (2).

mp̈(t) + g + dp(t) = τp(t− h(t)) (2a)

J(q, t)q̈(t) + C(q, q̇, t)q̇(t) + dq(t) = τq(t− h(t)) (2b)

øp(t) = RW
B (t)U(t) (2c)

where m is the total mass of the system; p(t) ,
[
x(t) y(t) z(t)

]T ∈ R3 is the posi-
tion of the centre of mass of the quadrotor in the Earth-fixed frame at time, t; q(t) ,[
φ(t) θ(t) ψ(t)

]T ∈ R3 is the attitude vector consisting of the roll (φ), pitch (θ) and

yaw (ψ) angles; g ,
[
0 0 mg

]T ∈ R3, where g is the acceleration due to gravity in the
z-direction; J(q, t) ∈ R3×3 is the inertia matrix; C(q, q̇, t) ∈ R3×3 is the Coriolis matrix and
the vectors dp, dq ∈ R3 represent the effect of the external disturbances (e.g., wind, gust),

while h(t) is the unknown time varying input-delay, τq ,
[
u2(t) u3(t) u4(t)

]T ∈ R3

denotes the control inputs for roll, pitch and yaw; τp(t) ∈ R3 is the generalized control

input for position tracking in Earth-fixed frame, with U(t) ,
[
0 0 u1(t)

]T ∈ R3 being
the force vector in body-fixed frame and RW

B ∈ R3×3 being the Z−Y− X Euler angle rota-
tion matrix describing the rotation from the body-fixed coordinate frame to the Earth-fixed
frame, given by:

RW
B =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ sφcθ cθcφ

, (3)
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where c(·), s(·) and denote cos (·), sin (·) respectively. The control inputs are mapped to the
rotor velocities using (4).

u1
u2
u3
u4

 =


CT CT CT CT
0 lCT 0 −lCT
−lCT 0 lCT 0
−CTCM CTCM −CTCM CTCM




ω2
1

ω2
2

ω2
3

ω2
4

 (4)

where CT and CM are the thrust constant and the moment constant, respectively, and l is
the arm-length as indicated in Figure 1).

Figure 1. A schematic of the considered quadrotor with the related coordinate frames.

Remark 1. To completely exploit the quadrotor’s potential, it has to follow a trajectory in the
three-dimensional space (x, y, z) along with the yaw angle (ψ). Though the roll and pitch angles are
controlled, they are only utilized to achieve the desired motion in the 3-D space rather than following
their own trajectory. Hence, we follow the partly decoupled tracking design (cf. [42]), rather than
the completely decoupled design [19,43–45].

We assume the following conditions about the dynamics and the desired outputs for
the ease of control design.

Assumption 1. By splitting the dynamic parameters into m = m̂ + ∆m, J = Ĵ + ∆J, C = Ĉ +
∆C, we can approximate the dynamics into a sum of nominal values (.) and unknown uncertainties
(∆.). Let us assume that the uncertainties and disturbances are upper bounded by |∆m| ≤ m,
j ≤ ||∆J|| ≤ j, ||∆C|| ≤ c, ||dp|| ≤ dp and ||dq|| ≤ dq, where m, j, c, dp and dq are
unknown scalars.

Remark 2. In practical applications, the nominal values of an unloaded quadrotor can be approx-
imated using standard methods. Though the uncertainties of payload and the overall system are
unknown, the quadrotors’ maximum allowable limits are decided while choosing the hardware.
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Assumption 2. The desired trajectory in position and yaw, given by
[
xd(t), yd(t), zd(t), ψd(t)

]
is smooth and feasible.

The term “feasible” in the Assumption 2 refers to the feasibility of achieving the
corresponding actuation for the calculated control inputs, which are dependant on the state
errors. This assumption necessitates that the desired trajectories are bounded, which is a
standard assumption in the UAV controller design [46].

Control Problem: Design a controller for a quadrotor to track a desired trajectory (cf.
Assumption 2) with uncertainties in the dynamics and disturbances (cf. Assumption 1) in
the presence of unknown time-varying delays.

3. Controller Design

The controller is designed to have an outer loop for position dynamics and an inner
loop for attitude dynamics (cf. Figure 2). The outer loop takes the desired position as an
input and yields the desired linear forces. The linear forces and the desired yaw angle
produce the desired orientation for the inner loop.

Figure 2. A schematic of the quadrotor control system. The control input is delayed by a time-varying
function h(t).

3.1. Position Control

Let e1p(t) , pd(t)− p(t) be the tracking error. The control input is designed as:

τp = m̂up + m̂g, (5)

up = ûp + ∆up (6)

The nominal control is designed as

ûp = p̈d + K1pe1p + K2pė1p, (7)

where K1p, K2p ∈ R3, are two user-defined positive definite gain matrices. The error
dynamics can be derived by substituting (7) and (6) in (2a),

ë1p = −K1pe1ph −K2pė1ph + σp − ∆uph, (8)

σp = (1− m̂
m
)uph +

(m− m̂)

m
g + p̈d − p̈d

h + dp (9)

where σp denotes overall uncertainty in the position control. Furthermore, by defining a

vector ep =
[
e1p ė1p

]T , (8) can be represented as

ėp = A1pep + B1pe1p + Bp(−∆uph + σp) (10)

where A1p ,
[

0 I
0 0

]
, B1p ,

[
0 0
−K1p −K2p

]
, Bp ,

[
0 I

]T . Further, using the relation

eph = e(t)p −
∫ 0

−h
ep(t + δ)dδ (11)
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the (10) can be rewritten as

ėp = Apep − B1p

∫ 0

−h
ep(t + δ)dδ + Bp(−∆uph + σp), (12)

where Ap = A1p + B1p is in Hurwitz form. The filtered tracking error, sp is defined as,

sp , Bp
TPpep, (13)

where Pp > 0 is the solution to the Lyapunov equation Ap
TPp + PpAp = −Qp for some

Qp > 0. The switching control input is designed as:

∆up =

αp k̂p
sp
||sp || if ||sp|| ≥ vp

αp k̂p
sp
vp

if ||sp|| < vp
, (14)

where αp is a user-defined positive gain, vp > 0 is a scalar used as a saturation variable to
avoid chattering along with k̂p, which is an adaptive switching gain to tackle uncertainties,
while the adaptive switching law for k̂p is given by:

˙̂kp =


||sp|| k̂p > γp, sp

T ṡp ≥ 0
−||sp|| k̂p > γp, sp

T ṡp < 0
γp k̂p≤γp,

(15)

where γp > 0 is a small scalar to ensure k̂p is always positive. The adaptive law (15)
increases or decreases the gain k̂p when the filtered error trajectories are moving away or
are closer to 0, respectively.

3.2. Attitude Control

To achieve the attitude tracking control objective, the error in orientation/attitude is
defined as [42]

eq = ((Rd)TRW
B − (RW

B )TRd)
v

(16)

ėq = q̇− (Rd)TRW
B q̇d (17)

where (.)v represents vee map, which converts elements of SO(3) to ∈ R3 [42] and Rd is
the rotation matrix as in (3) evaluated at (φd, θd, ψd). Since the roll and pitch are used to
navigate the quadrotor in XY-plane, the columns of the desired rotation matrix are derived
from the desired force vector, as follows:

zB =
τp

||τp||
(18a)

yA =
[
−sψd cψd 0

]T
(18b)

xB =
yA × zB
||yA × zB||

(18c)

yB = zB × xB (18d)

where yA is the y-axis of the intermediate coordinate frame A, xB, yB and zB form the
desired body fixed coordinate frame (the columns of the desired rotation matrix).

Assumption 3. The denominator of (18a), ||τp|| 6= 0.

Assumption 3 is a standard assumption while using the geometric control technique on
the partly decoupled quadrotor dynamics (cf. [46]). However, in practical case, during the
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rare event, when ||τp|| = 0, the term zB is chosen to be the previously calculated value. The
inner loop controller is designed as follows:

τq = Ĵuq + Ĉq̇, (19)

uq = ûq + ∆uq (20)

The nominal control is designed as

ûq = q̈d + K1qe1q + K2qė1q, (21)

where K1q, K2q ∈ R3, are two user-defined positive definite gain matrices. The error
dynamics can be derived by substituting (21) and (20) in (2b),

ë1q = −K1qe1qh −K2qė1qh + σq − ∆uqh, (22)

where σq = (I − J−1(q)Ĵ(q))uqh + J−1(q)(C(q, q̇)(q̇) − Ĉ(qh, q̇h)(q̇)) + q̈d − q̈d
h + dq

denotes overall uncertainties in the position control. Further, (22) can be represented in
state space using the vector eq =

[
e1q ė1q

]T as,

ėq = A1qeq + B1qe1q + Bq(−∆uqh + σq), (23)

where A1q ,
[

0 I
0 0

]
, B1q ,

[
0 0
−K1q −K2q

]
, Bq ,

[
0 I

]T . Further, using the relation

eqh = e(t)q −
∫ 0
−h eq(t + δ)dδ, (23) can be rewritten as,

ėq = Aqeq − B1q

∫ 0

−h
eq(t + δ)dδ

+ Bq(−∆uqh + σq), (24)

where Aq = A1q + B1q is in Hurwitz form. The filtered tracking error, sq is defined as:

sq , Bq
TPqeq, (25)

where Pq > 0 is the solution to the Lyapunov equation Aq
TPq + PqAq = −Qq for some

Qq > 0. The switching control input is designed as:

∆uq =

αq k̂q
sq
||sq || if ||sq|| ≥ vq

αq k̂q
sq
vq

if ||sq|| < vq,
, (26)

where αq is a user-defined positive gain, vq > 0 is a scalar used as a saturation variable to
avoid chattering along with k̂q, which is an adaptive switching gain to tackle uncertainties.
The adaptive switching law for k̂q is given by,

˙̂kq =


||sq|| k̂q > γq, sq

T ṡq ≥ 0
−||sq|| k̂q > γq, sq

T ṡq < 0
γq k̂q ≤ γq,

(27)

where γq > 0 is a small scalar to ensure k̂q is always positive. The adaptive law (27)
increases or decreases the gain k̂q when the filtered error trajectories are moving away or
are closer to 0, respectively.

The proof of stability while using the proposed adaptive robust controller on an
input-delayed quadrotor UAV is presented in Appendix A.



Drones 2022, 6, 220 8 of 20

4. Simulation Results

To verify the performance of the controller, under uncertainties and time-delays, a test
scenario is created using a MATLAB simulation where a quadrotor carrying a payload
under external disturbances is modelled mathematically, while the proposed controller is
tested with static and varying delays. The dynamics of the quadrotor is calculated based on
the model proposed in [47] with an arm length of 24 cm. The mass of the quadrotor chassis
and propeller is considered to be the nominal mass, m̂ = 1 kg. An additional 200 g along
with the nominal mass is added considering the electronics system, which is the total mass
of the unloaded quadrotor. Thus, the maximum mass of the quadrotor with the heavier
payload is 1.9 kg and the inertia matrix for the same is calculated to be:

J =

0.02352 0 0
0 0.02352 0
0 0 0.02704

,

Along with that, a time-varying disturbance is added to the dynamics as: dp =

cos(0.5t)
[
1 1 1

]T and dq = 0.01cos(0.01t)
[
1 1 1

]T . The control parameters are chosen
to be K1p, K2p, K1q, K2q = I, Qp, Qq = I. The following values are used for nominal
inertia and Coriolis matrices, Ĵ = 0.01I, Ĉ = 0. The controller is experimented on three
scenarios: (a) robustness to modelling uncertainties, (b) robustness to closed-loop delays
and (c) robustness to closed-loop delays in the presence of uncertainties. The quadrotor is
given the following trajectory to track in the scenarios:

xd(t) = 1 + cos(0.5t)− exp(−t)

yd(t) = sin(0.5t)− exp(−t)

zd(t) = 2(1− exp(−t)) + sin(0.1t)

ψd(t) = 0

4.1. Robustness to Modelling Uncertainties

The purpose of this scenario is to demonstrate that the controller is robust to unknown
external disturbances and dynamic uncertainties. Thus, initially the controller is tested
with the quadrotor with exact dynamic parameters and no external disturbances. Then, the
same controller is tested with a model of a quadrotor carrying a small payload (0.3 kg) and
external disturbances. Following that, the controller is tested with a model of a quadrotor
carrying a heavier payload (0.7 kg) with the same disturbances. During this scenario,
the closed-loop delay is set to be zero. The comparison of root mean squared error (RSME)
values for position tracking for the scenario is tabulated in Table 1. Figure 3 shows the 3D
plot of the quadrotors with different payloads along with the desired trajectory (blue). It
can be observed that the effects of dynamic uncertainties and disturbances are minimized
and the quadrotor follows the reference trajectory with only a minimal deviation.

Table 1. Position tracking performance comparison robustness to dynamic uncertainties.

Payload Mass (kg) RMS Position Error (m)

x y z

0 0.0267 0.0388 0.0325

0.3 0.0800 0.0801 0.0606

0.7 0.1278 0.1242 0.1423
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Figure 3. Robustness to uncertainty in dynamics: The plot shows the actual trajectories taken by the
quadrotor with various payloads along with the desired trajectory without considering the delays.

4.2. Robustness to Closed-Loop Time-Delays

In this scenario, the controller is analyzed with a closed-loop delay in the system.
The performance is compared with the no-delay system. The scenario is experimented on
the quadrotor model without any dynamic uncertainties and disturbances. The controller is
tested with static closed-loop delays of 0.2 s and 0.4 s, and a time-varying delay that varies
between 0 s to 0.8 s. The time-varying delay function is as shown in the Figure 4. Figure 5
shows that all trajectories converge smoothly over the desired trajectory. The closeness
between the RSME values for various delays in Table 2 prove the robustness of the controller
to unknown time-delays.

Figure 4. The input from the controller is delayed using a delay function with a time-varying delay.
The delay varies from 0 s to 0.8 s with a mean of 0.4 s.

Figure 5. Robustness to delays: The controller is tested on a controller without any payload by only
varying the delays in the system. The plot shows the actual trajectory of the quadrotor with constant
and varying delays along with the desired trajectory.
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Table 2. Position tracking performance comparison for robustness to time-delays.

Delay (s) RMS Position Error (m)

x y z

0 0.0267 0.0388 0.0325

0.2 0.0570 0.0829 0.0844

0.4 0.0732 0.1060 0.1115

Variable 0.0701 0.1122 0.1228

4.3. Robustness to Closed-Loop Time-Delays with Modelling Uncertainties

In many applications, the quadrotor control is affected by both delays and uncer-
tainties. Thus, in this scenario, the control performance is tested on the quadrotor model
with different closed-loop delays in the presence of heavy disturbances and parametric
uncertainties, as in the third case of first scenario. From the obtained results, it is observed
from the RSME values, mentioned in Table 3, that the controller is simultaneously robust
to both uncertainties and delays. Though the performance slightly deteriorates with high
payload and large delays, the quadrotor is found to be stable and closely following the
desired trajectory (cf. Figure 6).

Table 3. Position tracking performance comparison for robustness to time-delays with uncertainties.

Delay (s) RMS Position Error (m)

x y z

0 0.1278 0.1242 0.1423

0.2 0.1547 0.1478 0.1857

0.4 0.2007 0.1905 0.2114

Variable 0.1999 0.1918 0.2091

Figure 6. Robustness to delays with uncertainties: The plot shows the actual trajectories taken by the
quadrotor with maximum payload in the presence of various constant and varying delays along with
the desired trajectory.

5. Conclusions and Future Works

In this article, a novel adaptive robust controller is proposed for a quadrotor to track
any arbitrary trajectory using the 6-DoF decoupled dynamics approach. The proposed
control scheme considers perturbations in all the actuated and non-actuated sub-dynamics.
Hence, it is robust to unknown uncertainties and external disturbances. It also tackles
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the effects of time-varying closed-loop delays with only requiring the knowledge of the
upper bounds of the delays. The controller is tested on a MATLAB simulation for three
different scenarios to verify the performance. The stability of the closed-loop system using
the proposed controller is analysed in the sense of UUB using a Lyapunov-like method.

As a future work, we would like to extend the theory by adding a tunable parameter
in the adaptive laws, which regulate the rate of convergence. Another challenge that we
are currently working on is to tackle the uncertainties with a priori knowledge of neither
the system dynamics nor the bounds of the uncertainties.
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Appendix A. Stability Analysis

Lemma A1. Under Assumptions 1–3, the overall uncertainties in the position and attitude dynam-
ics are bounded by unknown scalars kp, kq, such that ||σp|| ≤ kp, ||σq|| ≤ kq.

Proof. Substituting the nominal and uncertain terms defined in Assumption 1, the values
of ||σp||, ||σq|| can be written as,

||σp|| ≤ ||(
∆m
m

)uph + (
∆m
m

)g + p̈d − p̈d
h + dp||

≤ (
m
m̂
)||uph||+ (

m
m̂
)||g||+ ||p̈d − p̈d

h||+ dp (A1)

||σq|| ≤ ||J−1∆Juqh + J−1∆Cq̇ + q̈d − q̈d
h + dq||

≤ j(Ĵ)−1||uqh||+ c(Ĵ)−1||q̇||+ ||q̈d − q̈d
h||+ dq (A2)

Since the desired trajectories are well-defined and bounded in accordance with
Assumptions 2 and 3, the values in (A1), (A2) can be simplified as using the unknown
scalars kp, kq,

||σp|| ≤ kp (A3)

||σq|| ≤ kq (A4)

To further proceed with the analysis, let us choose the Lyapunov function V(ep(t), eq(t)) > 0,
∀t ≥ 0 given by,

V(ep, eq) = Vp(ep) + Vq(eq) (A5)

Vp(ep) =
1
2

eT
pPpep +

1
2
(k̂p − kp)

2 (A6)

Vq(eq) =
1
2

eT
qPqeq +

1
2
(k̂q − kq)

2 (A7)
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The time derivatives of Vp, Vq are simplified through Lemmas A2 and A3 respectively,
to facilitate the stability analysis of the closed loop systems, as stated in Theorem A1.

Lemma A2. Under the Assumptions 1–3, the time derivative of Vp in (A6) can be simplified
using (12) and (13) as,

V̇p ≤ −
1
2

eT
p [Qp − hEp]ep + Γp + sT

p(−∆up + σp) + sT
pΘp + (k̂p − kp)

˙̂kp (A8)

where

Ep = βPpB1p[A1pP−1
p AT

1p + B1pP−1
p BT

1p + P−1
p ]BT

1pPp +
2r
β

Pp, (A9)

Γp ≥
1

2β
||
∫ 0

−h
[φp(t + δ) + φp(t− h + δ) + σT

1p(t + δ)BT
pPpBpσ1p(t + δ)]dδ||, (A10)

Θp = ∆up − ∆uph, (A11)

assuming that within the delayed interval, the uncertainties are integrable (i.e., locally Lipschitz
within the interval of delay), where ϕp(ε) , r(k̂p(t) − kp(t))2 − (k̂p(ε) − kp(ε))2, σ1p =
−∆uph + σp.

Proof. Using (12), (13), the time derivative of the Lyapunov candidate Vp in (A6) is given by,

V̇p = −1
2

eT
pQpep︸ ︷︷ ︸
ηp1

−eT
pPpB1p

∫ 0

−h
ėp(t + δ)dδ + sT

p(−∆uph + σp)︸ ︷︷ ︸
ηp2

+ (k̂p − kp)
˙̂kp︸ ︷︷ ︸

ηp3

, (A12)

where ηp2 can be simplified using (10) as,

−eT
pPpB1p

∫ 0

−h
ėp(t + δ)dδ = −

∫ 0

−h
eT

pPpB1p[A1pep(t + δ) + B1pep(t− h + δ)

+ Bpσ1p(t + δ)]dδ, (A13)

The terms in (A13) can be further simplified using the inequality in (1) by choosing
D = Pp as follows,

−
∫ 0

−h
eT

pPpB1p[A1pep(t + δ)]dδ ≤ β

2

∫ 0

−h
eT

pPpB1pA1pP−1
p AT

1pBT
1pPT

pepdδ

+
1

2β

∫ 0

−h
eT

p(t + δ)Ppep(t + δ)dδ (A14)

−
∫ 0

−h
eT

pPpB1pB1pep(t− h + δ)dδ ≤ β

2

∫ 0

−h
eT

pPpB1pB1pP−1
p BT

1pBT
1pPT

pepdδ

+
1

2β

∫ 0

−h
eT

p(t− h + δ)Ppep(t− h + δ)dδ (A15)

−
∫ 0

−h
eT

pPpB1pBpσ1p(t + δ)dδ ≤ β

2

∫ 0

−h
eT

pPpB1pP−1
p BT

1pPT
pepdδ

+
1

2β

∫ 0

−h
σT

1p(t + δ)BT
pPpBpσ1p(t + δ)dδ

≤ h
2

eT
p [βPpB1pP−1

p BT
1pP]ep

+
1

2β

∫ 0

−h
σT

1p(t + δ)BT
pPpBpσ1p(t + δ)dδ, (A16)
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To further simplify (A14), (A15), let us recall the inequality from the Razumikhin
theorem [48],

Vp(ep(ε)) < rVp(ep(t)), t− 2h ≤ ε ≤ t (A17)

=⇒ eT
p(ε)Ppep(ε) < reT

p (t)Ppep(t) + ϕp(ε), (A18)

where r > 1 is some constant. Using (A18), the second terms in (A14) and (A15) can be
simplified as,

−
∫ 0

−h
eT

pPpB1p[A1pep(t + δ)]dδ ≤ h
2

eT
p [βPpB1pA1pP−1

p AT
1pBT

1pPp +
r

2β
Pp]ep

+
1
β

∫ 0

−h
ϕp(t + δ)dδ (A19)

−
∫ 0

−h
eT

pPpB1pB1pep(t− h + δ)dδ ≤ h
2

eT
p [βPpB1pB1pP−1

p BT
1pBT

1pPp +
r

2β
Pp]ep

+
1

2β

∫ 0

−h
ϕp(t− h + δ)dδ (A20)

From the simplifications of the terms in ηp2 in (A19), (A20) and (A16), the derivative
of Vp in (A12) can be rewritten as,

V̇p ≤ −
1
2

eT
p [Qp − hEp]ep + Γp + sT

p(−∆up + σp) + sT
pΘp + (k̂p − kp)

˙̂kp (A21)

Lemma A3. Under the Assumptions 1–3, the time derivative of Vq in (A7) can be simplified
using (24) and (25) as,

V̇q ≤ −
1
2

eT
q [Qq − hEq]eq + Γq + sT

q(−∆uq + σq) + sT
qΘq + (k̂q − kq)

˙̂kq (A22)

where

Eq = βPqB1q[A1qP−1
q AT

1q + B1qP−1
q BT

1q + P−1
q ]BT

1qPq +
2r
β

Pq, (A23)

Γq ≥
1

2β
||
∫ 0

−h
[φq(t + δ) + φq(t− h + δ) + σT

1q(t + δ)BT
qPqBqσ1q(t + δ)]dδ||, (A24)

Θq = ∆uq − ∆uqh, (A25)

assuming that within the delayed interval, the uncertainties are integrable (i.e., locally Lip-
schitz within the interval of delay), where ϕq(ε) , r(k̂q(t) − kq(t))2 − (k̂q(ε) − kq(ε))2,
σ1q = −∆uqh + σq.

Proof. Since, Vq in (A7), the uncertainty bound in (A4), the control law in (20) and the
adaptive law in (27) for the attitude sub-dynamics (2) are similar to those of the position
sub-dynamics in (A3), (A6), (6) and (15) respectively, by following a similar procedure
from (A12) to (A41) (as in Lemma A2) and arrive at the relationship,

V̇q ≤ −
1
2

eT
q [Qq − hEq]eq + Γq + sT

q(−∆uq + σq) + sT
qΘq + (k̂q − kq)

˙̂kq. (A26)

Assumption 4. The unknown time-varying delay, h is bounded, such that, h(t) < h, ∀t ≥ 0,
where h > 0 is a scalar.
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Lemma A4. Under Assumption 4, the terms Λi , [Qi − h(t)Ei], i ∈ {p, q} are positive definite
∀t ≥ 0.

Proof. From the upper bounds of V̇p, V̇q in (A21) and (A26) respectively, in Lemmas A2 and A3,
the following relationship should hold for the matrices, Λi , [Qi − h(t)Ei], i ∈ {p, q} to
be positive definite ∀t ≥ 0,

h(t) < QpE−1
p

<
λmin(Qp)

||Ep||
(A27)

h(t) < QqE−1
q

<
λmin(Qq)

||Eq||
. (A28)

Further, by combining the inequality conditions in (A27) and (A28), and using h from
the Assumption 4, we have,

h <

min
i∈p,q
{λmin(Qi)}

max
i∈p,q
{||Ei||}

. (A29)

By choosing appropriate positive definite matrices, Qp, Qq, and parameters K1p, K2p,
K1q, K2q, r, and β, the inequality constraint in (A29) can be satisfied for any value of

The inequality constraint in (A29) can be satisfied by choosing appropriate positive
definite matrices, Qp, Qq, and parameters K1p, K2p, K1q, K2q, r, and β. Hence, the

Theorem A1. Under the Assumptions 1–4, the closed loop trajectories of the system defined in (2)
using the control laws (6) and (20), and the adaptive laws (15) and (27) are uniformly ultimately
bounded (cf. Def. 4.6 in [41] for the definition of UUB).

Proof. From Assumption 4, the expression (A21) can be simplified using the positive
definite matrix, Λp , [Qp − hEp] > 0 as,

V̇p ≤ −
1
2

eT
pΛpep + Γp + sT

p(−∆up + σp) + sT
pΘp + (k̂p − kp)

˙̂kp (A30)

≤ −1
2

eT
pλmin(Λp)ep + Γp + sT

p(−∆up + kp) + (k̂p − kp)
˙̂kp + ||sp||||Θp||. (A31)

From (A6), the upper bound of Vp can be defined as,

Vp ≤
1
2

λmaxPp||ep||2 +
1
2
(k̂p − kp)

2. (A32)

Using the relationships in (A31) and (A32), it can be observed that,

V̇p ≤ −$pVp + Γp + sT
p(−∆up + kp) + (k̂p − kp)

˙̂kp + ||sp||||Θp|| (A33)

where $p ,
λmin(Λp)

min{λmax(Pp)/2,1/2} is a positive scalar. Further, let us analyze (A31) under the
different possible cases:

Case 1: k̂p > γp, sT
p ṡp > 0, ||sp|| ≥ vp

Substituting the values of ∆up, ˙̂kp from the control law (20) and adaptive law (27)
in (A31) implies,
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V̇p ≤ −
1
2

λmin(Λp)||ep||2 + Γp + ||sp||||Θp||+ (−αp k̂p
sT

psp

||sp||
+ kp||sp||) + (k̂p − kp)||sp||

≤ −1
2

λmin(Λp)||ep||2 + Γp + ||sp||||Θp|| − k̂p(αp − 1)||sp||. (A34)

Simply by choosing αp > 1, it can be observed that V̇p(ep(t)) < 0, if λmin(Λp)||ep||2 >
2(Γp + ||sp||||Θp||), implying that the error is bounded by

||ep||∗ =
||BT

pPp||||Θp||+
√
||BT

pPp||2||Θp||2 + 2λmin(Λp)Γp

λmin(Λp)
. (A35)

By substituting the error bound (A35) in (A34) and using the relationship in (A33), we
can infer that V̇p < 0, if Vp > Ωp1, where

Ωp1 , Γp + ||BT
pPp||||Θp||||ep||∗, (A36)

implying that,

Vp(ep(t)) ≤ max{Vp(ep(0)), Ωp1}. (A37)

Case 2: k̂p > γp, sT
p ṡp < 0, ||sp|| ≥ vp

Substituting the appropriate values of ∆up, ˙̂kp from (6) and (15) in (A31), we have

V̇p ≤ −
1
2

λmin(Λp)||ep||2 + Γp + ||sp||||Θp||+ (−αp k̂p
sT

psp

||sp||
+ kp||sp||)− (k̂p − kp)||sp||

≤ −1
2

λmin(Λp)||ep||2 + Γp + ||sp||(||Θp||+ 2kp − k̂p(αp + 1)). (A38)

As long as λmin(Λp)||ep||2 > 2(Γp + ||sp||(||Θp||+ 2kp − k̂p(αp + 1))) inflicting an
upper bound on the error to be

||ep||∗ =
||BT

pPp||(||Θp||+ 2kp − k̂p(αp + 1))
λmin(Λp)

+

√
||BT

pPp||2(||Θp||+ 2kp − k̂p(αp + 1))2 + 2λmin(Λp)Γp

λmin(Λp)
, (A39)

which along with (A37) and (A38) would imply that V̇p < 0, if Vp > Ωp2, where

Ωp2 ,
Γp + ||BT

pPp||||ep||∗(||Θp||+ 2kp − k̂p(αp + 1))
$p

. (A40)

Thus, from (A32), (A38), (A39) and (A40), we have,

Vp(ep(t)) ≤ max{Vp(ep(0)), Ωp2} (A41)

Case 3: k̂p ≤ γp, any sT
p ṡp, ||sp|| ≥ vp

By choosing the appropriate values for ∆up, ˙̂kp from (6) and (15) in (A31), it can be
observed that,
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V̇p ≤ −
1
2

λmin(Λp)||ep||2 + Γp + ||sp||||Θp||+ (−αp k̂p
sT

psp

||sp||
+ kp||sp||) + (k̂p − kp)γp

≤ −1
2

λmin(Λp)||ep||2 + Γp + ||sp||(||Θp|| − αp k̂p + kp) + γ2
p. (A42)

The simplification of the last term in (A42) comes from the relationship (k̂p − kp)γp ≤
γ2

p. Hence, V̇p < 0, if λmin(Λp)||ep||2 > 2(Γp + ||sp||(||Θp|| − αp k̂p + kp) + γ2
p). So,

the error bound for achieving the UUB property of the system is given by,

||ep||∗ =
||BT

pPp||(||Θp|| − αp k̂p + kp)

λmin(Λp)

+

√
||BT

pPp||2(||Θp|| − αp k̂p + kp)2 + 2λmin(Λp)(Γp + γ2
p)

λmin(Λp)
(A43)

Hence, it can be observed from (A32), (A42) and (A43) that V̇p < 0, if Vp > Ωp3 and
Vp is bounded as,

Vp(ep(t)) ≤ max{Vp(ep(0)), Ωp3}, (A44)

Ωp3 ,
Γp + γ2

p + ||BT
pPp||||ep||∗(||Θp|| − αp k̂p + kp)

$p
(A45)

Case 4: k̂p > γp, sT
p ṡp > 0, ||sp|| < vp

V̇p in this case can be derived from (7), (15) and (A31) as,

V̇p ≤ −
1
2

λmin(Λp)||ep||2 + Γp + ||sp||||Θp||+ (−αp k̂p
sT

psp

vp
+ kp||sp||) + (k̂p − kp)||sp||

≤ −1
2

λmin(Λp)||ep||2 + Γp + ||sp|(|||Θp||+ k̂p) + ||sp||2(−
αp k̂p

vp
) (A46)

The condition λmin(Λp)||ep||2 > 2(Γp + ||sp|(|||Θp||+ k̂p) + ||sp||2(−
αp k̂p
vp

)) needs to

be satisfied to achieve V̇P < 0. When ||sp|| =
(k̂p+||Θp ||)vp

2αp k̂p
, the sum of the terms in (A46)

with ||sp|| attain its maximum value of (k̂p+||Θp ||)2vp

4αp k̂p
, which gives result to the necessary

upper bound of the error as,

||ep||∗ =

√√√√4αp k̂pΓp + (k̂p + ||Θp||)2vp

2αp k̂p
(A47)

From (A31), (A32) and (A47), it is proven that V̇p < 0, if Vp > Ωp5, which bounds
Vp by,

Vp(ep(t)) ≤ max{Vp(ep(0)), Ωp4}, (A48)

Ωp4 ,
vpΓp + vp||BT

pPp||||ep||∗(||Θp||+ kp)− ||BT
pPp||2||ep||∗2(αp k̂p)

$pvp
(A49)

Case 5: k̂p > γp, sT
p ṡp ≤ 0, ||sp|| < vp

Selecting the corresponding values for ∆up, k̇p from (6) and (15) respectively, we have
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V̇p ≤ −
1
2

λmin(Λp)||ep||2 + Γp + ||sp||||Θp||+ (−αp k̂p
sT

psp

vp
+ kp||sp||)− (k̂p − kp)||sp||

≤ −1
2

λmin(Λp)||ep||2 + Γp + ||sp||(||Θp||+ 2kp − k̂p) + ||sp||2(−
αp k̂p

vp
) (A50)

The condition λmin(Λp)||ep||2 > 2(Γp + ||sp|(|||Θp|| + 2kp − k̂p) + ||sp||2(−
αp k̂p
vp

))

needs to be satisfied to achieve V̇P < 0. When ||sp|| =
(2kp−k̂p+||Θp ||)vp

2αp k̂p
, the sum of the

terms in (A46) with ||sp|| attain its maximum value of (2kp−k̂p+||Θp ||)2vp

4αp k̂p
, which gives result

to the necessary upper bound of the error as,

||ep||∗ =

√√√√4αp k̂pΓp + (2kp − k̂p + ||Θp||)2vp

2αp k̂p
(A51)

From (A31), (A32) and (A51), it is proven that V̇p < 0, if Vp > Ωp5, which bounds
Vp by,

Vp(ep(t)) ≤ max{Vp(ep(0)), Ωp5}, (A52)

Ωp5 ,
vpΓp + vp||BT

pPp||||ep||∗(||Θp||+ 2kp − k̂p − αp k̂p||BT
pPp||||ep||∗)

$pvp
(A53)

Case 6: k̂p ≤ γp, any sT
p ṡp, ||sp|| < vp

By choosing the appropriate values for ∆up, ˙̂kp from (6) and (15) in (A31), it can be
observed that,

V̇p ≤ −
1
2

λmin(Λp)||ep||2 + Γp + ||sp||||Θp||+ (−αp k̂p
sT

psp

vp
+ kp||sp||) + (k̂p − kp)γp

≤ −1
2

λmin(Λp)||ep||2 + Γp + ||sp||(||Θp||+ kp) + γ2
p + ||sp||2(−

αp k̂p

vp
). (A54)

The simplification of the last term in (A54) comes from the relationship (k̂p − kp)γp ≤
γ2

p. Hence, V̇p < 0, if λmin(Λp)||ep||2 > 2(Γp + ||sp||(||Θp||+ kp) + γ2
p − ||sp||2(

αp k̂p
vp

)).

When ||sp|| =
(kp+||Θp ||)vp

2αp k̂p
, the sum of the terms in (A46) with ||sp|| attain its maximum

value of (kp+||Θp ||)2vp

4αp k̂p
, which gives result to the necessary upper bound of the error as,

||ep||∗ =

√√√√4αp k̂p(Γp + γ2
p) + (kp + ||Θp||)2vp

2αp k̂p
(A55)

From (A31), (A32) and (A55), it is proven that V̇p < 0, if Vp > Ωp5, which bounds
Vp by,

Vp(ep(t)) ≤ max{Vp(ep(0)), Ωp6}, (A56)

Ωp6 ,
vp(Γp + γ2

p)vp||BT
pPp||||ep||∗(||Θp||+ kp − ||BT

pPp||||ep||∗(αp k̂p))

$pvp
(A57)
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From (A37), (A41), (A44), (A48), (A52) and (A56), it is observed that for any possi-
ble scenario,

Vp(ep(t)) ≤ max{Vp(ep(0)), max
i
{Ωpi}}, i ∈ {1− 6} (A58)

By following a similar procedure from (A12) to (A58) using the time-derivative of Vp,
continuing from (A26), we can obtain the relationship,

Vq(eq(t)) ≤ max{Vq(eq(0)), max
i
{Ωqi}}, i ∈ {1− 6} (A59)

where Ωqi, i ∈ {1− 6} are scalar terms similar to those in (A36), (A40), (A45), (A49), (A53)
and (A57). Hence, from (A58), (A59) the overall Lyapunov function, V in (A5) is ultimately
bounded by,

V(ep(t), eq(t)) ≤ max{Vq(ep(0), eq(0)), Ω} (A60)

where Ω = (max
i
{Ωpi} + max

j
{Ωqj}), i, j ∈ {1 − 6}, and the closed-loop system re-

mains UUB.
It can be noted that unlike the predictive approach in [49,50], the proposed controller

does not mandate any constraint on the derivative of the time-varying delay. Further,
the knowledge of the upper bound of the delay is used only in the parameter selection and
hence, the knowledge of the instantaneous value of the delay and its time-derivatives is
not required in the controller design. Similarly, the knowledge of the overall parametric
uncertainties σp, σq are used neither in the control laws nor in the adaptive laws. Hence,
despite the boundedness of the uncertainties, the knowledge of their bounds are not needed
by the controller.

Remark A1. The bounds Ωpi, Ωqj, ∀i, j ∈ {1− 6} are dependant on the gain parameters αp, αq
and the delay in the system h. The performance maximizes with higher gains in the presence of
minimal delays. However, high gains lead to large control inputs, which is undesirable in the
practical scenario.
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