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Abstract: With the development of UAV technology, the task allocation problem of multiple UAVs is
remarkable, but most of these existing heuristic methods are easy to fall into the problem of local
optimization. In view of this limitation, deep transfer reinforcement learning is applied to the task
allocation problem of multiple unmanned aerial vehicles, which provides a new idea about solving
this kind of problem. The deep migration reinforcement learning algorithm based on QMIX is
designed. The algorithm first compares the target task with the source task in the strategy base to
find the task with the highest similarity, and then migrates the network parameters obtained from
the source task after training, stored in the strategy base, so as to accelerate the convergence of the
QMIX algorithm. Simulation results show that the proposed algorithm is significantly better than the
traditional heuristic method of allocation in terms of efficiency and has the same running time.

Keywords: multiple UAVs; task assignment; deep reinforcement learning; transfer learning; neural
network

1. Introduction

With the development of UAV technology, UAV with autonomous ability has been
widely used in various fields because of its strong flexibility and high efficiency, especially
for obstacle avoidance [1], rescue [2], mapping [3] and other tasks. Due to the limitations of
a single UAV, nowadays, UAVs mostly use the cluster method to perform complex tasks,
which inevitably involves the task allocation problem. A good task allocation scheme can
improve the efficiency and quality of completing tasks, which has attracted the attention of
many scholars.

Most of the existing research at home and abroad uses heuristic methods to solve the
problem of UAV task assignment. Zhang Ruipeng et al. [4] used the hybrid particle swarm
algorithm to solve the problem of UAV task allocation. In order to jump out of the local op-
timum, they proposed a variable neighborhood search algorithm. By analyzing the hunting
process of gray wolf groups, Peng Yalan et al. [5] modeled the group interaction mechanism
and cooperative predation behavior of gray wolves, mapped the cooperative predation
behavior mechanism of gray wolves to the dynamic task allocation of UAV clusters, and
gave the dynamic task allocation process of UAV clusters. Yang Huizhen et al. [6] proposed
a new circular competition method based on the dynamic ant colony labor division model.
The method specifically solved the conflict problem caused by the dynamic change in the
position of the task with time, and well dealt with the dynamic task allocation problem
of heterogeneous multi AUV systems. Boyu Qin et al. [7] proposed a distributed group
cooperative dynamic task assignment method based on the extended contract network
protocol, which targeted and solved the dynamic assignment problem of UAV swarms
performing cooperative reconnaissance and attack tasks on multiple targets in complex
combat scenarios. Jiang Shiwen [8] used the swarm optimization algorithm based on
beetle antennae search (BSO) in the task allocation process. The defect that particle swarm
optimization algorithm is easy to “premature” is avoided by introducing the left and right
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whisker bidirectional optimization mechanism of longicorn search into the particle swarm
optimization algorithm.And the global optimal value is then locally optimized while en-
hancing the global optimization ability. However, the above algorithms that using heuristic
methods to solve the task allocation problem are inevitably faced with the problem of
falling into the local optimum. At this time, the deep reinforcement learning provides a
new idea.

Reinforcement learning (RL) is one of the important research fields of machine learn-
ing, which is suitable for solving complex sequential decision problems. It has achieved
remarkable results in the fields of robot control, scheduling optimization, and multi-agent
collaboration [9]. The basic idea is that the agent adopts a trial-and-error strategy to learn
the optimal strategy by interacting with the environment. Deep reinforcement learning
has a wide range of applications in UAV formation control [10], navigation [11], and
tracking [12].

However, the use of reinforcement learning to solve the task assignment problem
is still in its infancy, and there are few related studies. Tang Fengzhu et al. [13] used
the deep Q-network (DQN) algorithm based on the value function to solve the problem
of low task completion due to task completion time constraints in the scenario of the
random delivery of UAV tasks. Pengxing Zhu et al. [14] proposed an improved semi-
random Q-learning algorithm. This algorithm increases the probability of obtaining a
better task assignment scheme by changing the way Q-learning algorithm selects the next
action during random exploration. Cheng Ding et al. [15] proposed a new RL approach
to solve the task allocation problem of multi-AUV (autonomous underwater vehicle) in
ocean currents, and introduced APAA (automatic policy amendment algorithm) to make
AUVs understand how their behavior affects the final result. However, these studies
using reinforcement learning methods all face the problem of slow algorithm convergence.
Transfer reinforcement learning [16,17], as a paradigm of machine learning, can solve this
problem very well.

Transfer learning [18] is a machine learning method whose goal is to transfer knowl-
edge from one domain (source domain) to another domain (target domain) so that the target
domain can achieve better learning effects. Usually, the application scenario of transfer
learning is that the amount of data in the source domain is sufficient, while the amount of
data in the target domain is small. The feature that the transferred task requires less data
can be used to solve the problem of slow convergence of reinforcement learning.

In this paper, a deep transfer reinforcement learning algorithm based on QMIX is
proposed to solve the multi-UAV task assignment problem involving materials scheduling.
The use of the QMIX network cleverly avoids the problem of action space explosion and
also avoids the problem that heuristic methods easily fall into local optimal solutions.
The introduction of transfer learning solves the problem of long training time for deep
reinforcement learning and improves real-time performance. Finally, the effectiveness of
the algorithm is verified by simulation experiments.

2. Background
2.1. Reinforcement Learning

Reinforcement learning is mainly composed of agents, environments, states, actions,
and rewards. The agent selects and executes an action in a certain state, and the environment
gives rewards for this action and updates the state. The agent learns according to the reward
given by the environment, and its purpose is to maximize the cumulative reward. The
reinforcement learning model diagram is shown in Figure 1.
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Figure 1. Reinforcement learning model diagram.

Generally, reinforcement learning problems can be described by a Markov decision
process (MDP). MDP is defined as a quintuple < S, A, Psa, Rsa, γ >, where S represents the
state space, A represents the action space, Psa represents the probability of taking action a
and transitioning to state S′ in a certain state S, Rsa represents the reward value obtained
by taking action a in state S, and γ represents the discount factor, which is the degree of
attenuation of future returns, where s, s′ ∈ S, a ∈ A. When psa, Rsa, γ are all known,
the model-based dynamic programming method can be used to solve it, otherwise, the
model-free reinforcement learning method can be used to solve it. Dynamic programming
is a method that divides a complex problem into sub-problems, solves the sub-problems,
and finally combines the solutions of the sub-problems to solve the original problem.

Reinforcement learning training algorithms can be divided into two categories: value-
based function and strategy-based iteration. The algorithm based on value function needs
to update the long-term value V(s) of each state s, and its update function is

Vi+1(s)← max
a ∑

s′
(Ts, a, s′)[R(s, a, s′ + γVi(s′)] (1)

The algorithm based on the strategy iteration needs to be divided into two steps. First,
a policy is assumed, and the iteration makes the policy cost function converge

Vk
i+1(s)←∑

s′
T(s, πk(s), s′)[R(s, πk(s), s′) + γVk

i (s
′)] (2)

Then we optimize according to all possible actions for each state,

πk+1(s) = arg max
a ∑

s′
T(s, a, s′)[R(s, a, s′) + γVπk (s′)] (3)

Finally, the optimal strategy for each state is obtained.

2.2. QMIX Algorithm

QMIX [19] is one of the classic algorithms in multi-agent reinforcement learning. The
essential difference between multi-agent and single-agent settings is that each agent in the
multi-agent environment will interact with the environment, causing the environment to
change. However, usually the reward value we obtain, r, is the reward obtained by all the
agents acting together, so it is impossible to distinguish the individual reward value of the
action taken by a single agent.
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The most popular solution to this problem is centralized training with decentralized
execution. Centralized training is used during the training process, and the global state can
be used to ensure the convergence of the algorithm. In the execution process, each agent
can only obtain its own current observation, thus distributed execution.

QMIX uses a hybrid network to combine the local value functions of single-agent, and
adds global state information assistance in the training and learning process to improve the
performance of the algorithm. The structure can be divided into three parts:

1. Agent network: each agent has to learn an independent value function Qa(τa, ua
t ).

The network structure of the agent adopts the DRQN network structure.
2. Hybrid network: This part adopts a fully connected network structure, with Qa(τa, ua

t )
of each agent as input, and takes the joint action value function Qtot(τ, u) as the output.

3. Hyperparameter network: This part is mainly responsible for generating the weights
of the hybrid network.

The cost function of QMIX is

L(θ) =
b

∑
i=1

[
ytot

i −Qtot(τ, a, s; θ)
]

(4)

where b represents the number of samples sampled from empirical memory,

ytot = r + γ max Q
(
τ′, a′, s′; θ

)
(5)

where Q
(
τ′, a′, s′; θ

)
represents the objective network function.

2.3. Transfer Learning

The purpose of transfer learning is to use the existing knowledge to learn new knowl-
edge. Its core problem is to find the similarities between the source domain and the target
domain, and transfer through these similarities. There are three key points in transfer
learning, that is, what to transfer, how to transfer and when to transfer.

Algorithms of transfer learning can be mainly divided into several categories:

1. Instance-based transfer learning: Find data in the source domain that are similar to
the target domain, adjust the data, and use them for training in the target domain.

2. Feature-based transfer learning method: The source domain and the target domain
have some similar features. After feature transformation, the source domain and the
target domain have the same data distribution.

3. Model-based transfer learning method: The target domain and the source domain
share the parameters of the model, that is, the model trained with a large amount of
data in the source domain is directly applied to the target domain.

4. Relation-based transfer learning method: When the target domain is similar to the
source domain, their internal connections are also similar. This method transfers the
relationship between data in the source domain to the target domain.

3. Problem Description

The research background of this paper is that natural disasters occur frequently in my
country, and the rescue of a large number of trapped people after the disaster is the focus
of the current emergency work. The use of drone swarms for the transportation of relief
materials is an important research direction. The focus of this paper is the distribution
scheme of heterogeneous UAVs to transport the materials carried by them to the rescue area.

3.1. Simulation Environment Modeling

Multiple UAVs form the UAV swarm to be allocated

UAV = {uav1, uav2, . . . , uavM} (6)
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where M is the number of drones in the cluster. In order to digitize the indicators of the
drone, the parameters of each drone are represented by a collection

{xs, ys, xc, yc, speed, voyage, dis, ret, loadlist} (7)

where
xs: the horizontal axis coordinate of the starting point of the drone;
ys: the vertical axis coordinate of the starting point of the drone;
xc: the current horizontal axis coordinate of the drone;
yc: the current vertical axis coordinates of the drone;
speed: the average speed of the drone;
voyage: The maximum range that the drone can fly in a single flight without supple-

mentation;
dis: The current flight range of the drone;
ret: Whether the drone is returning, the returning drone will no longer be assigned

tasks, the initial value is 0;
loadlist: The list of materials carried by the drone, which is an array.
Rescue areas with different urgency and needs form a task set

Target = {target1, target2, . . . , targettN} (8)

where N is the number of rescue areas. The information of each rescue area is represented
by a collection

{x, y, level, loadlist} (9)

where
x: the horizontal axis coordinate of the rescue area;
y: the vertical axis coordinate of the rescue area;
level: The emergency level of the rescue area;
loadlist: The list of materials needed by the rescue area, which is an array.
When the environment is initialized, all the information about the drone swarm and

rescue areas needs to be provided. After initialization, the environment will record the
initialization information to facilitate the reset of task assignment. The result of the task
assignment is entered in the form of [x1, x2, . . . , xM], where xi ∈ [0, N]. xi ∈ [0, N − 1]
means that the drone i goes to the rescue area xi + 1 for material transportation. If the
drone can meet the needs of the rescue area, we unload the amount of materials needed
in the rescue area from the drone. Otherwise, unload all the materials on the drone to the
rescue area, and modify the location of the drone, the amount of materials carried by the
drone, the distance flown by the drone, and the amount of materials needed in the rescue
area. When xi = N, it means that the drone completes the flight mission and returns, and
the parameter ret = 1 of the drone needs to be set.

3.2. MDP Model of Task Allocation

Using model-free reinforcement learning to solve the multi-UAV task assignment
problem requires modeling the problem as a Markov decision process. Modeling requires
the definition of state space, observation space, action space, and reward function.

3.2.1. State Space

According to the description of the simulation environment above, it can be found that
only the drone cluster and the rescue areas are involved in this environment, so the state
space only needs to contain all the information of the drone cluster and the rescue areas. For
the sake of simplicity, we flatten the UAV information and the rescue area information. The
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state space data form is shown in (10), where the expression of UAVi is (11), and Targeti
expression is Formula (12).

[UAV1, UAV2, · · · , UAVM, Target1, · · · , TargetN ] (10)

[uavxs
i , uavys

i , uavxc
i , uavyc

i , uavspeed
i ,

uavvoyage
i , uavdis

i , uavret
i , uavloadlist1

i ,

uavloadlist2
i , . . . , uavloadlisttot

i ]
(11)

[targetx
i , targety

i , targetlevel
i ,

targetloadlist1
i , targetloadlist2

i , . . . , targetloadlisttot
i ] (12)

3.2.2. Observation Space

Since the problem involved in this paper is the multi-UAVs task assignment, involving
multiple agents, the distributed reinforcement learning method is used to solve it. The
observation space of each UAV is related to itself but not related to other UAVs. The
observation space is not the same as the state space, so it needs to be redefined. The
observation space of the i-th UAV is shown in (13).

[UAVi, Target1, Target2, · · · , TargetN ] (13)

3.2.3. Action Space

The action space of each drone is related to the current state of the drone. When
UAVi · ret = 0, that is, when the drone is not in the returning state, the action space of
the drone is [0, 1, · · · , j, · · ·N − 1], where action j represents the UAV to perform the task
targeti+1. When UAVi · ret = 1, the drone is in the returning state, and the action space
of the drone is [N], where targetN is a virtual target point, which means that the drone
continues to return to home.

3.2.4. Reward Function

The reward function is very important for reinforcement learning because the agent
needs to learn the action through the reward value. It can be said that the quality of
the reward function determines the convergence of the algorithm and the convergence
result. The goal of the task allocation problem solved in this paper is to complete the task
allocation under the condition that the total voyage of the UAV is as small as possible.
At the same time, priority shall be given to meeting the material needs of the rescue
areas with a high degree of urgency. Experiments show that the reward value calculation
formula shown in (14) has a good effect, where o f f erResourceeuavi means that uavi can
satisfy targetj the number of resources required, needResoucetargetj indicates the number of
resources required by targetj, targettj represents the drone selected by uavi to perform the

task, and
M
∑

i=0
dis(uavi, targetj) represents the Euclidean distance between the drone and the

target point.

Reward =
M

∑
i=0

o f f erResourceuavi

needResoucetargetj

· targetj · level−

M

∑
i=0

dis(uavi, targetj)

(14)
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4. Task Assignment Algorithm of Deep Transfer Reinforcement Learning Algorithm
Based on QMIX
4.1. DQN-Based Task Assignment Method

The multi-UAV dynamic task assignment problem is essentially a NP-hard problem,
and it is easy to fall into the local optimal solution when traditional heuristic methods are
used to solve this problem. Therefore, the improvement of the algorithm focuses on how
to jump out of the local optimum to find the global optimum, and the emergence of deep
reinforcement learning provides a new solution. When the UAV makes a decision, it only
depends on the state at the current moment, so the dynamic Markov decision process can
be used to solve such problems. At present, most of the related research on the UAV task
assignment based on reinforcement learning uses the DQN algorithm [20] based on the
value function to solve it.

Since DQN is a single-agent reinforcement learning algorithm, in the implementation
process, all UAVs need to be treated as a single-agent. The current state space S is the
current data of all drones and the current data of all tasks, and the action space A is the
combination of actions of all drones. The update algorithm of its Q-value function is

Q(s, a)← Q(s, a) + µ[R + γmax
a

Q(s′, a)−Q(s, a)] (15)

4.2. Task Allocation Algorithm Based on QMIX

For the task assignment scenario mentioned in this article, if the DQN algorithm is
used to solve it, its action space is MN (M is the number of drones, N is the number of
target points); such an action space is obviously unacceptable when M and N are large.
To solve this problem, this paper chooses the QMIX algorithm. Like all reinforcement
learning methods, the agent in the QMIX algorithm interacts with the environment through
a trial-and-error mechanism, optimizes by maximizing cumulative rewards, and finally
achieves the optimal strategy. Different from the centralized strategy of DQN algorithm,
the QMIX algorithm adopts the structure of centralized training and distributed execution,
and its network is divided into the mixing network and agent network. Each UAV has its
own agent network, the input of the network is the observation space of the UAV, and the
output is the Q value function of the UAV. The input of the mixing network includes the
state space, and the output is the Q-value function of the joint action. The upper limit of
the action space of each drone is N, and the action space decreases from MN to N, which
solves the problem of action space explosion. The specific implementation steps are in
Algorithm 1.

4.3. Deep Transfer Reinforcement Learning Algorithm Based on QMIX

All deep reinforcement learning algorithms have a common problem: poor real-time
performance. Faced with the same allocation problem, the time required by the QMIX
method is 10 times or even 100 times that of the genetic algorithm. In the face of such a
time difference, although the allocation result obtained by the QMIX algorithm is obviously
better than the genetic algorithm, its availability is also very low. In response to this problem,
this paper introduces transfer learning to solve it. First, a representative set of source tasks
that can cover most of the assigned tasks is learned, and the network parameters of its
mixing network and agent network are stored in the policy library. Whenever a new task
needs to be assigned, the similarity between the task and the task in the policy library is
calculated, and the task with the highest similarity is found to transfer network parameters.
Combining the transfer learning with the QMIX algorithm, the algorithm proposed in this
paper is the deep transfer reinforcement learning algorithm based on QMIX. The algorithm
flowchart of the algorithm is shown in Figure 2, and the specific implementation steps are
in Algorithm 2.
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Algorithm 1 Task allocation algorithm based on QMIX.
Input: UAV swarm information, target point information
Output: Agent Network and Mixing Network network parameters
1: Initialize network parameters, data storage unit D, capacity M, total number of iteration

rounds T, target network parameter update frequency p
2: while i ≤ T do
3: Simulation environment, UAV cluster information, target point information restora-

tion
4: while step ≤ steplimit do
5: Obtain the current mission state S, the observed value O of each UAV and the

feasible action A of each UAV from the environment
6: Each drone obtains the Q value of each action taken in the current state through

eval netwrok
7: Choose an action based on the resulting Q value
8: Get reward R from the environment based on the actions of all drones in the

current state
9: Store S,Snext, the observed value of each UAV O, the action taken by each UAV

A, the feasible action of each UAV U, the reward R, and whether the assigned task is
completed terminated, into the data storage unit D

10: if len(D) ≥ M then
11: Randomly sample some data from D
12: Update the network parameters according to the loss function

L(θ) =
b

∑
i=1

[
ytot

i −Qtot(τ, a, s; θ)
]

13: if i mod p == 0 then
14: Update the parameters of the target network

Figure 2. Flow chart of QMIX based deep transfer reinforcement learning algorithm.
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Algorithm 2 Deep transfer reinforcement learning algorithm based on QMIX.
Input: UAV swarm information, target point information, strategy library and its corre-

sponding source task information
Output: Task assignment results
1: while i ≤ N do
2: Simulation environment, UAV cluster information, target point information restora-

tion
3: Calculate the sum total of the squared differences between the input information

and the information corresponding to the ith source task
4: if total ≤ min then
5: min = total
6: flag = i
7: Copy the network parameters of the i source task to the network of the new task
8: Execute Algorithm 1, but do not need to initialize the network parameters

5. Algorithm Verification and Analysis
5.1. Experimental Setup

In order to verify the effectiveness of this algorithm, 5 UAVs and 10 target points were
randomly generated this time, and allocated for 3 kinds of resources. The data structures of
UAVs and target points are shown in Figures 3 and 4. This experiment is coded in Python,
and the neural network part of the QMIX algorithm is implemented using the Pytorch deep
learning framework. The experimental platform is a computer with Apple M1 pro chip
and 16 GB memory.

Figure 3. UAV data structure.

5.2. Experimental Process
5.2.1. Task Allocation Based on QMIX Algorithm

The parameter settings of the algorithm are shown in Table 1, and the cumulative
reward value of the QMIX algorithm is shown in Figure 5. It can be seen from the figure
that the cumulative reward value obtained by this algorithm increased rapidly in the
first 7700 cycles, and then converged to 2.443. Through analysis, it can be seen that the
fluctuations after 5000 cycles are affected by random actions with small probability.



Drones 2022, 6, 215 10 of 15

Figure 4. Target point data structure.

Table 1. QMIX algorithm parameter list.

Name Value

seed 123
n_epochs 50,000

evaluate_per_epoch 100
batch_size 32
buffer_size 100

update_target_params 200
drqn_hidden_dim 64
qmix_hidden_dim 32

Figure 5. Cumulative reward value of QMIX algorithm.

5.2.2. Task Assignment Based on Genetic Algorithm

The cumulative reward value obtained by the heuristic genetic algorithm for the
same set of data is shown in Figure 6, and its parameter settings are shown in Table 2.
Observing the image, it can be found that in about the first 20 cycles, the cumulative reward
value obtained by the algorithm shows an extremely rapid upward trend. In the 20th to
70th cycles, the cumulative reward obtained by the algorithm shows a certain platform
period, but eventually rises. It can be judged that it falls into the local optimum. Due
to the existence of random actions, it successfully jumps out of the local optimum and
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gradually moves toward global optimization. From the 70th epoch, the cumulative reward
system is no longer increased, and finally converges to 1.589, significantly lower than the
qmix algorithm.

Table 2. Genetic algorithm parameter list.

Name Value

seed 123
num_total 30
iteration 200
max_step 5

Figure 6. Cumulative reward value of genetic algorithm.

5.2.3. Deep Transfer Reinforcement Learning Algorithm Based on QMIX

From the above two experiments, we can find that although the cumulative reward
value of the genetic algorithm is much lower than that of the QMIX algorithm, the itera-
tion period required for the QMIX algorithm to converge is 250 times that of the genetic
algorithm. Therefore, it is necessary to introduce transfer learning at this time, and find the
source task with the smallest similarity difference with the secondary task in the strategy
library to perform parameter transfer. After the network parameters are migrated, the com-
parison of the cumulative reward value between this algorithm and the genetic algorithm
is shown in Figure 7, and the parameter settings of this algorithm are shown in Table 3.
Observing the image, it can be found that the algorithm drops sharply in the first 20 cycles.
After analysis, it is because the new task is different from the source task. Then, it shakes
sharply in 20–160 cycles, and finally converges at 2.828. The result is significantly better
than the genetic algorithm.

Table 3. Algorithm parameter setting in this paper.

Name Value

seed 123
n_epochs 200

evaluate_per_epoch 1
batch_size 32
buffer_size 100

update_target_params 200
drqn_hidden_dim 64
qmix_hidden_dim 32
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Figure 7. Comparison chart of cumulative reward value between genetic algorithm and this algorithm.

Table 4 shows the comparison of the running time of the genetic algorithm, the
algorithm based on QMIX, and the algorithm proposed in this paper. It can be found
that the optimal value converged by the algorithm proposed in this paper is obviously
better than the genetic algorithm, and its running time is basically the same as that of the
genetic algorithm.

Table 4. Algorithm runtime comparison.

Algorithm Running Time/s

Genetic algorithm 6
QMIX algorithm 120

Algorithm in this paper 8

5.2.4. Universal Verification

The experiment given above is the allocation effect when the number of UAVs is less
than the number of target points. Now experiments are carried out for the number of
UAVs equal to the number of target points, and the number of UAVs is greater than the
number of target points to verify the universality of the algorithm given in this paper. In
this paper, the algorithm is tested on 5, 10, and 20 UAVs and 10, 20, and 30 target points.
The experimental results show that the cumulative reward value of the algorithm proposed
in this paper is obviously better than that of genetic algorithm, and the time is equivalent
to that of genetic algorithm.

Figures 8 and 9 are the task assignment results of 10 UAVs and 10 target points. It can
be seen that the optimal value of the final convergence of the algorithm proposed in this
paper is obviously better than that of the genetic algorithm.
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Figure 8. Cumulative reward value of qmix algorithm (M = N).

Figure 9. Comparison chart of cumulative reward value between genetic algorithm and this algorithm
(M = N).

Figures 10 and 11 show the task assignment results of 10 UAVs and 5 target points. It
can be seen that the optimal value of the final convergence of the algorithm proposed in
this paper is still significantly better than that of the genetic algorithm.

Through the experimental verification in this section, the algorithm proposed in this
paper is effective when the number of drones is less than the number of target points, the
number of drones is equal to the number of target points, and the number of drones is
greater than the number of target points.
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Figure 10. Cumulative reward value of qmix algorithm (M > N).

Figure 11. Comparison chart of cumulative reward value between genetic algorithm and this algo-
rithm (M > N).

6. Conclusions

Aiming at the task assignment problem of multiple UAVs, this paper proposes a task
assignment algorithm based on deep transfer reinforcement learning based on QMIX. The
algorithm helps to combine the experience of the source task to the new task and accelerate
the convergence speed by migrating the network parameters learned by QMIX in the
source task. The experimental results show that the algorithm proposed in this paper is
significantly better than the traditional heuristic method in allocation efficiency, and the
running time is basically the same. The algorithm provides a new idea for using artificial
intelligence methods to solve the task assignment problem.

The future research work is mainly divided into the following aspects: First, improve
the similarity calculation method between the new task and the source task group. The
existing similarity calculation method is too straightforward, which may lead to the source
tasks with high similarity not being identified. Second, consider whether there is a better
migration method. The existing migration mode is network parameter migration, which
requires the number of UAVs and target points of the migrated task to be consistent with
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that of the new task. However, QMIX is a distributed decision algorithm, and this migration
method does not make good use of its advantages. Third, the current algorithm mainly
considers the range constraint, but time is also a very important factor in practical scenarios,
which needs to be taken into account in subsequent research.
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