
Citation: Li, J.; Li, B.; Dong, L.; Wang,

X.; Tian, M. Weld Seam Identification

and Tracking of Inspection Robot

Based on Deep Learning Network.

Drones 2022, 6, 216. https://doi.org/

10.3390/drones6080216

Academic Editors: Bo Li, Daqing

Chen, Ming Yan and Chunwei Tian

Received: 11 July 2022

Accepted: 18 August 2022

Published: 20 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Weld Seam Identification and Tracking of Inspection Robot
Based on Deep Learning Network
Jie Li 1 , Beibei Li 2, Linjie Dong 1 , Xingsong Wang 1,* and Mengqian Tian 1

1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2 No. 703 Research Institute of CSSC, Harbin 150028, China
* Correspondence: xswang@seu.edu.cn

Abstract: The weld seams of large spherical tank equipment should be regularly inspected. Au-
tonomous inspection robots can greatly enhance inspection efficiency and save costs. However, the
accurate identification and tracking of weld seams by inspection robots remains a challenge. Based on
the designed wall-climbing robot, an intelligent inspection robotic system based on deep learning is
proposed to achieve the weld seam identification and tracking in this study. The inspection robot used
mecanum wheels and permanent magnets to adsorb metal walls. In the weld seam identification,
Mask R-CNN was used to segment the instance of weld seams. Through image processing combined
with Hough transform, weld paths were extracted with a high accuracy. The robotic system efficiently
completed the weld seam instance segmentation through training and learning with 2281 weld seam
images. Experimental results indicated that the robotic system based on deep learning was faster and
more accurate than previous methods, and the average time of identifying and calculating weld paths
was about 180 ms, and the mask average precision (AP) was about 67.6%. The inspection robot could
automatically track seam paths, and the maximum drift angle and offset distance were 3◦ and 10 mm,
respectively. This intelligent weld seam identification system will greatly promote the application of
inspection robots.

Keywords: inspection robot; weld seam identification; wall-climbing robot; deep learning

1. Introduction

With the extensive use of welding technologies in petroleum, bridges, ships and other
fields, the use of large-scale welding devices, such as natural gas pressurized spherical
tanks, is greatly increasing. Weld seams at equipment joints need to be regularly tested to
ensure the safe and stable operation of equipment. The traditional manual non-destructive
testing (NDT) requires abundant experience and is dangerous for workers, and the NDT is
time-consuming and labor-intensive. Automated wall-climbing robots can replace manual
inspection, and the application of weld inspection robots has become the research focus.

In the research field of wall-climbing robots, many excellent wall-climbing robots
have been developed, such as magnetic wheel climbing robots [1–3], negative pressure
adhesion wall-climbing robots [4–6] and crawler wall-climbing robots [7–9]. Through
permanent magnet adsorption or electromagnetic adsorption, these robots can be operated
on metal walls to provide a platform for further work. However, most of the wall-climbing
robots [10] only use camera devices to carry out the weld seam identification and posi-
tioning, and some robots [11] can identify the weld seam, which is obviously different
from the surroundings. Low accuracy makes it difficult for robots to achieve industrial
applications. It is difficult to distinguish the weld seam after surface painting from the
surrounding environment in terms of color, so the identification by computer image pro-
cessing is basically invalid. According to some methods combining laser scanning with
image processing [12,13], the seam position can be determined by identifying the uneven
surface of the weld seam. However, these methods have low efficiency and poor accuracy
and are prone to interference from surrounding impurities.
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Accurate environment recognition and localization in complex workspaces can im-
prove robot inspection and operation automation. An autonomous navigation method in a
3D workspace was proposed to drive a non-holonomic under-actuated robot to the desired
distance from the domain and then full scan of this surface within a given range of alti-
tudes [14]. Novel central navigation and planning algorithms for the hovering autonomous
underwater vehicle on ship hulls were developed and applied [15,16]. Acoustic and vi-
sual mapping processes were integrated to achieve closed-loop control relative to some
features on the open hull. Meanwhile, large-scale planning routines were implemented to
achieve full imaging coverage of all the structures on the complex area. An environment
recognition and prediction method was developed for autonomous inspection robots on
spherical tanks [17,18]. A group of 3D perception sources, including a laser rangefinder,
light detection and a ranging and depth camera, were used to extract some environment
characteristics to predict the storage tank dimensions and estimate robot position. Weld
seams on spherical tank surfaces are prominent environmental features. Fast weld seam
identification facilitates robot navigation and positioning on complex spherical surfaces.

It is difficult to achieve the complete and accurate identification of a weld seam path
by general computer image processing. Weld seam image pre-processing (such as bright-
ness adjustment, filtering and noise reduction) before identification is indispensable and
cumbersome. Moreover, inaccurate and unstable recognition effects limit the application
of wall-climbing robots. The rapid development of deep learning [19] in recent years has
promoted the development of recognition and classification technologies for intelligent
robots. From 2015, we have applied convolutional neural networks (CNN) and other
algorithms in weld seam identification, such as sub-region BP neural networks [20], the
AdaBoost algorithm [21] and Faster R-CNN [22]. The results are still exciting and deep
learning can identify weld seams accurately. However, the training process of CNNs
requires powerful hardware support, and early identification results of CNNs are not
accurate enough. The identification process takes a long time, thus hindering the further
application of inspection robots.

In the study, improved Mask R-CNN [23] was used in the inspection robot, which
could flexibly climb on spherical tanks. Mask R-CNN can be regarded as a combined neural
network structure of Faster R-CNN and a fully convolutional network (FCN) [24]. After
training and learning, the inspection robot could identify and track weld seam with high
precision. This paper introduces system design, weld seam identification and weld path
tracking of the inspection robot in detail. Section 2 explains and analyzes the composition
of the designed robotic system. Section 3 explains the deep learning method for weld seam
identification. Weld path fitting and robot tracking movement are introduced in Section 4.
In Section 5, the experimental results for weld seam identification and robot tracking are
provided. Next, the conclusions and further works are given in Section 6.

2. Robotic System Implementation
2.1. Robot Mechanical Design

Wall-climbing robots for tank inspection should have stable adsorption and movement
performance. The inspection robots can be used for NDT and maintenance of weld seams
on tank surfaces, such as grinding, cleaning and painting. It is more difficult to climb
on spherical tanks than ordinary metal walls since the robot needs to be adapted to the
curved spherical surface and provide reliable adsorption force. A series of wall-climbing
robot prototypes [25–27] have been designed and explored based on various performance
indicators. Figure 1 shows the preliminary test of our developed wall-climbing robot
prototype in different positions on a 3000 m3 spherical tank.
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Figure 1. Developed wall-climbing robot on a spherical tank. Note: Spherical tanks put forward 
higher requirements on wall-climbing robots and the robot must adapt to the curved surfaces to 
ensure stable adsorption. 

According to the results of preliminary tests [25–27], an upgraded inspection robot 
for weld seam identification and tracking was designed. As shown in Figure 2, the inspec-
tion robot is composed of four mecanum wheels, four elastic suspensions, four dampers, 
four permanent magnets and an adjustable robot frame. A camera is installed at the front 
of the robot for weld seam identification and two detection probes are installed at its bot-
tom for defect detection in the weld seams. 

 
Figure 2. Mechanical structure of the inspection robot. Note: An industrial camera is installed at the 
front of the robot for weld seam identification; two detection probes are installed at its bottom for 
defect detection of weld seams. 

The inspection robot should provide a sufficient adsorption force at any position of 
the tank, especially on the vertical and bottom surfaces. On the tank surfaces of 0° and 90°, 
the adsorption force NF  should satisfy the following formulas, respectively: N tF Gμ >  
and N tF Gμ > , where tG  is the gravity of the robot and μ  is the frictional coefficient of 

Figure 1. Developed wall-climbing robot on a spherical tank. Note: Spherical tanks put forward
higher requirements on wall-climbing robots and the robot must adapt to the curved surfaces to
ensure stable adsorption.

According to the results of preliminary tests [25–27], an upgraded inspection robot for
weld seam identification and tracking was designed. As shown in Figure 2, the inspection
robot is composed of four mecanum wheels, four elastic suspensions, four dampers, four
permanent magnets and an adjustable robot frame. A camera is installed at the front of the
robot for weld seam identification and two detection probes are installed at its bottom for
defect detection in the weld seams.
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Figure 2. Mechanical structure of the inspection robot. Note: An industrial camera is installed at the
front of the robot for weld seam identification; two detection probes are installed at its bottom for
defect detection of weld seams.

The inspection robot should provide a sufficient adsorption force at any position of
the tank, especially on the vertical and bottom surfaces. On the tank surfaces of 0◦ and
90◦, the adsorption force FN should satisfy the following formulas, respectively: µFN > Gt
and µFN > Gt, where Gt is the gravity of the robot and µ is the frictional coefficient of
wheels. Compared to electromagnetic adsorption or other means, permanent magnet
adsorption can provide greater adsorption force, save energy and avoid the risk of falling.



Drones 2022, 6, 216 4 of 18

The robot with mecanum wheels has omnidirectional movement ability, which reduces the
risk and energy consumption of swerving and turning around when the robot climbs on
the spherical tank.

The inspection robot adopts four-wheel independent elastic suspensions and the ad-
justable robot frame, which can adjust the inclination of mecanum wheels to be adapted to
working surfaces with different curvatures. Each elastic suspension includes an indepen-
dent damping mechanism, which reduces the instability of the robot and absorbs excess
vibration energy. Meanwhile, four permanent magnets can provide sufficient adsorption
force to ensure the smooth climbing of the robot on spherical tank surfaces.

When climbing on spherical tanks, the inspection robot has two states: the normal
climbing state and the obstacle-surmounting state. The obstacle-surmounting capacity is an
important performance of the robot. On the working surface of spherical tanks, the height
of weld seams is about 3–4 mm. The robot needs to surmount weld seams during the
running process. Dampers installed on independent suspensions can automatically adjust
the robot’s posture for smoothly surmounting weld seams. The mechanical structural
design of the robot can meet the operational requirements on spherical tanks.

The relevant parameters of the inspection robot with mecanum wheels are shown in
Table 1. The self-weight of the robot is reduced from 20 kg to 13.75 kg, and the robot payload
capacity is increased from 5 kg to 10 kg. To benefit from improved elastic suspensions, the
adsorption force of the robot is increased from 180 N to 204 N, and the obstacle-surmounting
height is also increased to 5 mm. The maximum climbing velocity is set as 0.2 m/s, and the
maximum continuous working time about is 120 min. The improvement in the performance
of the inspection robot could increase the application scope and reduce operational risks.

Table 1. Performance and parameters of the inspection robot.

Symbols Meanings Unit Quantitative Values

MG Self-weight kg 13.75
Ml Maximum payload kg 10

Vmax Maximum velocity m/s 0.2
FN Adsorption force N 204
hm Obstacle-surmounting height mm 5
T Working time min 120

2.2. Robotic System Composition

The weld seam identification and tracking system of the inspection robot is a composite
system and its main functions include weld seam identification, path calculation, motion
control and data transmission. As shown in Figure 3, the robotic system includes the
following subsystems: robot motion control system, weld seam identification system,
detection system and remote computer. The robot motion control system mainly includes
an industrial personal computer (IPC), motion controller, motor drivers, DC motors, a
gyroscope and a remote control unit. It realizes the movement function of the robot, position
adjustment and remote control. The weld seam identification system is used to identify
weld seams and calculate seam path, including an identification computer (GPU RTX 2060)
and an industrial camera. The detection system is an additional device of the robot, and the
defect detection of weld seams is performed by ultrasonic probes. The remote computer is
connected to the robot through a wireless router for data analysis and storage.

Problems that can be solved by the robotic system include:

(1) Accurate identification of weld seams by machine vision;
(2) Weld path extraction and fitting;
(3) Weld seam tracking by the inspection robot.
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motion control system, weld seam identification system, detection system and remote computer.

3. Weld Seam Identification
3.1. Weld Seam Images

In the field of computer vision, image processing is a general and fast method. Image
processing can extract feature information in a certain image or identify lines that are
distinguished in colors. However, in some complex environments, where the acquired
images have similar colors (such as painted weld seams) or too much interference, it is
difficult to obtain useful information through image processing. In the case of weld seams
without obvious distinction, weld seams cannot be accurately identified and extracted
by image processing. Even if some features are acquired, the path information is largely
discontinuous, unclear and distorted [28].

Real-time weld path tracking can make the inspection robot more automatic and
intelligent. However, it is difficult to realize the weld seam identification and path line
extraction with high-precision. After long-term work, the weld seams on spherical tank
surfaces are covered by dirt and rust, which seriously affect identification accuracy. Weld
seam images under the daytime and nighttime lighting conditions acquired by the inspec-
tion robot are shown in Figure 4. According to distribution characteristics, weld seams
on tank surfaces include transverse weld seams, longitudinal weld seams, diagonal weld
seams, crossed weld seams, etc. Different weld seam categories increase the difficulty in
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fitting weld paths. Due to the small distinction between weld seams and the surrounding
feature identification by image processing is usually incomplete and it is difficult to extract
the seam path information. Some image processing techniques [28], such as edge detection
algorithms and digital morphology, have been tested to extract weld seam path lines, but
the extraction results are not satisfactory.
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Figure 4. Weld seam images acquired by the inspection robot. Note: Weld seams include transverse
weld seams, longitudinal weld seams, diagonal weld seams and crossed weld seams.

3.2. Weld Identification Workflow

Figure 5 shows the workflow of weld seam identification and tracking, which is
divided into four steps. Firstly, the weld images are captured by the camera; secondly, weld
seams in images are identified by deep learning networks; thirdly, seam paths are extracted
and fitted; finally, the robot is controlled to track weld paths based on path information.
The purpose of the deep learning networks we used is to accurately segment weld seams.
The ultimate goal is to extract weld seams and output path information.
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Figure 5. Weld seam identification and tracking workflow.

In the initial phase, the camera of the robot acquires the images of the local environ-
ment. Subsequently, a Mask R-CNN model is used to identify weld seams from images and
perform instance segmentation. After identifying weld seams, weld path lines are extracted
and fitted through Hough transform and image processing. Here, the position parameters
of weld paths are estimated, including drift angle α and offset distance d. α is the inclination
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angle of the robot relative to the chosen weld seam and d is the shortest distance from the
path center line to the image center. These two parameters directly reflect the direction
angle and climbing velocity of the robot. Finally, the inspection robot continuously changes
its movement position to automatically track the chosen weld seam.

3.3. Networks Model

Mask R-CNN is a deep learning mode based on CNNs [23]. It can accomplish the
segmentation of weld seams in images. Mask R-CNN performs well in weld seam identifi-
cation in terms of accuracy and time, which can meet the requirements of the inspection
robot. The process of Mask R-CNN for weld identification mainly includes: backbone
networks, regional proposal networks (RPN), RoIAlign layers, classification, bounding-box
regression and mask generation.

In the beginning, a series of CNN layers (such as VGG19, GoogLeNet [29], ResNet50 [30]
and ResNet101) are used to extract feature maps. Deeper CNNs can extract deeper features
of weld images, but they ignore the features of small-sized objects. At this stage, feature
pyramid networks (FPN) [31] are used to fuse the feature maps from the bottom layer to
the top layer to fully utilize the features at different depths. For example, in ResNet50-FPN,
the feature map used is C2–C5.

The feature map processed by the backbone networks will be passed into RPN. The
purpose of RPN is to recommend a region of interest (RoI) and it is a fully convolutional
network. RPN takes weld images as the input and uses nine anchors of different sizes to
extract the features of original images. RPN outputs a set of rectangular object proposals,
and each region proposal has a suggested score. The anchor sizes have three categories:
128 × 128, 256 × 256 and 512 × 512. There are three kinds of proportional relationships:
2:1, 1:2 and 1:1.

Each sliding window (9 anchors) is mapped to a lower-dimensional feature, which is
fed into two sibling fully-connected layers: a box-regression layer and a box-classification
layer. At each sliding-window location, RPN simultaneously predicts multiple region
proposals and the number of maximum possible proposals for each location is denoted as
k. In the stage of RPN, by encoding the coordinates of k boxes, the regression layer gives
4k outputs, and the classification layer outputs 2k scores (objective scores or non-objective
scores) to estimate the probability for k proposals.

Due to the different sizes of the region proposals obtained by RPN, these obtained
regional proposals are sent to the non-quantization layer for processing, which is called
RoIAlign. RoIAlign uses bilinear interpolation instead of quantization operations to extract
fixed-size feature maps from each RoI (for example, 7 × 7). There is no quantization
operation in the whole process. In other words, the pixels in the original image are
completely aligned with the pixels in the feature map, and there is no deviation. In this way,
the detection accuracy is improved, and the instance segmentation process is simplified.

Mask R-CNN finally outputs three branches: classification, bounding-box regression
and mask prediction. After the RoIAlign layer, on the one hand, the RoI is fed into two fully
connected layers for image classification and bounding box regression. The classification
layer determines the category of weld seams. The bounding-box regression layer refines
the location and size of the bounding box. On the other hand, pixel-level segmentation
of weld seams is acquired through FCN. FCN uses convolutional layers instead of fully
connected layers for pixel-to-pixel object mask prediction. The mask prediction branch uses
FCN to segment objects in the image by pixels and has a Km2-dimensional output for each
RoI (K is the number of categories). In the dataset for the identification of weld seams, the
number of categories was 2 (including background and weld seams), the network depth of
the classification layer and regression layer was 2, and output network size of the mask
prediction branch was 28× 28× 2 pixels.
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3.4. Loss Function

Weld seam images are segmented by Mask R-CNN. There are three output layers: the
classification layer, bounding-box regression layer and mask branch. During the training
process, the relevant variables and their meanings are shown in Table 2. The total loss
function is defined as:

L = Lcls+box + Lmask−branch (1)

Lcls+box = Lcls + Lbox =
1

Ncls
∑

i
Lcls(ρi, ρ∗i ) + λ1

1
Nreg

∑
i

ρ∗i Lreg(τi, τi
∗) (2)

Table 2. Variables and meanings in the loss function.

Symbols Meanings

L Total loss
Lcls+box Sum of classification loss and bounding-box loss

Lmask−branch Mask branch loss
Lcls Classification loss
Lbox Bounding-box loss

Lmask Average binary cross-entropy loss
Ncls Number of corresponding anchors
Nreg Number bounding boxes

i Anchor index
ρi Predicted classification probability of anchor i

ρ∗i
Ground-truth label probability of anchor i; ρ∗i is 1 for the

positive anchor and 0 for the negative anchor

τi =
(
τx, τy, τw, τh

) Difference between the prediction bounding box and the
ground-truth label box in four parameter vectors (horizontal

coordinate, vertical coordinate, width and height)

τ∗i =
(

τ∗x , τ∗y , τ∗w, τ∗h

) Differences between the ground-truth label box and the positive
anchor in four parameter vectors

λi, γi
Hyper-parameters to balance the training losses of the

regression and mask branch

Classification loss Lcls can be defined as:

Lcls(ρi, ρ∗i ) = − log ρ∗i ρi (3)

Bounding-box loss Lbox is defined over a tuple of true bounding-box regression targets:

Lreg (τi, τ∗i ) = smoothL1(τ
∗
i − τi) (4)

smoothL1(x) =
{

0.5x2 , if |x|< 1
|x|−0.5 , otherwise

(5)

Mask branch loss Lmask−branch is defined as:

Lmask−branch = Lmask−branch(ρi, ρi
∗, τi, τi

∗, σi, σi
∗)

= 1
Ncls

∑
i

Lcls(ρi, ρi
∗) + λ2

1
Nreg

∑
i

ρi
∗Lreg(τi, τi

∗) + γ2
1

Nmask
∑
i

Lmask (σi, σi
∗) (6)

Lmask is defined as the average binary cross-entropy loss by used a per-pixel sig-
moid. The definition of Lmask allows the network to generate masks for every category
without competition.

3.5. Training

During the training phase of Mask R-CNN, 2281 weld seam images at different angles
were collected (more images might have the better effect). The image size was fixed
at 320 × 240. In the collected images, 1500 images were used as the training dataset;
500 images were used as the verification set; and 281 images were used as the testing set.
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These dataset images were labelled and processed in advance. Some data augmentation
methods, such as random flip, random crop, color jitter and noise addition, were used to
extend the dataset. Image transformations and noise addition were beneficial to avoid
overfitting. After data augmentation (24 types), the number of weld seam images in the
training set, validation set and test set were 37,500, 12,500 and 7025, respectively. Figure 6
visualizes results of the weld seam dataset. Regarding the label number, 1 (or 2) represents
weld seams and 0 represents the background.
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The pre-trained Mask R-CNN weight was inherited from the COCO dataset and the 
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Figure 6. Visualization results of the weld seam dataset.

The pre-trained Mask R-CNN weight was inherited from the COCO dataset and the
backbone network was ResNet101 + FPN. The number of categories was 2 (background
and weld). The model output the category scores, bounding boxes and masks of weld
seams for each input image after training. The training parameters were set as follows: the
initial learning rate of the network was 0.001; the weight attenuation coefficient was 0.0005;
the momentum coefficient was 0.85. During the deep learning training process of the weld
seam dataset, the loss function and accuracy curve changes as shown in Figure 7. After
10,000 iterations, the training loss function curve stabilizes at 0.15–0.2, and the accuracy of
the network model is greater than 0.97. Comparing the learning effect of 3000, 5000 and
8000 iterations, due to smaller weld images and the number of categories is only 2, the
effect after 3000 iterations is already good and after 5000 times is basically stable.
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4. Weld Path Tracking
4.1. Path Selection Problem

Since weld images not only include a single weld seam (such as transverse and
longitudinal weld seams) but sometimes include multiple weld seams (such as T-shape
and crossed weld seams). When there are multiple weld seams in an image, the following
possibilities exist in the weld path extraction stage:

(1) Extract the path of weld seam 1
(2) Extract the path of weld seam 2
(3) Extract one wrong path

As shown in Figure 8, in order to avoid the interference of multiple paths, the acquired
weld seams are identified and distinguished by different colors, and the centerline of each
weld seam is fitted separately. If there are T-shape or crossed weld seams in the weld
images, multiple weld seams are segmented.
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In general, the crossed weld seam is considered to be a special welding joint, so the
crossed weld seam is defined as a combination of two weld seams. Therefore, the optimal
weld path can be efficiently processed. In the weld identification phase, Mask R-CNN
has a more obvious advantage in segmenting multiple weld seams; these weld seams are
distinguished by different color pixels.

4.2. Weld Path Fitting

Binarized images of weld paths are generated through image processing, and image
erosion and filtering are also executed. Hough transform is used to fit the path line of a
single weld seam. In the image coordinate system (x, y), the path line of the weld seam can
be supposed as:

y = a0x + b0 (7)

After mapping the line to Hough space (a, b), the line equation can be expressed as:

b0 = −xa0 + y (8)

Each line in the image space can be described as a point in the Hough space. As shown
in Figure 9, point (xi, yi) and point

(
xj, yj

)
correspond to two straight lines in Hough space,

respectively: {
b = −xia + yi
b = −xja + yj

(9)
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Figure 9. Weld path line fitted by Hough transform.

The straight line equation can be converted into polar coordinate system (θ, ρ):

x cos θ + y sin θ = ρ (10)

So, the straight line equation of the weld path can be expressed as:

y =
− cos(θ0)

sin(θ0)
x +

ρ0

sin(θ0)
(11)

a0 and b0 can be expressed as:{
a0 = − cos(θ0)/ sin(θ0)
b0 = ρ0/ sin(θ0)

(12)

In the polar coordinate system, point (θ0, ρ0) represents a straight line in the image
coordinate system. The number of curves passing through point (θ0, ρ0) can represent the
quantity of points in a straight line in the image coordinate system. The straight lines in the
image coordinate system are converted into the points in the polar coordinate system, and
the straight line with the most points in the image coordinate system can be determined as
the weld seam path line.

Through Hough transform, multiple straight line functions in the weld image can be
fitted. The line with the maximum linear length is selected as the weld path line. There is a
slight deviation between the solved path line and the actual path centerline, but it can meet
the requirement of robot tracking.

According to the weld path line parameters a0 and b0, the drift angle α and offset
distance d of weld paths can be expressed as:{

α = arc tan(−a0)·180
π

d = xc−b0
k − yc/2

(13)

where (xc, yc) is the center coordinate of weld line images.
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4.3. Robot Kinematics

The inspection robot with mecanum wheels can achieve omnidirectional movement.
Based on elastic suspensions and the adjustable robot frame, the robot can move flexibly on
curved surfaces, so the weld seam tracking on spherical tanks can be simplified as a plane
adjustment motion. In this process, the robot continuously corrects drift angle α and offset
distance d to climb forward along welding seams.

As shown in Figure 10, assuming that the robot forward velocity is v0, the rotation
angular velocity and lateral velocity to be adjusted are ∆α and ∆d, respectively. Then the
inverse kinematics equation of tracking movement is:

.
θ1.
θ2.
θ3.
θ4

 =
1

Rc


1 − cot βc −(Wc + cot βc · Lc)
1 cot βc Wc + cot βc · Lc
1 − cot βc Wc + cot βc · Lc
1 cot βc −(Wc + cot βc · Lc)


 v0

∆d
∆α

 (14)

Vi = R
.
θi(i = 1, 2, 3, 4) (15)

where Vi and
.
θi are the velocities and angular velocities of four mecanum wheels, respec-

tively. Wc and Lc are the half-width and half-length of the robot frame. R is the radius of
the mecanum wheels and βc represents the angle between the wheel roller and the wheel
axis. Substituting with robot design parameters, the Jacobian matrix (defined as Kc) of
inverse kinematics of the robot is:

Kc =
1

0.0635


1 −1 −0.788
1 1 0.788
1 −1 0.788
1 1 −0.788

 (16)
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5. Experiments and Results

As shown in Figure 11, the experimental platform is a cylindrical tank with a diameter
of 4000 mm, a height of 2800 mm and a thickness of 10 mm. Weld seams are distributed on
the surface of the experimental tank for identification and tracking by the robot. The laser
tracker was used to record the running position of the inspection robot.
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Figure 11. Experimental platform and the inspection robot.

5.1. Weld Seam Identification Experiments

Figure 12 shows weld seam identification results by the robot. From the perspective of
identification effect, accurate outline descriptions of weld seams have been generated with
over 98% identification probability. Generated pixel-level masks can cover weld seams,
which is beneficial for extracting and fitting weld paths. Table 3 shows the statistical data
of weld seam box AP (bounding box AP) and mask AP. The average precision calculation
formula is as:

AP =
∫ 1

0
P(r)dr (17)

where P and r represent precision and recall of each image, respectively. Mask AP and box
AP are 67.5% and 78.9%, respectively. Both AP50 and AP75 are greater than 90%. Results of
APs, APm and APl show that the size of weld seams is mainly concentrated in the medium
pixel size (322–962).
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Table 3. Box AP and mask AP of weld seam identification.

(%) AP AP50 AP75 APs APm APL

Box 78.947 96.193 90.802 nan 86.079 3.791
Mask 67.596 90.802 90.802 nan 71.252 0.000

5.2. Weld Path Fitting Experiments

As shown in Figure 13, multiple weld paths are extracted using different colors. When
the weld images are crossed weld seams, two weld path lines are fitted by dividing them
into red and blue. Figure 14 shows image binarization and fitting results of weld paths.
The robot can accurately fit path lines to estimate their positional parameters (drift angle
and offset distance).
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seam path images are convenient for processing and path line fitting.

Figure 15 shows the deviations between the calculated values and the actual measured
value of drift angle α and offset distance d. In deviation values of single weld seams, the
average deviation of drift angle α between calculated paths and actual paths is 1.01◦, and
the maximum deviation is 2.78◦ (Figure 15a). The average deviation of offset distance d is
2.21 pixels, and the maximum value is 5.57 pixels (Figure 15b). In terms of the deviation of
crossed weld seams, the average and maximum deviations of drift angle α are about 0.87◦

and 2.37◦ (Figure 15c), and the average and maximum deviations of offset distance d are
2.62 pixels and 7.83 pixels (Figure 15d). These deviations are generally kept at small values
which have little effect on the weld path tracking by the robot.
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Table 4 shows the time consumption of weld seam real-time identification and pro-
cessing, which mainly includes image loading loss time, deep learning identification time,
image processing time and total time. In the process of continuous weld seam identification,
the total processing time of each image is kept between 0.15 s and 0.18 s, the average time
of the deep learning network of each image is 0.137 s, the average image loading loss time
is about 0.006 s and the average image processing time is about 0.018 s.

Table 4. Time consumption of weld seam identification and processing.

Image Number 1 2 3 4 5 . . . 196 197 198 199 200 Mean Time (s)

Time0 (s) 0.172 0.236 0.226 0.176 0.142 . . . 0.155 0.163 0.161 0.156 0.156 0.162
Time1 (s) 0.007 0.007 0.003 0.007 0.003 . . . 0.006 0.007 0.006 0.006 0.007 0.006
Time2 (s) 0.147 0.181 0.202 0.144 0.130 . . . 0.129 0.133 0.131 0.131 0.130 0.137
Time3 (s) 0.019 0.049 0.021 0.023 0.009 . . . 0.019 0.023 0.023 0.019 0.019 0.018

Note: Time0 = total time; Time1 = loading time; Time2 = identification time; Time3 = image processing time.

In the real-time weld seam identification, the robotic system can output five sets of
path data (drift angle and offset distance) in one second. Due to the low running velocity
of the robot, it can meet the automated inspection work. Weld seam identification speed
can be accelerated by optimizing deep learning identification time and clearing the loss
time of loading images.

5.3. Robot Tracking Experiments

According to the imaging ratio of the camera, the actual offset distances between
weld paths and the inspection robot were calculated. Based on the robot kinematics, the
rotation velocities of four motors were adjusted, and the attitude and position of the robot
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were continuously changed to track the identified weld seam. Due to the drive mode of
mecanum wheels, the robot could achieve omnidirectional movement without frequently
changing its heading angle. In robot tracking experiments, when the drift angle was over
±3◦, the climbing robot would rotate to correct its heading angle.

Figure 16 shows the drift angles and offset distances of robot while tracking the
identified weld seams. The robot can successfully correct its angle and velocities to track
weld seams. The maximum drift angle and offset distance were about 3◦ and 10 mm,
respectively. The accuracy of tracking weld seams could meet the operational requirements
of the inspection robot.
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6. Conclusions

In this study, an intelligent inspection robotic system based on deep learning was
developed to achieve the weld seam identification and tracking. The inspection could
complete the segmentation of weld images and output the masks of weld paths using Mask
R-CNN. Deep learning weld seam identification makes up for the low accuracy of image
processing. By using specific colors to distinguish multiple weld seams, possible errors in
the fitting weld path can be avoided. The real-time test results indicated the deep learning
model had higher accuracy in weld seam identification, and the average processing time of
each image was about 180 ms. Weld path fitting experiments were carried out to test weld
path extraction deviation. The maximum deviations of drift angle α and offset distance
d were within 3◦ and 8 pixels, respectively. The results of robot tracking experiments
demonstrated the inspection robot could accurately track weld seams, with a maximum
tracking deviation of 10 mm.

The further training and adjusting of the network structure will be explored to speed
up processing. In the construction process of the entire robotic system, due to the com-
bination of multiple methods and algorithms, optimizing the system composition and
connection is also one of our priorities in the future. In terms of engineering applications,
this robotic system can meet the basic operational and inspection requirements and the
robot performance will be promoted in further research.

Author Contributions: J.L. contributed significantly to robot design, analysis and manuscript prepa-
ration. X.W. contributed to supervision, reviewing and validation. B.L. and M.T. contributed to robot
experiments and result analysis. L.D. performed software debugging and image data collection. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Project of Quality and Technical
Supervision Bureau of Jiangsu Province grant number KJ175933 and the National Prevention Key
Technology Project for Serious and Major Accidents in Work Safety of China grant number jiangsu-
0002-2017AQ.



Drones 2022, 6, 216 17 of 18

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data included in this study are available upon request by contact
with the corresponding author.

Conflicts of Interest: The authors have no conflict of interest to disclose.

References
1. Wu, M.; Gao, X.; Yan, W.X.; Fu, Z.; Zhao, Y.; Chen, S. New Mechanism to Pass Obstacles for Magnetic Climbing Robots with High

Payload, Using Only One Motor for Force-Changing and Wheel-Lifting. Ind. Rob. 2011, 38, 372–380. [CrossRef]
2. La, H.M.; Dinh, T.H.; Pham, N.H.; Ha, Q.P.; Pham, A.Q. Automated Robotic Monitoring and Inspection of Steel Structures and

Bridges. Robotica 2019, 37, 947–967. [CrossRef]
3. Lee, G.; Wu, G.; Kim, J.; Seo, T. High-Payload Climbing and Transitioning by Compliant Locomotion with Magnetic Adhesion.

Rob. Auton. Syst. 2012, 60, 1308–1316. [CrossRef]
4. Zhou, Q.; Li, X. Experimental Investigation on Climbing Robot Using Rotation-Flow Adsorption Unit. Rob. Auton. Syst. 2018, 105,

112–120. [CrossRef]
5. Zhu, H.; Guan, Y.; Wu, W.; Zhang, L.; Zhou, X.; Zhang, H. Autonomous Pose Detection and Alignment of Suction Modules of a

Biped Wall-Climbing Robot. IEEE/ASME Trans. Mechatron. 2015, 20, 653–662. [CrossRef]
6. Sakagami, N.; Yumoto, Y.; Takebayashi, T.; Kawamura, S. Development of Dam Inspection Robot with Negative Pressure Effect

Plate. J. Field Robot. 2019, 36, 1422–1435. [CrossRef]
7. Schmidt, D.; Berns, K. Climbing Robots for Maintenance and Inspections of Vertical Structures—A Survey of Design Aspects and

Technologies. Rob. Auton. Syst. 2013, 61, 1288–1305. [CrossRef]
8. Park, C.; Bae, J.; Ryu, S.; Lee, J.; Seo, T. R-Track: Separable Modular Climbing Robot Design for Wall-to-Wall Transition. IEEE

Robot. Autom. Lett. 2021, 6, 1036–1042. [CrossRef]
9. Gao, X.; Shao, J.; Dai, F.; Zong, C.; Guo, W.; Bai, Y. Strong Magnetic Units for a Wind Power Tower Inspection and Maintenance

Robot. Int. J. Adv. Robot. Syst. 2012, 9, 189. [CrossRef]
10. Wang, Z.; Zhang, K.; Chen, Y.; Luo, Z.; Zheng, J. A Real-Time Weld Line Detection for Derusting Wall-Climbing Robot Using

Dual Cameras. J. Manuf. Process. 2017, 27, 76–86. [CrossRef]
11. Maglietta, R.; Milella, A.; Caccia, M.; Bruzzone, G. A Vision-Based System for Robotic Inspection of Marine Vessels. Signal Image

Video Process. 2018, 12, 471–478. [CrossRef]
12. Zhang, L.; Ye, Q.; Yang, W.; Jiao, J. Weld Line Detection and Tracking via Spatial-Temporal Cascaded Hidden Markov Models and

Cross Structured Light. IEEE Trans. Instrum. Meas. 2014, 63, 742–753. [CrossRef]
13. Zhang, L.; Ke, W.; Ye, Q.; Jiao, J. A Novel Laser Vision Sensor for Weld Line Detection on Wall-Climbing Robot. Opt. Laser Technol.

2014, 60, 69–79. [CrossRef]
14. Matveev, A.S.; Ovchinnikov, K.S.; Savkin, A.V. A Method of Reactive 3D Navigation for a Tight Surface Scan by a Nonholonomic

Mobile Robot. Automatica 2017, 75, 119–126. [CrossRef]
15. Hover, F.S.; Eustice, R.M.; Kim, A.; Englot, B.; Johannsson, H.; Kaess, M.; Leonard, J.J. Advanced Perception, Navigation and

Planning for Autonomous in-Water Ship Hull Inspection. Int. J. Robot. Res. 2012, 31, 1445–1464. [CrossRef]
16. Englot, B.; Hover, F.S. Sampling-Based Coverage Path Planning for Inspection of Complex Structures. In Proceedings of the ICAPS

2012—22nd International Conference on Automated Planning and Scheduling, Sao Paulo, Brazil, 24–28 June 2012; pp. 29–37.
17. Teixeira, M.A.S.; Santos, H.B.; De Oliveira, A.S.; De Arruda, L.V.R.; Neves, F. Environment Identification and Path Planning for

Autonomous NDT Inspection of Spherical Storage Tanks. In Proceedings of the 2016 XIII Latin American Robotics Symposium
and IV Brazilian Robotics Symposium LARS/SBR 2016, Recife, Brazil, 8–12 October 2016; pp. 193–198. [CrossRef]

18. Teixeira, M.A.S.; Santos, H.B.; Dalmedico, N.; de Arruda, L.V.R.; Neves-Jr, F.; de Oliveira, A.S. Intelligent Environment Recognition
and Prediction for NDT Inspection through Autonomous Climbing Robot. J. Intell. Robot. Syst. Theory Appl. 2018, 92, 323–342.
[CrossRef]

19. Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
20. Liang, G.; Wang, S.; Tu, C.; Wang, X. Existing Weld Seam Recognition and Tracking Based on Sub Region Neutral Network. In

Proceedings of the M2VIP 2016—Proceedings of 23rd International Conference on Mechatronics and Machine Vision in Practice,
Nanjing, China, 28–30 November 2016.

21. Wang, S.; Wang, X. Existing Weld Seam Recognition Based on Sub-Region BP-Adaboost Algorithm. In Proceedings of the M2VIP
2016—Proceedings of 23rd International Conference on Mechatronics and Machine Vision in Practice, Nanjing, China, 28–30
November 2016.

22. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39. [CrossRef] [PubMed]

23. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

http://doi.org/10.1108/01439911111132067
http://doi.org/10.1017/S0263574717000601
http://doi.org/10.1016/j.robot.2012.06.003
http://doi.org/10.1016/j.robot.2018.03.008
http://doi.org/10.1109/TMECH.2014.2317190
http://doi.org/10.1002/rob.21911
http://doi.org/10.1016/j.robot.2013.09.002
http://doi.org/10.1109/LRA.2020.3015170
http://doi.org/10.5772/53780
http://doi.org/10.1016/j.jmapro.2017.04.002
http://doi.org/10.1007/s11760-017-1181-9
http://doi.org/10.1109/TIM.2013.2283139
http://doi.org/10.1016/j.optlastec.2014.01.003
http://doi.org/10.1016/j.automatica.2016.09.021
http://doi.org/10.1177/0278364912461059
http://doi.org/10.1109/LARS-SBR.2016.39
http://doi.org/10.1007/s10846-017-0764-6
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650


Drones 2022, 6, 216 18 of 18

24. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 39. [CrossRef] [PubMed]

25. Li, J.; Wang, X.S. Novel Omnidirectional Climbing Robot with Adjustable Magnetic Adsorption Mechanism. In Proceedings of the
2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 28–30 November
2016; pp. 1–5. [CrossRef]

26. Zheng, K.; Li, J.; Tu, C.L.; Wang, X.S. Two Opposite Sides Synchronous Tracking X-Ray Based Robotic System for Welding
Inspection. In Proceedings of the M2VIP 2016—Proceedings of 23rd International Conference on Mechatronics and Machine
Vision in Practice, Nanjing, China, 28–30 November 2016.

27. Tu, C.I.; Li, X.D.; Li, J.; Wang, X.S.; Sun, S.C. Bilateral Laser Vision Tracking Synchronous Inspection Robotic System. In Proceedings
of the 2017 Far East NDT New Technology & Application Forum (FENDT), Xi’an, China, 22–24 June 2017; pp. 207–215. [CrossRef]

28. Liang, G.A.; Zheng, K.; Tu, C.L.; Wang, S.S.; Wang, X.S. Existing Weld Seam Recognition Based on Image Processing. In
Proceedings of the 2017 IEEE Far East NDT New Technology and Application Forum, FENDT 2017, Xi’an, China, 22–24 June 2017.

29. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015.

30. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
21–26 July 2017.

31. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In
Proceedings of the Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, 21–26 July 2017.

http://doi.org/10.1109/TPAMI.2016.2572683
http://www.ncbi.nlm.nih.gov/pubmed/27244717
http://doi.org/10.1109/M2VIP.2016.7827289
http://doi.org/10.1109/FENDT.2017.8584573

	Introduction 
	Robotic System Implementation 
	Robot Mechanical Design 
	Robotic System Composition 

	Weld Seam Identification 
	Weld Seam Images 
	Weld Identification Workflow 
	Networks Model 
	Loss Function 
	Training 

	Weld Path Tracking 
	Path Selection Problem 
	Weld Path Fitting 
	Robot Kinematics 

	Experiments and Results 
	Weld Seam Identification Experiments 
	Weld Path Fitting Experiments 
	Robot Tracking Experiments 

	Conclusions 
	References

