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Abstract: The deployment performance of the unfolded wing determines whether the winged missiles
can fly normally after being launched, infecting the attack performance of the winged missiles. The
paper proposes a new deployment mechanism with clearance eliminator. Based on the slider-crank
principle, the proposed deployment mechanism achieves fast and low-impact deployment of the
wings. The proposed clearance eliminator with shape memory alloy (SMA) effectively eliminates the
clearance of the sliding pair and improves the support stiffness and stability of the deployed wing.
The collision characteristics and the clearance elimination are studied for the deployment mechanism.
The influence of the collision force on the motion state of the wing during the deployment is analyzed.
The static stiffness of the wing under the clearance state and the deformation is analyzed. The
dynamic stiffness under the catapult clearance elimination state is modeled based on the fractal
geometry and contact stress theory. The relationship between the locking force and the support
stiffness is revealed. The kinetic simulation is used to analyze the motion response during the action
of the deployment mechanism. Modal analysis, harmonic response analysis, and random vibration
analysis were conducted for the whole wings. A prototype was developed to verify the ejection
performance of the wing according to the input load characteristics. The dynamic stiffness of the
unfolded wings is tested by the fundamental frequency experiments to verify the performance of
the clearance elimination assembly. The experimental results show that the designed deployment
mechanism with clearance compensation achieves fast ejection and high stiffness retention of the
missile wing.

Keywords: deloyment mechanism design; clearance eliminator with shape memory alloy; characteristic
analysisp; stiffness enhancement

1. Introduction

Winged missiles have the advantages of good maneuverability, easy control, and both
the active and passive segments of the flight trajectory can be controlled. This form has
been applied to airborne missiles, anti-ship missiles, anti-tank missiles, and air defense
missiles [1–5]. As winged missiles increase in lethality, strike accuracy, and battlefield de-
terrence, the number of missiles carried and their launch efficiency are becoming important
indicators of the attack capability of modern weapons such as warplanes and ships. If the
space occupied by individual missiles can be reduced, the amount of ammunition carried
will be significantly increased, and the carrying capacity of the aircraft will be greatly
enhanced. Morphing wings can realize flexible maneuvering in different flight environ-
ments and maintain high flight efficiency [6–11]. The aircraft wing can be divided into the
in-plane deformation of the wing [12,13], the out-plane deformation of the wing [14–19],
and the wing deformation [20–23]. Winged missiles generally have foldable or retractable
wings [24–28], so that they can be stowed in the launcher in a small footprint and their
wings can open automatically when the missile is launched. In order to reduce the lateral
dimensions of the missile; facilitate storage, transportation and launch; save storage and
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transportation space; improve the storage and transportation capacity; and improve the
mobility and operational capability of the weapon system, the wings or part of the wings
of the missile are often contracted to reduce the wingspan [29–33]. When the missile flies
away from the launch device, the wings automatically unfold to ensure the normal flight of
the missile.

The missile wings with the proposed deployment mechanisms are completely folded
inside the missile body in the process of storage and transportation, which can effectively
increase the loading rate. After the missile flies away from the launching device, the
deployment mechanisms push out the wings synchronously and quickly and achieve
position locking and stiffness maintenance. It can significantly improve the contraction rate,
deployment efficiency, and wing surface stiffness of the missile wing and make the wing
provide better aerodynamic force for the missile body. In order to improve the loading
capacity and launch efficiency of the missile launch platform, the wing is usually designed
to be retractable, and the existing retractable wings have two forms: rotational deployment
and direct-acting deployment [34–38]. According to the rotational direction of the missile
wing, the main airfoil is rotated and retracted horizontally and vertically. The rotational
deployment radius is large, the aerodynamics of the airfoil during the deployment process
is unstable, and the locking stiffness is low after the deployment of the wing. The direct-
acting wing refers to the wing moving in a straight line during deployment. The airfoil
aerodynamic force is more stable during the unfolding process than that of the rotational
deployment, the airfoil is completely stowed inside the missile body when it is folded, and
the stowage ratio is large. The direct-acting wing deployment mechanism requires the
wing to be fully stowed inside the body in a straight line during retraction, which requires
a higher stowage ratio, but the direct-acting wing deployment mechanism has obvious
advantages in reducing the lateral dimensions of the missile and expanding the capacity
of the magazine. The direct-acting wing deployment mechanism can hide all the wings
inside the body of the missile when closing, which is effective in reducing the lateral size
of the missile. The use of the telescopic rudder surface is more flexible, and the wings
can be controlled before and after deployment. The rudder deflection can be preset or
deflected according to the command when the aircraft and missile are separated to control
the separation attitude of the rudder, which is more conducive to separation safety.

The deployment performance of the unfolded wing is related to whether the winged
missile can fly normally after being launched, which restricts the attack performance of the
winged missile. After the wing deployment process, there are inevitably clearances between
the wing and the kinematic pair of the missile body, and the influence of the kinematic pair
clearance on the wing is often ignored in the traditional design. To improve the dynamic
stiffness and stability of the wing, measures should be taken to eliminate the kinematic
clearance. Therefore, in order to make the wings of the missile synchronized and to achieve
fast deployment as well as reliable operation, the design of the transmission, wing locking,
clearance elimination, and stiffness retention mechanisms of the wing deployment scheme
are particularly important.

The main contributions and innovations of this paper lie in two aspects: 1. A new
deployment mechanism is designed based on the slider-crank principle to achieve the
fast and low-impact ejection of the missile wings. 2. A clearance eliminator with shape
memory alloy (SMA) is designed for the deployed missile wing to achieve high stiffness
and stability. The sections of the paper are organized as the following: Section 2 presents a
new deployment mechanism of missile wings. The configuration and operating principle
of the drive actuator and the clearance eliminator are introduced. Section 3 analyzes the
effect of ejection collision characteristics on the motion of the wings and the stiffness under
the clearance locking and unlocking. Section 4 analyzes the dynamic characteristics of the
wing and the modalities of the whole mechanism. In Section 5, the ejection performance
and the effect of eliminating clearance are investigated through prototype experiments.
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2. Structure and Principle of the Missile Wings
2.1. Deployment Mechanism

In order to achieve a large stowage ratio, fast actuation, and high stiffness retention,
we propose a new deployment mechanism with clearance eliminator for missile wings. The
designed deployment mechanism mainly consists of the drive actuator and the clearance
eliminator, as shown in Figure 1. The principle of wing ejection and locking is shown
in Figure 2. The operating principle of the deployment mechanism includes three steps:
1. With the command of the unlocking issued, the upper and bottom locking devices realize
the unlocking action of the wing through the compression springs. 2. Driven by the torsion
spring, the crank slider mechanism of the drive actuator pushes out the wing along a
straight line. 3. With the wing fully extended, the clearance eliminator eliminates the
clearance of the kinematic pair to improve the wing stiffness.
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2.2. Drive Actuator

The drive actuator consists of a drive element, linkage mechanism, missile wings, and
pulley block, as shown in Figure 3. The torsion spring, as the drive source, is mounted
on the input shaft to save design space. One arm of force is supported on the base, and
the other arm of force acts on linkage and pushes the missile wing out by linkage b. The
ejection assembly of the deployment mechanism is based on the slider-crank principle, as
shown in Figure 4. When the wing is pushed out, it is subjected to lateral load, resulting in
friction resistance that affects the pushing out of the wing. In order to change the sliding
friction between the wing and the base into rolling friction, an axial pulley and a lateral
pulley are embedded in the root of the wing, and a pair of ball bearings with flanges are
installed inside the pulley to enhance the smoothness and stability of the movement and to
limit the pulley axially at the same time.
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2.3. Clearance Eliminator

There are clearances between the kinematic pairs of the wing and the missile body
to enable the smooth ejection of the wing. In order to improve the dynamic stiffness and
stability of the wing, measures should be taken to eliminate the clearance of the kinematic
pair. A Clearance eliminator with SMA is proposed to drive a wedge to eliminate the
clearance of the kinematic pair between the wing and the base, to generate a locking
force to improve the support stiffness of the wing and the base joint, and to improve the
resonance frequency and stability of the wing.

The configuration of the clearance eliminator is shown in Figure 5. The end cap and
the base are solidly connected to the missile body, and the shape memory alloy driver
is hinged to the base at one end and the wedge at the other end. In order to speed up
the deformation response of the shape memory alloy material, the memory alloy rod is
heated by directly energizing it. The design of the SMA drive requires consideration of
insulation and thermal insulation. As shown in Figure 6, conductive sheets are embedded
in both ends of the memory alloy rod and heated by electricity. Heat-preserved sleeve
made of insulating material is set on the outside of the memory alloy rod to play the role of
insulation and heat preservation. A holding sleeve made of alloy steel is set on the outside
of the heat-preserved sleeve to enhance the axial stiffness of the alloy rod and prevent
destabilization under pressure. The working principle of the clearance eliminator is shown
in Figure 7. The wedge is driven by the shape memory alloy to contact the base and the
missile wing and generate mutual force. A positive pressure Fy on the contact surface of
the wedge and the wing produces an axial locking effect on the wing, and a frictional force
Fx on the contact surface of the wedge and the wing produces a lateral locking effect on
the wing. By applying the locking force to the wing, the support stiffness of the root of the
wing is improved and the stability of the wing is enhanced.



Drones 2022, 6, 211 5 of 21Drones 2022, 6, x FOR PEER REVIEW 5 of 22 
 

 
Figure 5. Configuration of clearance eliminator. 

 
Figure 6. Configuration of SMA driver. 

 
Figure 7. Working principle of the clearance eliminator. 

3. Missile Wing Deployment and Clearance Elimination Analysis 
3.1. Collision Characterization 

In the movement of the wing, the joint at the hinge will cause vibration and collision 
force due to the existence of the clearance, so that the displacement and speed of the wing 
jitter. During the collision, the contact point can move relative to the collision body, and 
the collision force passes through the action point. The collision force and the defor-
mation displacement of the collision body satisfy the theory of elasticity, the collision 
force equations are as follows: 

( )n
n k dF F F K Cδ δ δ= + = +


 (1) 

SMAF
NF

yF

xF
yF

x
y

yF

Contact surface

Contact surface

cF x

ϕ

Wedge

Base

θ

Wedge

SMA driver

Missile wing

Base

End cap

Clearance of sliding pair

In x direction In y direction

Figure 5. Configuration of clearance eliminator.

Drones 2022, 6, x FOR PEER REVIEW 5 of 22 
 

 
Figure 5. Configuration of clearance eliminator. 

 
Figure 6. Configuration of SMA driver. 

 
Figure 7. Working principle of the clearance eliminator. 

3. Missile Wing Deployment and Clearance Elimination Analysis 
3.1. Collision Characterization 

In the movement of the wing, the joint at the hinge will cause vibration and collision 
force due to the existence of the clearance, so that the displacement and speed of the wing 
jitter. During the collision, the contact point can move relative to the collision body, and 
the collision force passes through the action point. The collision force and the defor-
mation displacement of the collision body satisfy the theory of elasticity, the collision 
force equations are as follows: 

( )n
n k dF F F K Cδ δ δ= + = +


 (1) 

SMAF
NF

yF

xF
yF

x
y

yF

Contact surface

Contact surface

cF x

ϕ

Wedge

Base

θ

Wedge

SMA driver

Missile wing

Base

End cap

Clearance of sliding pair

In x direction In y direction

Figure 6. Configuration of SMA driver.

Drones 2022, 6, x FOR PEER REVIEW 5 of 22 
 

 
Figure 5. Configuration of clearance eliminator. 

 
Figure 6. Configuration of SMA driver. 

 
Figure 7. Working principle of the clearance eliminator. 

3. Missile Wing Deployment and Clearance Elimination Analysis 
3.1. Collision Characterization 

In the movement of the wing, the joint at the hinge will cause vibration and collision 
force due to the existence of the clearance, so that the displacement and speed of the wing 
jitter. During the collision, the contact point can move relative to the collision body, and 
the collision force passes through the action point. The collision force and the defor-
mation displacement of the collision body satisfy the theory of elasticity, the collision 
force equations are as follows: 

( )n
n k dF F F K Cδ δ δ= + = +


 (1) 

SMAF
NF

yF

xF
yF

x
y

yF

Contact surface

Contact surface

cF x

ϕ

Wedge

Base

θ

Wedge

SMA driver

Missile wing

Base

End cap

Clearance of sliding pair

In x direction In y direction

Figure 7. Working principle of the clearance eliminator.

3. Missile Wing Deployment and Clearance Elimination Analysis
3.1. Collision Characterization

In the movement of the wing, the joint at the hinge will cause vibration and collision
force due to the existence of the clearance, so that the displacement and speed of the wing
jitter. During the collision, the contact point can move relative to the collision body, and the
collision force passes through the action point. The collision force and the deformation dis-
placement of the collision body satisfy the theory of elasticity, the collision force equations
are as follows:

Fn = Fk + Fd = Kδn + C(δ)
·
δ (1)
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C(δ) =
3K(1− e2)

4
·

δ−
(
·

δ)n (2)

where Fn is the normal contact force, Fk is the equivalent spring force, Fd is the equivalent
damping force, K is the equivalent joint stiffness coefficient, C is the damping coefficient,

δ is the normal puncture depth at the contact point,
·
δ is the normal relative velocity at the

contact point, n is an exponent, 1.5 for metallic contacts, e is the collision recovery factor,

and
·

δ− is the relative velocity before collision.
The tangential friction at the clearance is expressed using the Coulomb friction model

in ADAMS as:
Ft = −µdFnsgn(v) (v 6= 0) (3)

where sgn(v) is the sign function, v is the relative sliding velocity at the contact point, and
µd is the friction factor.

The elastic force and friction are both simulated by the step function and friction
function in Adams to analyze the collision at the hinge of the deployment mechanism. The
missile wing and the deployment mechanism are simplified as shown in Figure 8. The
collision force at the clearance and the effect of the clearance on the motion of the wing
are calculated.
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Figure 8. Simplified model of the wing deployment mechanism.

The stiffness coefficient K was taken as 1.2 × 105 N/m, the damping coefficient C was
taken as 120 N·s/m, and the static and dynamic friction coefficients were set as 0.3 and
0.25, respectively. The simulations were carried out with the clearance of 0.1 mm, 0.3 mm,
and 0.5 mm, respectively. The variation in the contact force in the driving joint and the
wing joint with time is shown in Figures 9 and 10. The displacement and velocity of the
wing with time are shown in Figures 11 and 12.
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Figure 10. Collision force at the wing joint.
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Figure 11. The effect of clearance on the displacement of the wing.
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Figure 12. The effect of clearance on the velocity of the wing.

From the calculation results, it can be seen that when the clearance is 0.3 mm, the wing
deployment time is the shortest. The clearance collision force is smaller, and the collision
frequency is lower. The clearance has less influence on the fluctuation of the movement
speed of the wing. This analysis result plays an important guiding role in the design of the
subsequent joint manufacturing accuracy and the control of the dimensional chain.

3.2. Static Stiffness Characteristics with Clearance

In order to ensure that the wing is pushed out smoothly, the clearance δ between the
wing and the kinematic pair is predetermined, as shown in Figure 13. After the wing is
pushed out, due to the existence of the clearance, the wing is in a free state in a certain space
and deflects freely under the surface load, and after deflecting a certain displacement, it
bends under a certain component of the uniform load. As a result, the static deformation of
the wing in the clearance state can be divided into two parts, i.e., the deformation deflection
v1 turning angle β1 during the free deflection and the bending deformation v2 and β2
after one end is restrained; then, the static deformation of the wing under the action of the
uniform load in the clearance state is the superposition of the two processes of deformation.
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Figure 13. Static stiffness analysis of the missile wing.

From the geometric relationship, we obtain that:

v1 = δ (4)

β1 = θ − α (5)

θ = arcsin(
2δ + d√
d2 + w2

) α = arctan(
d
w
) (6)

β1 = arcsin(
2δ√

d2 + w2
)− arctan(

d
w
) (7)

Since the wing is subjected to a uniform load perpendicular to the wing surface as
shown in Figure 14, only the transverse bending of the wing is considered, and a unit of
arbitrary width ∆b in the face is selected for analysis, which can be equated to a cantilever
beam with length L, width ∆b, and height h. The equivalent distributed load on it is F′.
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Figure 14. Schematic of the wing subjected to normal load.

From the deflection characteristics of the cantilever beam, it follows that:

v =
F′L4

8EI
β =

F′L3

6EI
I =

∆bh3

12
F′ = F

∆b
b

Substituting equations F′ and I into the deflection v and angle of rotation β formulas, it
is found that the deflection characteristics can be solved using the cantilever beam formula
for any cross-sectional width under the action of a normal uniform load perpendicular
to the surface, so the missile wing can be equated to a cantilever beam structure. The
equivalent distributed load on it is q cos(β1). Then, the deflection characteristics of the
missile wing are as follows:

v2 =
q cos(β1)L4

8EI
(8)

β2 =
q cos(β1)L3

6EI
(9)
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where E is the modulus of elasticity of the material, and I is the moment of inertia of the
section; then, the maximum angle of rotation β of the wing and the maximum deflection v
at the end of the wing are as follows:

β = β1 + β2 = arcsin(
2δ√

d2 + w2
)− arctan(

d
w
) +

q cos(β1)L3

6EI
(10)

v = v1 + v2 = δ +
q cos(β1)L4

8EI
(11)

The deflection angle and deflection of the wing under the uniform load are shown in
Figures 15 and 16.
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Figure 15. Deflection angle–load relationship.
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Figure 16. Deflection–load relationship.

In accordance with the design index of the wing deployment mechanism, the maxi-
mum normal load is 700 N. The airfoil uniform load is q = 700

L = 9.33 N/mm, the wing
deflection angle is 14.8402 × 10−6◦, and the end deflection is 0.1008 mm. From the static
load analysis results, it can be seen that the clearance has a great impact on the deforma-
tion of the wing so that there is a certain degree of free deflection of the wing. In order
to enhance the stability of the wings, it is necessary to design a clearance eliminator to
compensate for the clearance at the kinematic pair of the wings.

3.3. Clearance-Free Locking Stiffness Modeling

When the structure and material of the missile wing deployment mechanism are
determined, the mass matrix of the deployment mechanism system is fixed. So, the
vibration frequency of the deployment mechanism is mainly affected by the system stiffness.
By locking the root of the wing through the clearance eliminator to provide reliable support
to the wing root, the system stiffness can be effectively improved, further improving the
dynamic stiffness characteristics.
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By eliminating the clearance at the kinematic pair of the missile wing using the
clearance eliminator, the connection between the root of the missile wing and the base
is transformed from the clearance state to the contact state, as shown in Figure 7. In the
x direction, the wing contacts the base through the V-shaped contact surface and applies pre-
stress to the contact surface in the x direction by applying transverse locking force. In the y
direction, the top and bottom ends of the wing contact the base by the wedged force and
apply pre-stress to the contact surface in the y direction by applying longitudinal pre-stress.

The wedge interacts with the wing and the base under the action of the driving force of
the shape memory alloy FSMA. The transverse locking force Fx is generated by the frictional
force f interacting between the wedge and the missile wing. During the interaction between
the wedge and the missile wing, small deformations occur tangentially and normally along
the contact surface, and it is known from Coulomb friction theory that the frictional force
f is proportional to the contact surface load Fy, i.e., f = kFy and Fy = FSMA

sin θ (θ is the
inclination angle of the wedge). The relationship between the transverse locking force Fx
and the driving force of the shape memory alloy FSMA can be introduced as:

Fx = 2 f =
2k

sin θ
FSMA (12)

The frictional force f generated at the contact surface under different FSMA is obtained
by simulation analysis, as shown in Figure 17.
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Figure 17. Relationship between FSMA and f .

It can be seen that f basically varies linearly with FSMA. It can be determined by the
slope of the image that the parameter k = 0.052, from which the relationship between Fx
and FSMA can be obtained as:

Fx =
0.104
sin θ

FSMA (13)

The wing root is connected to the base through the clearance eliminator. The connec-
tion characteristics of the contact surface have a great influence on the dynamic stiffness
of the wing. If the root support is reliable, the wing structure can be equivalent to a can-
tilevered thin plate. Its modal characteristics can be derived according to the finite element
method. The inherent frequency is only related to the shape parameters of the wing and the
structural material. With the structural material of the wing given, the inherent frequency
is constant. Therefore, the dynamic stiffness analysis of the wing focuses on the dynamic
stiffness analysis of the connection between the wing root and the base. Assuming that the
wing is a rigid body, the relationship between the different locking forces and the frequency
response of the wing is established under the clearance elimination state.

The locking force Fx in the x direction generates a lateral contact force Fcx on the
V-shaped contact surface, creating a contact stiffness on the V-shaped contact surface. The
wing root can be equated to a support structure as shown in Figure 18. The support of the
contact surface can be equated to a spring of the same stiffness.
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Based on fractal geometry, the normal contact stiffness of the V-shaped contact surface
is modeled with reference to the Hertz contact theory. Due to the large area of contact
area of the bonding surface, it can be assumed that a small amount of elastic deformation
v occurs at the bonding surface. vc is the critical contact deformation of the contact surface
from elastic to elasto-plastic deformation. v is much smaller than vc.

According to Hertz contact theory, when the micro-convex body between V-contact
surfaces is in elastic contact, the contact load fe(v) of the micro-convex body can be
obtained as follows:

fe(v) =
4
3

ER
1
2 v

3
2 (14)

From k = d f
dv we can obtain the contact stiffness of micro-convex body as:

ke(v) = 2ER
1
2 v

1
2 (15)

where R is an equivalent radius of curvature of the micro-convex body on the contact surface,
and E is the composite modulus of elasticity of the material, E= [(1− ν1)/E1+(1−ν2)/E2]

−1.
E1 and E2 are the modulus of elasticity of the two surface materials, respectively, and ν1 and ν2
are the corresponding Poisson’s ratios. v is the deformation of the contact point.

According to fractal theory, the equivalent radius of curvature of a micro-convex body
on a machined contact surface is calculated by the following equation:

R =
a

D
2

24−2Dπ
D
2 GD−1

√
lnγ

(16)

where a is and intermediate variable, a = ( 29−2DG2D−2πD−3 lnγ

H2λ2 )
1

D−1 ; G is the characteristic
factor responding to the contour size, and the height dimension parameter of the milled
machined surface is 1.2117 × 10−4 m. γ is the spatial frequency of the random contour, and
γ = 1.5. D is the number of fractal cones of the contour, which is 1.2183. H is the hardness
of the material, and H = 2.8Y. Y is the yield strength of the material. λ is the average
contact surface pressure coefficient, and λ = 0.4645 + 0.314v. v is the Poisson’s ratio of the
material at the bonding surface.

By Hooke’s law: σ = E · ε = F
S → E · w

l = F
S . Then, the deformation is: w = Fl

SE ,
where σ, ε, F, l, S are the contact surface stress, strain, contact surface normal pressure,
contact surface thickness, and contact area, respectively, which in turn leads to:

ke(v) = {
[( 29−2DG2D−2πD−3 lnγ

H2λ2 )
1

D−1 ]

D
2

24−2Dπ
D
2 GD−1

√
lnγ

}
1
2 {

Fx
2 sin ϕ l

S E
2(1−ν)

}
1
2 (17)

The angular velocity of vibration of the missile wing root is w =
√

ke
m . Intrinsic

frequency at the root support of the missile wing is f = we
2π .

Taking l, S, ϕ as 6 mm, 2661.5 mm2, and 37.37◦, respectively, the relationship between
the missile wing vibration frequency f and the transverse locking force Fx is derived as
shown in Figure 19.
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Figure 19. Vibration frequency versus locking force.

As can be seen from Figure 19, the frequency response of the wing first increases
sharply when the locking force increases from 0 under the action of transverse locking. Then,
when the locking force reaches 20 N, increase in frequency the wing starts to slow down
with the increase in the locking force, and the frequency response of the wing gradually
tends to become smooth as the locking force continues to increase. The parameters are
optimized by simulation software, and the frequency response of the wing under different
lateral locking forces is shown in Figure 20.
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Figure 20. The relationship between the intrinsic frequency of the wing and the locking force.

The simulation results show that when transverse locking is applied, a small locking
force can cause the vibration frequency of the root of the wing to stop. The frequency
response tends to stabilize with the increase in the locking force. Comparing with the
theoretical results, it can be found that both of them have the tendency that the frequency
response of the wing starts to increase sharply with the increase in the locking force. The
frequency response of the wing gradually tends to be stable with the increase in the locking
force. The reason for the difference between the theoretical and simulation results is that
the constraint boundary conditions of the wing root are different between theory and
simulation. From the perspective of theoretical modeling, the locking force on the wing
root will have a great effect on the contact stiffness. While from the simulation analysis, the
effect of the locking force on the frequency response of the wing is not obvious because it
ignores the surface characteristics of the contact surface. It considers the contact form as
unconsolidated once the lateral locking force is applied. Therefore, the effect of the locking
force on the frequency response of the missile wing is not obvious.
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4. Mechanical Characterization
4.1. Kinetic Characteristics

The state of motion during the deployment of the wing is analyzed. The rolling friction
coefficient between the wing and the contact surface during the motion of the wing is set to
0.05. The frictional reaction force generated by the air load during the deployment of the
wing is equated by attaching a spring to the wing, and the driving torque is set to 1 Nm.
The displacement versus time and velocity versus time during the deployment of the wing
are shown in Figures 21 and 22, respectively.
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Figure 22. Velocity versus time.

From the simulation results, it can be seen that the deployment time of the wing is
about 0.154 s, which is basically the same as the solution of the kinetic equation. It can be
determined that the time to push the wing into place is about 0.15∼0.16 s, which meets the
speed requirement of the deployment mechanism.

4.2. Modal Analysis

In the unlocked state, Figure 23 shows the boundary conditions and mesh division
according to the loading environment. For convenience, we use free mixed mesh generation
in the study. The modal analysis is carried out in the unpreloaded state. The results of the
fundamental frequency and the first six orders of frequency are shown in Table 1.
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Table 1. First six orders of frequency of the whole machine in the unlocked state. (Hz).

The First-Order The Second-Order The Third-Order The Fourth-Order The Fifth-Order The Sixth-Order

1017.8 1196.5 1197.9 1269.7 1314.3 1315

After the wing is pushed into place and the clearance eliminator is actuated, the
pre-stress-modal analysis is performed on the wing. The pre-stress loading is shown in
Figure 24a. The load simulates the driving force of the SMA actuator, and the results of the
wing modal analysis are shown in Figure 24b. The first six orders of its inherent frequency
are obtained as shown in Table 2.
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Table 2. First six orders of frequency after the deployment of the missile wing (Hz).

The First-Order The Second-Order The Third-Order The Fourth-Order The Fifth-Order The Sixth-Order

351.77 986.6 1406.1 1885.4 2129.4 2567.7

Based on the existing pre-stress modal analysis results, the harmonic response analysis
of the missile wing was carried out with the frequency band set to 0~500 Hz and the
damping coefficient set to 0.05. In addition, a 700 N uniform normal load was applied on
the surface of the wing, and the amplitude versus frequency response was obtained as
shown in Figure 25. At resonance, the swept frequency phase angle is set to 90◦, as shown
in Figure 26, and the maximum deformation of the missile wing is 7.855 mm.
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Figure 26. Schematic diagram of maximum deformation of the wing during resonance.

With the maneuvering flight of the missile, the deployed wing is subjected to complex
non-constant aerodynamic effects. The environmental loads on the wing deployment
mechanism are mostly manifested as irregular dynamic inputs. In order to evaluate the
random vibration fatigue characteristics of the mechanism, the random vibration analysis
is performed on the basis of the modal analysis for the wing deployment mechanism.
By setting the power spectral density parameters specified in the vibration test standard
to simulate the irregular dynamic environmental loads on the mechanism, the random
vibration response analysis is performed on the missile wing deployment mechanism.

The results of the modal analysis are used as the initial conditions of the random
vibration analysis, and the power spectral density excitation in the xyz direction is set as
shown in Figure 27. The displacement response of the device as a whole is obtained, as
shown in Figure 28. The maximum deformation of the end of the wing is 0.273 mm, which
means that it will not cause structural instability or damage under the large power spectral
density excitation.
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Figure 27. Loaded power spectral density.

Drones 2022, 6, x FOR PEER REVIEW 17 of 22 
 

 
Figure 27. Loaded power spectral density. 

 
Figure 28. Displacement response spectrum. 

In order to verify the connection stiffness of the wing deployment mechanism along 
the x-direction and z-direction, the acceleration response spectrum of a point at the end 
of the wing is selected, as shown in Figure 29, in which the x-direction's and z-direction's 
input power spectrum densities are the same. The results show that the acceleration re-
sponses almost completely overlap, indicating that the transverse connection stiffness of 
the device is high and the stability is excellent. 

 
Figure 29. Acceleration response. 

5. Experimental Research 
5.1. Verification of Wing Deployment Characteristics 

The developed principle prototype is shown in Figure 30. To save costs and improve 
the test efficiency, only one set of opposing wings was deployed. In order to reduce the 
weight of the mechanism, except for the key stressed parts which are machined by 40Cr 
material, the rest of the parts are made of aluminum alloy, and the overall mass of the 
prototype is about 15 Kg. A high-speed camera is used to record the deployment time of 
the principle prototype wing, as shown in Figure 31. The deployment process is shown in 
Figure 32. The complete deployment time of the missile wing is about 0.14 s, which meets 
the requirement of rapidity. The experiments show that there is a difference of about 6 ms 

50 100 150 200 2500

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 2500

0.1

0.2

0.3

0.4

0.5

0.6

Po
w

er
 d

en
si

ty

Frequency (Hz)

 X and Z direction

Frequency (Hz)

(G
2 /H

z)

Po
w

er
 d

en
si

ty
(G

2 /H
z)

Y direction

 Frequency /Hz
0 50 100 150 200 250

0

10

20

30

40

50

60 x
z
y

A
cc

el
er

at
io

n 
re

sp
on

se

Figure 28. Displacement response spectrum.

In order to verify the connection stiffness of the wing deployment mechanism along
the x-direction and z-direction, the acceleration response spectrum of a point at the end of
the wing is selected, as shown in Figure 29, in which the x-direction’s and z-direction’s input
power spectrum densities are the same. The results show that the acceleration responses
almost completely overlap, indicating that the transverse connection stiffness of the device
is high and the stability is excellent.
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Figure 29. Acceleration response.

5. Experimental Research
5.1. Verification of Wing Deployment Characteristics

The developed principle prototype is shown in Figure 30. To save costs and improve
the test efficiency, only one set of opposing wings was deployed. In order to reduce the
weight of the mechanism, except for the key stressed parts which are machined by 40Cr
material, the rest of the parts are made of aluminum alloy, and the overall mass of the
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prototype is about 15 Kg. A high-speed camera is used to record the deployment time of
the principle prototype wing, as shown in Figure 31. The deployment process is shown in
Figure 32. The complete deployment time of the missile wing is about 0.14 s, which meets
the requirement of rapidity. The experiments show that there is a difference of about 6 ms
between the deployment times of the two wings. There are three main reasons for this
difference: 1. The manufacturing error of the prototype leads to inconsistent clearances.
The impact forces acting on the wining are also inconsistent during the deployment process.
2. The assembly error causes the installation position of the torsion spring to shift, such as
the assembly error of the shaft hole of the torsion springs. 3. The performance difference of
the torsion springs leads to inconsistent driving torques of the deployment mechanisms.
The size and stiffness coefficient of the torsion springs cannot be completely consistent.
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According to the design index of the wing deployment mechanism, the wing is
subjected to a normal load that varies linearly with the push-out distance during the
deployment process. The load was equated to a spring load, and the launch function test
was conducted on the missile wing deployment mechanism under loading conditions.
The test device is shown in Figure 33. The test of the wing deployment process under the
applied load condition, the wing can be pushed out quickly under the normal load that
varies linearly with the push-out distance in the range of 0~700 N.
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5.2. Fundamental Frequency Test

The prototype of the developed clearance eliminator and the built modal test set are
shown in Figure 34. The internal SMA driver of the prototype is heated by energizing. The
support stiffness of the wing is tested to verify the function of the clearance eliminator and
to test the dynamic support stiffness performance after the wing is deployed.
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As shown in Figure 34, the acceleration sensors are arranged at the four corners of
the wing, and the vibration characteristics of the wing are measured by the LMS modal
test system. The amplitude–frequency characteristics of the wing vibration are shown in
Figure 35. The action of the clearance eliminator is obtained by the hammering test, and
its mode of vibration is shown in Figure 36. The first-order frequency of the wing is about
220 Hz, which is smaller than the FEM results. There are three main reasons: 1. The rough
mesh division of assembly leads to a low accuracy of the calculation results. 2. The material
parameters used in assembly simulation cannot be completely consistent with the actual
values. 3. There are errors and clearance during processing and assembly. Excessive bolt
preload causes component deformation. By analyzing the mode of vibration, the support
stiffness of one side of the wing is lower than the other side, indicating that the clearance
eliminator on the weaker side has not fully eliminated the clearance of the kinematic pair of
the wing. This is because the clearance is too large due to machining errors, exceeding the
memory alloy actuator travel. In addition, the prototype has become deformed during the
test process, making the clearance larger. According to the overall test results of the wing
deployment mechanism, it can be verified that the function of the clearance eliminator
meets the design requirements.
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Figure 35. The amplitude–frequency of the wing vibration.
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6. Conclusions

In order to achieve rapid ejection and high stiffness retention of the missile wings, a
deployment mechanism with clearance elimination is proposed. The deployment perfor-
mance and wing locking performance are studied through theoretical modeling, simulation
and experiment. The static load bearing of the deployment mechanism is analyzed, and
the stresses of the overall and internal components of the deployment mechanism are
obtained. The static stiffness characteristics of the deployment mechanism are analyzed,
and the deflection of the missile wing under load in the clearance state is obtained. The
dynamic stiffness characteristics of the wing deployment mechanism are analyzed, and
the relationship between the locking force and the dynamic support stiffness of the wing is
obtained. The influences of the collision force on the motion state of the wing are analyzed.
The kinetic simulations are conducted to obtain the displacement and velocity response
to time during the launch of the wing. Static simulation analysis is carried out to obtain
the force and deformation of the wing deployment mechanism under static load condi-
tions. The modal analysis, harmonic response analysis, and random vibration analysis
are conducted for the locking and clearance elimination states, respectively. The results
show that the overall joint stiffness is high and the stability is great. The prototype of the
deployment mechanism has been developed with an ejection stroke of 75 mm. High-speed
camera recording results show that the deployment time is 0.14 s. Under the simulated
load of the springs, the actuation of the deployment mechanism is reliable and stable. The
vibration characteristics of the wings are measured by the LMS modal test system. The
results show that the first-order frequency of the wing is about 220 Hz after the gap elimi-
nation, indicating good dynamic support stiffness is achieved. The designed deployment
mechanism with gap compensation achieves fast ejection and high stiffness retention. In
future research, we will enhance the performance of the deployment mechanism with a
clearance eliminator to improve actuation synchronization and consistency.
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