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Abstract: This study presents a novel distributed behavior model for multi-agent unmanned aerial
vehicles (UAVs) based on the entropy of the system. In the developed distributed behavior model,
when the entropy of the system is high, the UAVs get closer to reduce the overall entropy; this is
called the grouping phase. If the entropy is less than the predefined threshold, then the UAVs switch
to the mission phase and proceed to a global goal. Computer simulations are performed in AirSim,
an open-source, cross-platform simulator. Comprehensive parameter analysis is performed, and
parameters with the best results are implemented in multiple-waypoint navigation experiments. The
results show the feasibility of the concept and the effectiveness of the distributed behavior model for
multi-agent UAVs.

Keywords: multi-agent system; distributed behavior modeling; unmanned aerial vehicles (UAVs);
Tsallis entropy

1. Introduction

Recent advances in unmanned aerial vehicles (UAVs) make their use in various applica-
tions feasible, including but not limited to precision agriculture, infrastructure monitoring,
security, telecommunication, and entertainment [1]. UAVs have also been designed and
produced in many different forms and sizes, both custom-built and off-the-shelf, to offer
solutions for general remote sensing applications [2]. There are still key research challenges
for UAVs; one of them is to find efficient techniques for applications with multi-agent
UAVs [3]. Deploying large numbers of UAVs can be advantageous in particular situations,
such as search and rescue, disaster response, and surveillance, and various approaches and
applications have been presented in the literature with multi-agent UAVs: autonomous
navigation by a group of unmanned vehicles using potential fields [4], cooperative task as-
signment of multi-agent heterogeneous unmanned aerial vehicles using a modified genetic
algorithm (GA) [5], manned and unmanned team approaches for situational awareness [6,7],
dynamic data-driven applications systems (DDDAS) for command/control and mission
planning/re-planning for unmanned aerial vehicles (UAVs) [8], market-economy-based
cost function estimator for collaborative tasking of tightly constrained multi-robot mis-
sions [9], 3D modeling using a UAV swarm [10], an algorithm to control and coordinate the
actions of heterogeneous unmanned air and ground systems [11], automatic target recog-
nition (ATR) using UAVs based on an insect-colony-inspired multi-agent technique [12],
and obstacle avoidance for small autonomous aircraft using self-directed collaborative
navigation [13].

The distributed systems for multi-agent UAV applications have also been well adopted
in recent years [14]. Most of the studies presented are based on maximizing global gain
while having relatively simple individual members in the team [14]. Most of the presented
methods are inspired from nature, which provides good solutions to manage groups,
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i.e., fish schools, ant swarms, animal packs, and bird flocks, and with the growing desire
of humans to create similar distributed behavior, mathematical models of swarms have
arisen within the last two and a half decades. These mathematical models have lead to
controlling groups of multi-agents. Swarm robotics is the application of these swarm
algorithms to robots. These systems are often referred to as multi-agent or multi-robot
systems. There are numerous focus areas within multi-agent systems. The main ones
are the following: task allocation, communication, uncertainty modeling, multi-agent
planning, and control [15,16]. In swarm robotics, there is great interest in decentralized
control due to scalability plus robustness when losing single agents. Some multi-agent
formation-control algorithms lend themselves better for implementation due to limited
complex computations. Behavior-based formation control is one of those methods.

Several examples of behavior-based methods are worth mentioning here. Balch pre-
sented formation testing with reactive formation control that was divided into avoiding
obstacles, avoiding robots, moving to the goal, and maintaining formation [17]. One
method involved modeling behaviors by defining the environment with attractors and
repellers to maintain a triangle formation and avoid obstacles [18]. Lawton et al. introduced
three behavior control strategies: coupled dynamics formation control, coupled dynamics
formation control with passivity-based inter-robot damping, and saturated control [19].
A vision-based method where general formation control with local sensing has also been
presented in the literature [20]. Furthermore, formation control to achieve minimum en-
tropy has been presented by Caglioti et al. [21]. Monteiro et al. use nonlinear attractor
dynamics to create a framework for controlling a team of robots [22]. Xu et al. present
a variance of initial formation and a subsequent formation controller [23]. Other studies
on formation control strategies have been presented by Olfati-Saber [24], mixing potential
field and graph-based, and, more recently, by Vásárhelyi [25].

Particle swarm optimization, PSO, is another common approach introduced in swarm
intelligence. Updated swarm intelligence strategies are constantly under development, such
as a relatively new dragonfly algorithm, which is an alternative to PSO for optimization [26].
Some methods have implemented PSO or a derivative of PSO for UAV formations with addi-
tional measures including bounding boxes for localization [27] and a GA–PSO hybrid [28].

Leader–follower and virtual leader–follower methods have also been presented in
the literature [29,30]. Null-space-based formation control with a UAV and a ground unit
is an example of this type [31]. More similar to our developed method is an approach
presented by Lee and Chwa that is decentralized behavior-based [32] and only uses rel-
ative distance information between neighbors and obstacles. Another similar method is
consensus formation control [33]. Moreover, a method that uses an artificial potential field
for obstacle avoidance and a consensus algorithm for maintenance and reconstruction
of the formation has been introduced in the literature [34]. Consensus formation control
was recently applied to four parrot bebop drones in a real-time experiment with obstacle
avoidance [35] as well. Three-dimensional formations based only on local relative position
measurements is another relative-position method that was performed on Crazyflie [36].
Some methods modify flocking algorithms; for example, in the literature there is a swarm
method of object-focused learning with modular state–action–reward–state–action (SARSA)
applied to Reynolds flocking [37]. Another consensus algorithm is a nonsmooth consensus
method to control the formation of multi-agent quadrotors using a theoretical analysis
in which the quadrotors converge to the desired formation [38]. Another distributed
method is one where a distributed nonlinear formation controller uses the leader–follower
structure to control the formation with a focus on investigation of unknown bounded
disturbances [39]. Few multi-robot platform implementations have been introduced in the
literature for swarm testing. One noteworthy innovation is the Robotarium, which provides
open access swarm algorithm testing on hardware [40]. Limited work on entropy control
or analysis of swarms exists in the literature, aside from a recent paper on potentially
using cross-entropy to determine robustness of a swarm [41]. Areas of active research for
application in formation control include, but are not limited to, the following: improve-
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ments towards autonomous farming with swarm robotics for agricultural applications
(SAGA) [42], satellites in space [43], and natural disaster relief [44].

Although significant research has been done on behavior-based methods that work
better than the original Reynolds algorithm, it is still an open area of research within
multi-agent systems. Little attention has been imparted for development of a generic
cost function suitable for heterogeneous platforms/sensors. In this paper, we introduce
a behavior-based modeling approach for distributed control, relying on a combination of
probability distribution of the agents and the Tsallis entropy of the system. This method has
advantages over other methods due to low computation times, robustness to unknowns,
and dependence only on communication between agents instead of mathematical conver-
gence. This method seeks to address major challenges outlined in the literature where
there is a need for formation control to be simple, robust, reliable, and fault-tolerant [45].
Original contributions of our study are: (i) development of a distributed behavior model
with decentralized rules over the group of agents (UAVs), (ii) development of entropy of
the system-based algorithm to switch between different behaviors of multi-agent UAVs, (iii)
evaluation of entropy threshold values to allow multi-agent UAVs to navigate effectively
without interfering with each other or failing to navigate along the desired course.

The remainder of the paper is organized as follows. The dynamic model of the UAVs
will be discussed in Section 2, followed by the distributed behavior model in Section 3.
Parameter analysis will be presented in Section 4, followed by the results and discussion in
Section 5. Conclusion will be presented in Section 6.

2. Dynamic Model of UAVs

The quadrotor model used in this study is adopted from AirSim [46] and is briefly out-
lined below. Figure 1 depicts a model of the quadrotor used in our study, and, considering
the whole vehicle model, the equations of motion from Newton’s law and Euler’s equation
can be written as [47],

F = m · a (1)

τ = J · ω̇ + ω× J ·ω (2)

where J is the inertia matrix of the quadrotor, a is the acceleration, ω is the angular velocity,
and m is the mass of the quadrotor. In Equation (1), the linear part is expressed in the inertial
frame (world frame); on the other hand, the rotational part in Equation (2) is represented
in the vehicle body frame. Considering an n-motor vehicle, Equations (1) and (2) can be
generalized as [47]

n−1

∑
i=0

(RWB(FT,i + FD,i)) + FG = m · a (3)

n−1

∑
i=0

(MR,i + MD,i + F i × ri) = J · ω̇ + ω× J ·ω (4)

where FT is thrust force, FD is drag force, MR is the rolling moment, MD is the moment
from rotor blade drag, RWB is the rotation matrix from the body frame B to the world frame
W, and ri is the vector from the center of gravity of the quadrotor to the center of the ith

motor. The sum of (FT,i + FD,i) can be simply represented as the total force, Fi. In our
study, the adopted quadrotor model [46] is defined as four connected vertices with thrust
forces Fi, torques from the propellers τi, and control inputs ui (Figure 1).
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Figure 1. Representation of quadrotor model.

The forces and torques [46] are defined as

Fi = CTρω2
maxD4ui (5)

τi =
1

2π
Cpowρω2

maxD5ui (6)

where ρ is the air density, CT is the thrust coefficient, ωmax is the max angular velocity in
revolutions per minute, Cpow is the power coefficients, and D is the propeller’s diameter.
In the simulator, the magnitude (| · |) of the linear drag force on the body is used, defined
as [46]:

|Fd| =
1
2

ρ|v2|Clin A (7)

where v is the velocity vector and drag force acts in the opposite direction to the velocity
vector, Clin is the linear air drag coefficient, and A is the vehicle cross-section. Consider an
infinitesimal surface area ds in the UAV body with angular velocity ω. The linear velocity
dv experienced by ds equals rds ×ω; thus, the linear drag equation for ds becomes [46]

|dF| = 1
2

ρ|rds ×ω|2Clinds (8)

where the direction of dF is−rds×ω. The drag torque can now be computed by integrating
over the entire surface as: τd =

∫
S rds × dF, and the body for the drag force is approximated

as a set of connected faces and then approximated as a rectangular box. Further, the net
force is calculated as [46]

Fnet = ∑
i

Fi + Fd, (9)

and the torque is calculated as

τnet = ∑
i
|τi + ri × Fi|+ τd. (10)

The velocity is calculated with the Velocity Verlet algorithm [46]. Since the simulation
is performed on AirSim, it enables a straightforward transition to hardware in the loop.
Three UAVs are used for the parameter trials, and three and six UAVs are used for multiple
waypoint testing. The state variables are obtained through the ground truth API, which
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can be IMU-based when implemented on real hardware. A screenshot of the UAVs in the
grouping and mission phases in AirSim is depicted in Figure 2.

The built-in flight controller in AirSim is used for the UAVs; it is a cascaded PID
controller [48]. The “simple_flight” code is utilized, which controls the UAVs by taking
in the desired input as heading and velocity. In “simple_flight” code, the cascade of PID
controllers generates actuator signals [48]. Basically, in the code, the position PID drives
the velocity PID, the velocity PID drives the angle level PID, and then the angle level PID
drives the angle rate PID [48]. This internally nested controller structure enables us to just
focus on the commanded velocity (Vcom) and commanded heading (θcom) calculations in
our entropy-based distributed behavior algorithm. Our algorithm uses current position
and heading of the corresponding UAV agent, calculates Vcom and θcom considering the
distributed behavior model, and sends Vcom and θcom to the “simple_flight” controller,
which generates actuator signals for that UAV agent. The controller equations for heading
and velocity control are given as [49]

uθ = Iy

(
αθ

µψ
ėθ −

βθ

µ2
θ

eθ −
eψeφ

µψµφ

(
Iz − Ix

Iy

))
(11)

uv = Uvσ

(
Kv1

Uv
ėv +

1
2

σ

(
Kv2

Uv
ėv +

Kv1Kv2

Uv
ev

))
(12)

where β, α, µ are control parameters, e is the error in the corresponding variable, Kv1, Kv2 ≥ 0
are controller gains, σ is the saturation function, and U is the input bound limit constant.
More details on dynamic modeling and controller design of the adopted approach and all
of the equations can be found in [46–49].

Figure 2. Screenshot of UAVs in AirSim software.
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3. Distributed Behavior Model

Entropy originates from information theory. It is characterized as the disorder of a
system. Entropy can be generalized to a group of particles, so with this in mind the objective
is to use entropy for formation control to improve scalability, reliability, and robustness of
the multi-agent group. In this study, a generalized case for entropy, Tsallis entropy, is used
to control the formation.

Tsallis entropy is defined as [50]

ST =
1−∑i pq

i
q− 1

(13)

where ST is the calculated entropy, pi is a discrete set of probabilities, and q is the Tsallis
entropy parameter, which is a real number and sometimes called the “entropic-index”. En-
tropy fluctuates between its highest and lowest values as the UAVs perform the given task.
Higher entropy means, for instance, the distance between agents is rather far, and system
stability is low, i.e., the probability of remaining a coordinated system may decrease. In this
study, our focus for UAVs is to form a group for a global mission; hence, system stability is
related to distributed behavior of the UAVs. Consequently, the entropy of the system should
be as low as possible, and the developed distributed model switches between different
phases (i.e., grouping phase and mission phase) based on the overall system entropy.

The Tsallis entropy approach works for homogeneous and heterogeneous agents be-
cause it is generalized for any system of particles. Every agent has case-dependent variable
X. The probability distribution function is calculated with the following equation [51]

pi(X) =
1

Γ(k)θk Xk−1e
−X

θ (14)

where Γ is a general gamma distribution to calculate the probability, and k (k > 0) and θ
(θ > 0) are shape and scale parameters, respectively. The calculated probability for an agent
in Equation (14), pi, is used in Equation (13), and this is performed for each and every UAV
agent in the system. The Tsallis entropy is calculated for each agent, where an agent-specific
case-dependent variable is selected; e.g., operational time, liability (completion of tasks),
computational workload, or capabilities (sensors onboard) can be the case-dependent
variable. In this study, relative distance is used as the case-dependent variable. As the
Tsallis entropy for each agent is calculated, it is shared amongst its neighbors. The primary
goal is to minimize Tsallis entropy for the entire team of UAVs.

The broad overview is that there are two main actions of the developed algorithm.
There is a grouping phase and a global objective (mission) phase. In our study, the mission
phase is used as all the agents go to a waypoint, but it could be changed for another
application. The Tsallis entropy is calculated for each agent for the selected specific case-
dependent variable. Then, the value of each agent is shared with its neighbors. The goal is
to minimize the entropy of the system while remaining stable.

Algorithm 1 is the developed algorithm. In our study, each agent is controlled in a
distributed fashion depending on the entropy algorithms and its controller; details of the
UAV controller are given in the last paragraph of Section 2. Algorithm 1 takes the current
(x, y) and θ for the corresponding UAV, the desired (x, y) coordinate for that UAV, and the
maximum velocity as inputs. Then, it outputs the commanded velocity and commanded
angle for the corresponding UAV agent. First, in each agent separately, distances and angles
between neighbor UAVs and the desired waypoint are calculated. Next, the distances
between neighbor UAVs are compared, and the closest and farthest UAVs are identified.
Then, the error is bounded between a maximum and minimum distance. Following that,
entropy is calculated by summing ei/dq

max for the total number of neighbor UAVs and then
dividing the sum by q− 1. The subsequent ’if’ case proceeds as follows if entropy exceeds
the threshold: First, the close UAVs are grouped. Then, the farther agents are grouped.
Finally, if the UAVs are too close to each other, they move apart so as to not collide.
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The threshold allows the system to be in a grouping phase, in which UAVs move closer to
each other, or in a mission phase where they move towards the global waypoint. Another
variant of the developed algorithm is presented in Algorithm 2. This variation prioritizes
aggressive grouping over smooth waypoint maneuvers, which can be seen by comparing
commanded velocity (Vcom) values between the two algorithms.

Algorithm 1: Pseudocode Representation of Algorithm 1

Input : [Xcur, Ycur,θcur] for each UAV, (Xdes, Ydes) global waypoint, Vmax
Output : Vcom, θcom
Distances and angles are calculated between each UAV and then to the desired
waypoint

Distances between UAVs are compared and the closest and farthest UAVs are
identified

if dbetweenUAVs > dmax then
e = dmax

else if dbetweenUAVs < dmax & dbetweenUAVs > dmin then
e = dbetweenUAVs

else if dbetweenUAVs ≤ dmin then
e = dmin

ST =
1−∑numUAVs

i (
ei

dmax
)q

q−1

Threshold←− ST
if ST < Threshold then

if dclosestUAV < dmin then
θcom = θwaypoint − θcur

Vcom = Vmax

else
θcom = (θindex − θcur) + π
Vcom = Vmax

else if dclosestUAV > dmin then
θcom = θindex − θcur
Vcom = 2 ∗Vmax

else if d f urthestUAV > dmin then
θcom = θindex2 − θcur
Vcom = 2 ∗Vmax

else if dclosestUAV or d f urthestUAV < dmin then
θcom = (θindex − θcur) + π
Vcom = 1/2 ∗Vmax

Map all angles between −π to π
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Algorithm 2: Pseudocode Representation of Algorithm 2

Input : [Xcur, Ycur,θcur] for each UAV, (Xdes, Ydes) global waypoint, Vmax
Output : Vcom, θcom
Distances and angles are calculated between each UAV and then to the desired
waypoint

Distances between UAVs are compared and the closest and furthest UAVs are
identified

if dbetweenUAVs > dmax then
e = dmax

else if dbetweenUAVs < dmax & dbetweenUAVs > dmin then
e = dbetweenUAVs

else if dbetweenUAVs ≤ dmin then
e = dmin

ST =
1−∑numUAVs

i (
ei

dmax
)q

q−1

Threshold←− ST
if ST < Threshold then

if dclosestUAV < dmin then
θcom = θwaypoint − θcur

Vcom = Vmax

else
θcom = (θindex − θcur) + π
Vcom = 1/2 ∗Vmax

else if dclosestUAV > dmin then
θcom = θindex − θcur
Vcom = 1/2 ∗Vmax

else if d f urthestUAV > dmin then
θcom = θindex2 − θcur
Vcom = 1/2 ∗Vmax

else if dclosestUAV or d f urthestUAV < dmin then
θcom = (θindex − θcur) + π
Vcom = 2 ∗Vmax

Map all angles between −π to π

4. Parameter Analysis

Four parameters were tested to characterize the behavior of the developed algorithm.
The trials ran until all three UAVs were within 20 m of the waypoint. The following are the
cost functions used to compare different results.

f1 =
numUAVs

∑
i

√
V2

X + V2
Y (15)

f2 =
numUAVs

∑
i

√
∆X2

Total + ∆Y2
Total (16)

The UAVs were controlled via velocity control, so the cost function in Equation (15)
characterizes the summation of the total control inputs per UAV. The cost function in
Equation (16) characterizes the summation of total distance traveled per UAV. No exact
parameter set is the best in all cases for parameter analysis. The exact application dictates
which parameter set is preferred. The resulting cost function values and the parameters
used for each trial are given in Tables 1 and 2, respectively.

The parameters tested were threshold, maximum velocity (Vmax), maximum distance
(dmax), and q (Table 2). Minimum distance (dmin) is manipulated in the latter half of the
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trials to prevent the entropy of the system from becoming negative. Minimum distance
serves to prevent UAVs from getting too close, which in turn also prevents negative overall
entropy calculations. The q is the Tsallis entropy constant given in Equation (13). Maximum
distance is the divisor for the summation of entropy of the system. Maximum velocity is
the highest allowed velocity per UAV. Threshold is the transition point in system entropy
to switch from grouping to moving toward the global waypoint.

In this paper, the resulting plots have two parts; the top plots show the (x, y) position
of UAVs, and bottom plots show the entropy variations of UAVs (Figure 3). All of the
UAVs have similar beginning paths in trials, as depicted in Figure 3a; all trials except Trial
3 output some backtracking motion, as shown in Figure 3b. The best graphic visualization
of this backtracking is in Trial 6, where the UAV backtracking section is circled for clarity.
Trial 9 and 12 only had the UAVs within 30 m of the waypoint compared to the 20 m for
all other trials due to the minimum distance of 30 m. General trends are not significantly
affected by this, aside from some influence on f2.

Usual Beginning

(a)

Backtracking of UAV 2

(b)
Figure 3. Examples of different beginning paths of UAVs during parameter trials: (a) usual beginning;
(b) UAV2 backtracking in Trial 6.

Trials 1–3, shown in Figure 4, were performed by varying the threshold parameter.
Depending on the threshold value, the entropy of the system kept decreasing as UAVs
got closer (grouping phase); then, they started going to the waypoint (mission phase).
UAVs ended up closest in Trial 1 (Figure 4a) before going to the waypoint. This resulted
in the highest cost for velocities, f1, and distance, f2, in comparison to Trial 2 and 3.
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As the threshold increased, the cost functions f1 and f2 decreased because less grouping
resulted in lower velocities and lower overall distances traveled to the waypoint. Trial 2,
in Figure 4b, had UAV 1 and 2 group closely together then backtrack before prioritizing the
global waypoint.

Trial 1

(a)

Trial 2

(b)

Trial 3

(c)
Figure 4. Results of parameter analysis—Trials 1–3: (a) Trial 1; (b) Trial 2; (c) Trial 3.
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Trials 4–6 shown in Figure 5 varied the maximum velocity parameter. Higher maxi-
mum velocity resulted in less stable individual agent trajectories, but the system of agents
still effectively reached the waypoint without colliding with the highest tested maximum
velocity of 5 m/s. Trial 4 in Figure 5a showed a similar trajectory to Trial 1, as evident in the
parameter costs and graphically. Trial 6 in Figure 5c had the highest cost of f1 of any trial
and the highest average f2. Thus, the general trend is: as the maximum velocity increases,
so do the cost functions f1 and f2.

Trial 4

(a)

Trial 5

(b)

Trial 6

(c)
Figure 5. Results of parameter analysis—Trials 4–6: (a) Trial 4; (b) Trial 5; (c) Trial 6.
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Trials 7–9 shown in Figure 6 varied the maximum distance parameter. Changing the
maximum distance had minor effects on the overall behavior because minimum distance
must be increased to prevent negative entropy in the system. Due to the minimum distance
of Trial 9 being 30 m, the proximity to the waypoint was increased to 30 m. Trials 8 and
9 exhibited minor fluctuations in their trajectories, but the largest distinction is that the
calculated overall entropy of the system is smaller than other parameter runs.

Trial 7

(a)

Trial 8

(b)

Trial 9

(c)
Figure 6. Results of parameter analysis—Trials 7–9: (a) Trial 7; (b) Trial 8; (c) Trial 9.
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Trials 10–12, shown in Figure 7, varied the q parameter, which is given in Equation (13).
The minimum distance also had to be changed for Trials 11 and 12 to ensure that negative
entropy would not be mathematically possible. Additionally, in Trial 12, the proximity to
the waypoint was increased to 30 m because of the minimum distance being 30 m, as in
Trial 9. The q parameter greatly affects the scale of the entropy of the system. With a q of
0.6, 0.75, and 0.9, the highest entropy becomes 5, 8 and 20, respectively. With a higher q
parameter, the trajectories become less smooth, which is undesirable in most applications.
As the parameter q increases, the cost functions f1 and f2 also increase.

Trial 10

(a)

Trial 11

(b)

Trial 12

(c)
Figure 7. Results of parameter analysis—Trials 10–12: (a) Trial 10; (b) Trial 11; (c) Trial 12.
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Table 1. Parameter Analysis Results—Cost Function Values, f1 and f2, in 12 Trials

f1UAV1 f1UAV2 f1UAV3 f2UAV1 f2UAV2 f2UAV3
Trial 1 1706 1706 1706 177 174 177
Trial 2 1632 1632 1632 168 166 170
Trial 3 1387 1387 1387 145 144 140
Trial 4 1747 1748 1748 180 176 181
Trial 5 1755 1755 1755 179 175 181
Trial 6 3105 3105 3105 237 219 249
Trial 7 1672 1672 1672 172 169 174
Trial 8 1778 1778 1778 180 168 181
Trial 9 1593 1593 1593 161 151 165

Trial 10 1730 1730 1730 178 175 180
Trial 11 2244 2179 2244 199 206 195
Trial 12 2856 2560 2865 248 188 245

Table 2. Parameter Analysis Results—Parameter values used in 12 Trials.

Threshold Vmax dmax q dmin

Trial 1 0.5 0.5 100 0.5 12
Trial 2 1.5 0.5 100 0.5 12
Trial 3 3 0.5 100 0.5 12
Trial 4 0.5 0.75 100 0.5 12
Trial 5 0.5 1 100 0.5 12
Trial 6 0.5 5 100 0.5 12
Trial 7 0.5 0.5 150 0.5 17
Trial 8 0.5 0.5 200 0.5 25
Trial 9 0.5 0.5 250 0.5 30

Trial 10 0.5 0.5 100 0.6 12
Trial 11 0.5 0.5 100 0.75 24
Trial 12 0.5 0.5 100 0.9 30

Algorithm 1 was used for parameter analysis and multiple waypoint testing. Algorithm 2
resulted in better control with higher velocities. This is most apparent when maximum
velocity was 5 m/s. The scalars for the commanded velocities are the only distinction
between the two algorithms. Algorithm 2 exhibits unstable characteristics within the
interaction between UAV agents, while Algorithm 1 exhibits higher mission smoothness.
Algorithm 2 more aggressively avoids each agent, which might make it better for higher
speed maneuvers. Algorithm 1 also reaches the desired waypoint in roughly half the
time of Algorithm 2, which is desirable when time is a mission constraint. This is evident
in Figure 8a,b. Further, in those figures it can be seen that system entropy has larger
oscillations with Algorithm 1 than Algorithm 2. Since the oscillations are more closely
bound in Algorithm 2, it can be concluded that Algorithm 2 is more robust to larger
disturbances than Algorithm 1. This could be crucial for controlling the UAV system at
high speed or with large disturbances, such as strong winds.
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Figure 8. Comparison of (a) Algorithm 1 and (b) Algorithm 2 results—both Algorithms with
Vmax = 5 m/s.

5. Multiple Waypoint Simulation Results and Discussion

The developed entropy-based distributed behavior model could theoretically be ap-
plied to any multi-agent system. The developed algorithm has a handful of adjustable pa-
rameters to improve performance based on application. In this section, multiple waypoint
navigation and an increased number of UAVs are presented to demonstrate a multiple-
objective application and scalability. One limitation of the algorithm is that platform-specific
tuning is needed to minimize the potential risk for the update rate to cause the UAV(s)
to turn in circles during simulation experiments. An update rate of 0.1 s was used in
simulation trials in AirSim, but it might be different if another platform is selected in the
simulation or if the algorithm is applied to real hardware.

5.1. Multiple Waypoint Navigation with Three UAVs

Multiple waypoint navigation results are depicted in Figure 9. The UAVs navigate
to waypoints in the following order: (25, 100) to (75, 100) to (75, 50) to (25, 50). As the
selected entropy threshold increases, the smoothness of the UAV trajectories increased.
Increasing the entropy threshold is another means by which to configure system grouping
and waypoint priorities. Solely based on the smoothest trajectory, the threshold of 1.5 is
the best, but that smoothness was at the cost of UAV formation tightness in the beginning.
Multiple waypoints with a threshold of 1.0, as shown in Figure 9b, is an adequate mix
of smooth trajectories and early formation cohesion. Reasonable waypoint placement
also influences final trajectory smoothness, so lower thresholds would work better with
unplanned or random multiple waypoints.
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Figure 9. Multiple waypoint navigation with three UAVs: (a) Threshold = 0.8; (b) Threshold = 1.0;
(c) Threshold = 1.5.

5.2. Multiple Waypoint Navigation with Six UAVs

An increased number of UAVs was also tested. In the simulations with six UAVs,
UAVs first form a group, then navigate to the multiple waypoints. One main difference
between application of the developed algorithm with three UAVs and with six UAVs is
how distances are calculated. The distance calculation approach is presented in Figure 10a
for edge UAVs and in Figure 10b for center UAVs. The distance between two UAVs closest
to a UAV of interest is represented by d0 for all cases. The other distances calculated are



Drones 2022, 6, 164 16 of 19

relative to the UAV of interest; for instance, in Figure 10b, the distances are calculated
relative to UAV 3. In UAV cases with three UAVs, distances between all UAVs (between
UAV 1 and UAV 2, between UAV 2 and UAV 3, and between UAV 1 and UAV 3) are used in
calculations for each UAV, which leads to all UAVs having the same entropy values. This is
not same in the case with six UAVs. This results in the case with six UAVs having different
entropy values for each UAV. Even though the case with six UAVs differs in this sense,
the UAVs that are closest have similar entropy trends (Figure 11).

(a) (b)
Figure 10. Distance calculation approach for 6 UAVs: (a) edge UAVs; (b) center UAVs.
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Figure 11. Multiple waypoint navigation with six UAVs.

5.3. Scalability and Stability Discussions

As new UAV agents are added to the system, they populate the environment in a
linear pattern. As the multi-agent UAV team grows, so must the entropy threshold value.
Close inspection of the entropy values for each UAV shows that as they move towards the
first objective, they also reduce their entropy by decreasing the distance between each other.
However, the system’s overall entropy ends up relatively higher than in the case with fewer
agents. This makes sense due to the fact that system entropy takes agent distance from
each other into consideration. If they are apart from each other, the entropy will be higher;
if they are close to each other, the entropy will be lower. Further, the entropy value limits
in a group with more UAVs will be higher than a group with fewer UAVs. Thus, entropy
threshold values definitely need to be adjusted when changing the number of UAVs in
the group.

Moreover, the entropy threshold needs to be adjusted considering the stability of the
system. The entropy threshold forms a “bubble” that the UAV group must stay inside.
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A “bubble” that works for a group of three UAVs is physically too small, for example, for a
group of 20 UAVs to occupy. Therefore, the entropy threshold must be increased based on
how many UAVs are in the group in order to satisfy stability.

Analysis for stability was performed by running simulations with different numbers
of UAV agents in the group. Entropy threshold values for groups of 3, 6, 9, 12, 15, 18, and 20
were calculated (Table 3), and the correlation between the number of UAVs and the entropy
threshold is formulated with a linear equation as:

y = 1.11x− 2.57 (17)

Using Equation (17), entropy threshold values for 5, 8, 11, 14, 17, and 19 UAVs were
calculated and trials were run. In all cases, the mission was completed successfully using
the calculated entropy threshold, and stability of the system was confirmed.

Table 3. Entropy threshold values by number of UAVs.

Number of UAVs Entropy Threshold Value

3 1
6 3.9
9 7.3
12 10.6
15 14.3
18 18
20 19.7

6. Conclusions

In this paper, details of a novel, entropy-based distributed behavior model and param-
eter analysis of that behavior model for three simulated UAVs were presented. The UAV
team was able to use the developed model to take off from different locations and then
group together using Tsallis entropy. When the entropy of the system is high, the UAVs
try to come closer to each other; that is called the grouping phase. Once entropy is less
than a predefined threshold, the UAVs move to the global goal; this is called the mission
phase. In this paper, the global goal was defined as navigating to a waypoint location.
Results of three UAVs and six UAVs following multiple waypoints show robustness of the
distributed behavior model to control multi-agent UAVs. One immediate future work for
our study will be to compare the developed algorithm with other well-known methods or
approaches in the literature. Future work will also focus on implementation of obstacle
avoidance to determine robustness in complex environments, as well as implementation
on real hardware.
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