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Abstract: Low-altitude flight in mountainous terrains is a difficult flight task applied in both military
and civilian fields. The helicopter has to maintain low altitude to realize search and rescue, reconnais-
sance, penetration, and strike operations. It contains complex environment perception, multilevel
decision making, and multi-objective flight control; thus, flight is currently mainly conducted by
human pilots. In this work, a control framework is implemented to realize autonomous flight for
unmanned helicopter operations in an unknown mountainous environment. The identification of
targets and threats is introduced using a deep neural network. A 3D vector field histogram method
is adopted for local terrain avoidance based on airborne Lidar sensors. In particular, we propose
an intuitive direct-viewing method to judge and change the visibilities of the helicopter. On this
basis, a finite state machine is built for decision making of the autonomous flight. A highly realistic
simulation environment is established to verify the proposed control framework. The simulation
results demonstrate that the helicopter can autonomously complete flight missions including a fast
approach, threat avoidance, cover concealment, and circuitous flight operations similar to human
pilots. The proposed control framework provides an effective solution for complex flight tasks and
expands the flight control technologies for high-level unmanned helicopter operations.

Keywords: autonomous flight control; unmanned helicopter operation; terrain avoidance; visual
servo control; threat avoidance

1. Introduction

Unmanned aerial vehicles (UAVs) have received substantial interest from the research
community and the general public alike in recent years [1,2], especially small UAVs and
multi-rotors, whose low cost and convenient use provide ideal testbeds and development
impetus for innovative technologies of control approaches [3,4], advanced intelligent
perception [5], and complete autonomy [6–9]. Small and medium UAVs can hardly meet the
demands of high payloads and long flight distances. Therefore, more and more large-scale
UAVs are being developed to provide long-endurance flights and perform various missions
like manned aircraft. There are also related research projects developing independent
autonomous equipment [10,11] or executing modifications [12] to convert manned aircraft
to UAVs. There is a great need to investigate autonomy flight technologies for application
scenarios of large-scale UAVs, manned aircraft, and helicopters for unmanned operations.

Helicopters demonstrate unique characteristics of maneuverability and low-speed
performance, significantly extending their application in both military and civil fields [13].
With the development of advanced sensing devices and technologies, various sensor sys-
tems including cameras, radar, laser/light detection and ranging (Lidar), electro-optical
(EO) system, acoustic system, and infrared (IR) sensors are deployed on helicopters to
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realize a higher level of perception and automation [14,15]. Researchers have been mo-
tivated to investigate autopilot technologies based on multi-source information percep-
tion to complete typical helicopter missions, such as target tracking [16–18], autonomous
landing [16,19,20], and obstacle avoidance [21–24]. There have also been some stud-
ies of unmanned helicopter operations focused on specific flight scenes and missions.
Gimenez [25,26] presented a transportation system for carrying a suspension payload
through two helicopters considering collision avoidance, wind disturbance, and reasonable
distribution of load weight. A ship–helicopter cooperative system was extensively inves-
tigated to allow helicopters to automatically approach and land on vessel decks [27–30].
Many studies demonstrated the landing performance of helicopter recovery on the vessels
under visual guidance [31,32]. Chen [33] presented an efficient algorithm for the path-
planning problem of multiple-helicopter formations in a realistic environment. Different
solutions and control frameworks for formation flight and formation reconfiguration can
be found in [34–36]. Recently, some new control frameworks including deep reinforcement
learning framework [37,38] and genetic fuzzy trees [39] were applied and achieved good
results. Chamberlain [40] presented an autonomy package allowing a full-scale unmanned
helicopter to automatically fly through unmapped, obstacle-laden terrain, find a landing
zone, and perform a safe landing near a casualty, all with no human control or input.
Nikolayevich [41] proposed a new method based on enhanced 3D motion primitives for 3D
path planning close to the flight dynamics limits of helicopters, enhancing their assistance
and autonomy in missions. Schopferer [42] studied onboard and online flight path planning
for small-scale unmanned rotorcraft to plan safe, dynamically feasible, and time-efficient
flight paths using cubic splines. To summarize, the existing studies of unmanned helicopter
operations mainly focused on basic tasks such as path planning, target tracking, and ob-
stacle avoidance. Due to the lack of a higher level of autonomy and integrated control
frameworks, few adequate solutions of complex tasks with diversified flight missions have
been proposed.

Low-altitude flight in complex mountainous terrains is a difficult flight task applied
in many fields. Especially for military applications, a low-altitude penetration flight is
a typical example making use of the ultralow-altitude maneuvering of helicopters, so
as to effectively use the terrain to avoid the detection and threat of the defense system,
as well as improve flight survivability. Low-altitude flight is also widely used in civil
fields for low-level reconnaissance, remote site material delivery, search and rescue, and
casualty evacuation. Matthew [43] studied the low-altitude flight of a full-scale helicopter
in complex terrains and demonstrated a tight integration of terrain avoidance, control, and
autonomous landing. During the low-altitude flight, increasing levels of concealment are
achieved by adopting different tactics such as terrain following, terrain avoidance, and
threat avoidance [44]. For low-altitude flight, obstacle avoidance and terrain avoidance are
the core flight tasks [45]. Zheng [46] designed a real-time flight control algorithm combin-
ing the fuzzy obstacle avoidance algorithm with the L1 control algorithm for helicopter
low-altitude flight in complex environment. Chandrasekaran [47] reviewed helicopter
wire strike protection and prevention devices for low-altitude flight, and carried out a
multicriteria decision-making analysis to rank different wire strike prevention methods.
Merz [48] introduced a system enabling robotic helicopters to fly safely without user inter-
action at low altitude over unknown terrain with static obstacles. Wang [49] proposed a
collision avoidance strategy method and the corresponding calculation approach of optimal
collision avoidance for small unmanned helicopters in low-altitude applications. There
have also been many studies focusing on UAV obstacle avoidance in dynamic building
environments [50,51]. Low-altitude flight also involves threat/target identification, visi-
bility judgement, multilevel decision making, and multi-objective flight control. It poses
a challenge to the implementation of unmanned operations. To automatically realize un-
manned low-altitude flight like human pilots. It is necessary to establish an integrated
control framework, which was rarely studied systematically in previous research.
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In this research, the unmanned helicopter operations of low-altitude flight in complex
mountainous terrains are investigated in detail. The flight scenes and mission requirements
of low-altitude flight are discussed considering target/threat recognition and decision mak-
ing on the basis of the recognition result. Low-altitude flight is divided into several basic
tasks: target/threat recognition, target tracking, threat avoidance, and terrain following.
We developed the control methods of the basic tasks according to the application scenarios
of the mountainous terrains. A new method for judging target visibilities is proposed,
which is inspired by the human perceptual method and is especially suitable for a complex
and unknown environment. Then, we combined the basic tasks and established a coupled
control method to realize flight missions including active approaching, threat avoidance,
and circuitous flight operations. The control methods presented in this research were
verified through high-realistic flight simulations.

The remainder of the paper is organized as follows: we briefly describe the mission
requirements of low-altitude flight in mountainous terrains and present the modeling
method of the simulation environment in Section 2; the implementation of target recogni-
tion, visual servo control, and terrain avoidance is investigated in Section 3, which also
contains simulation verification and performance evaluation; Section 4 details the visibil-
ity judgment method and proposes the overall control framework based on a finite state
machine; Section 5 presents the simulation validation of the proposed control framework;
lastly, the conclusions are summarized in Section 6.

The main contributions and innovations of this research are listed as follows:

• We extend the low-altitude penetration flight by introducing target recognition and
threat determination into the existing tactics [52–54], providing a wide perspective for
the complicated flight tasks and various flight scenes of helicopter low-altitude flight.

• The helicopter visibility with respect to ground threats or specific facilities is inves-
tigated in this research, which was rarely studied in previous studies about threat
avoidance or survivability assessment [55,56]. We also propose a direct viewing
method to judge and change the visibility quickly and robustly.

• On the basis of the visibility judgement, an integrated control framework is established
using the finite state machine. Compared with many existing studies [13,19,40,47,57],
this framework focuses on solving complex multi-objective flight tasks and realizing
unmanned helicopter operations of cover concealment and circuitous flight similar to
human pilots.

2. Problem Formulation
2.1. Low-Altitude Flight in Complex Mountainous Terrains

Low-altitude flight is generally applied for mountainous or undulating terrains, where
helicopters can make full use of the terrain to block detection and give full play to the
advantages of mobility. Here, the low-altitude penetration flight used in military fields
provides a great example which covers massive flight scenes of the low-altitude flight.
We intend to state the basic tasks of the penetration flight and extend them to develop
a more comprehensive control framework for the low-altitude flight. The main feature
of penetration flight is maintaining a low flight altitude to avoid radar detection, and
flying covertly to avoid ground defense and various detectors. To increase the level of
concealment, TF/TA2 tactics [58] have been developed and adopted as typical flight tasks
of the penetration flight. The tactics are described as follows:

• Terrain following: flight maneuvering with the terrain contour in the vertical plane
according to the predetermined minimum ground clearance. This penetration method
can use terrain cover and reach the destination in a short time.

• Terrain avoidance: flight maneuvering in the azimuth plane, flying around moun-
tains and other tall obstacles. This penetration method can make full use of the
terrain as cover and facilitate hiding, but increases the likelihood of colliding with
terrain obstacles.
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• Threat avoidance: flight maneuvering in the azimuth plane, avoiding detection and
weapon attacks, fully approaching the target, realizing sudden attacks, and reducing
enemy interference.

The above tactics constitute the basic needs of the penetration flight, but there is still a
lack of an integrated decision-making framework or specific maneuvering methods when
facing various flight missions. Therefore, we extend the above tactics, and put forward
broader flight tasks as follows:

• Target/threat recognition: identifying the target/threat facilities during the flight and
determining the threat degrees; making maneuvering decisions on the basis of the
recognition result.

• Target approaching: identifying the target using airborne cameras, tracking and
approaching the target through visual servo control, avoiding terrain obstacles, and
maintaining the ability to approach the target when it is blocked or temporarily lost.

• Cover concealment: when a threat is detected, finding cover through the terrains and
moving to the terrain cover to escape the threat; discriminating and changing the
helicopter’s visibility through flight maneuvers.

• Circuitous flight: comprehensive flight maneuvering around the terrain, avoiding the
threat, and following the terrain contour near the predetermined heading, so as to
finally reach the destination safely.

In this work, we focus on the implementations of the unmanned helicopter operations
of these flight tasks. Furthermore, we build a decision-making framework which can
autonomously deal with different flight tasks without human intervention.

2.2. Modeling Method of the Simulation Environment

A helicopter exhibits six-degree-of-freedom rigid-body dynamics. The flight dynamic
equations are as follows:

.
V =

F
m
−ΩV, (1)

.
S = I−1M− I−1ΩIS, (2)

.
α = ES, (3)

.
P = RBGV, (4)

where V = [u v w]T is the linear velocity, S = [p q r]T is the angular velocity, α = [ϕ θ ψ]T

is the Euler angle of roll, pitch, and yaw, P = [X Y Z]T is the position vector in ground
coordinates, m is the mass of the helicopter, and F and M are the forces and moments of the
components of the helicopter.

I is the moment of the helicopter inertial matrix, Ω is the angular rate antisymmetric
matrix, RBG is the conversion matrix from body coordinates to ground coordinates, and E
is the conversion matrix from body angular velocity to Euler angular velocity.

RBG =

cos θ cos ψ sin θ sin ψ cos ψ− cos ϕ sin ψ sin θ cos ϕ cos ψ + sin ϕ sin ψ
cos θ cos ψ sin θ sin ϕ sin ψ + cos ϕ cos ψ sin θ cos ϕ cos ψ− sin ϕ sin ψ
− sin θ sin ϕ cos θ cos ϕ cos θ

. (5)

E =

1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ/ cos θ cos ϕ/ cos θ

. (6)

For the helicopter dynamic model, F and M are generated by the aerodynamic forces
of the fuselage and the control forces which originate from the main rotor thrust and tail
rotor thrust. The helicopter has large aerodynamic interference and is a highly coupled
complex dynamic system, which makes it difficult to establish a fully dynamic model.
Therefore, the linearized dynamic model was adopted in this research to simulate the
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helicopter dynamic responses. The linearized model is obtained through frequency-domain
identification of the flight experiment, and it is widely used in helicopter controller design
and dynamic characteristic analysis. The complete linearized dynamic model can be
illustrated in state-space representation as follows [59]:

.
x = Amx + Bmu, (7)

where Am and Bm are the system matrix and control matrix at different equilibrium points,
establishing a linear-parameter-varying (LPV) helicopter dynamics model.
x = [u w q θ v p φ r ψ] is the state vector and u = [δeδcδaδp] is the control input vector,
where δc is the collective control input of the main rotor blade, δe and δa are the cyclic
control inputs giving the explicit pitch in longitude and lateral directions, and δp is the
collective pitch for the tail rotor.

Cascade PID (proportion integration differentiation) controllers were adopted to re-
alize the low-level control of the helicopter. As shown in Figure 1, the helicopter control
system was divided into the longitude channel, lateral channel, altitude channel, and
yaw channel. For each channel, an independent cascade PID controller was applied. The
inner loop controllers maintain the attitude stability, while the middle loop and outer
loop controllers are used to track speed or position commands. The stability analysis
and convergence of the cascade PID framework are essential for the controller implemen-
tation, but beyond the scope of this work. A detailed analysis can be found in [51] for
further discussion.
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It should be mentioned that helicopters have multiple flight mode transitions arising
from the complicated aerodynamic nature of thrust generation, while the control channels
are strongly coupled. Various flight control methodologies have been developed for the
flight control system of helicopters to improve the flight performance, which is beyond
the scope of this research. We used simple and decoupling low-level controllers to clearly
explain the implementation of visual servo control and terrain avoidance. In addition, the
simple controllers used in this study would cause more oscillations and longer adjustment
time during the flight. This required a high-level control framework to provide more
margins in the design stage, forcing the control framework to be more adaptive and
practical for engineering realizations.

A simulation based on realistic scenarios is a crucial part of testing algorithms. We
built the simulation environment using the Unreal Engine package to visualize scenarios
with realistic graphics and generate sensor data. A co-simulation framework was used to
realize the communication interface between Unreal Engine and MATLAB Simulink, as
shown in Figure 2. For each simulation step, the helicopter dynamic model received the
flight control signals and updated the flight state. The flight state was sent to the simulation
environment through a communication interface, driving the Unreal Engine to realize real-
time virtual rendering. Various sensors were modeled to obtain ground-truth data in the
simulation environment. The established control framework receives the sensor data and
output control signals to the helicopter model, forming a closed-loop simulation system.
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A realistic scenario based on a mountainous map was built to carry out flight sim-
ulations of the low-altitude flight, as shown in Figure 3. We set up natural terrains and
different facilities in the scenario. The terrains and facilities were built using static meshes,
which could be detected by the virtual Lidar sensors of the helicopter. The virtual camera
was mounted around the helicopter to obtain visual information. Benefitting from the
powerful lighting, rendering, and mapping ability of Unreal Engine package, the virtual
camera was able to display real-scene lighting effects such as area shadows and diffuse
reflection, providing a high-fidelity simulation environment for this research.
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3. Target Tracking and Terrain Avoidance
3.1. Target Tracking
3.1.1. Target Recognition

For a low-altitude flight, the flight map information and accurate facility positions are
generally unknown. Detecting targets and evaluating threat degrees represent the basis of
decision making in unmanned helicopter operations. We expect that the target recognition
method should be able to cover different types of targets as best as possible to deal with
various unknown facilities that may appear in mountainous terrains. In this research,



Drones 2022, 6, 150 8 of 25

target recognition was realized using the YOLOv2 network, which can be trained offline on
labeled images to cover a large number of target features [60]. The YOLO model runs a deep
learning CNN (convolutional neural network) on an input image to decode the predictions
and generate bounding boxes, as shown in Figure 4. The detection network contains a
series of conventional, batch norm, and rectified linear unit (ReLU) layers. By labeling and
adding training samples of specific scenes, the YOLO model can better recognize distant or
fuzzy targets.
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Figure 4. Structure of the YOLO Network.

The YOLO network introduces anchor boxes to improve the speed and efficiency for of
detection. The anchor boxes are defined on the basis of object sizes in the training datasets.
During detection, the predefined anchor boxes are tiled across the image. The position of
an anchor box is determined by mapping the location of the network output back to the
input image. The object detectors learn offsets to apply to each tiled anchor box, refining
the anchor box position and size. The network predicts five coordinates for each bounding
box: tx, ty, th, tw, and to. The cell is offset from the top left corner of the image by (cx, cy),
and the bounding box prior has width and height pw, ph; the predictions can be drawn
as follows:

bx = s(tx) + cx, (8)

by = σ(ty) + cy, (9)

bw = pwetw , (10)

bh = pheth , (11)

Pr(object)× IOU(object, b) = s(to), (12)

where, bx, by, bh, and bw are the box position and size parameters, σ refers to the sigmoid
function, and σ(to) is the value of confidence after sigmoid transformation. For target
recognition in low-altitude flights, the anchor boxes of the YOLO network provide the
target dynamics within the sight ranges. The positions and sizes of anchor boxes also imply
the relative position and attitude information of the target, which can provide the basis for
the visual servo control.

The detection efficiency and generalization capabilities of the YOLO network depend
on the number and diversity of training data. Without loss of generality, we extracted
the images of some buildings and vehicles in the simulation environment as recognition
targets. The images were manually calibrated to form a training dataset, and the network
was trained using the SGDM (stochastic gradient descent with momentum) method. The
precision of the trained detector at varying levels of recall is shown in Figure 5. The YOLO
network can be replaced by frontier and stronger algorithms to obtain better recognition
performance, but it was considered fairly effective for the overall control framework of
this research.
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3.1.2. Visual Servo Control

Visual servo control is an important part of unmanned helicopter operations in low-
altitude flight. It can also help verify the stability of the YOLO detector and the effectiveness
of the proposed helicopter controllers in this research. Therefore, we designed a typical
flight task to carry out flight simulations on the basis of visual servo control. The helicopter
identified the target through the YOLO detector, and then automatically hovered around
the target, as shown in Figure 6. This has been used as the ground target tracking method
of fixed-wing aircrafts [61,62]. For helicopters, we let the helicopter always head to the
target, move horizontally through lateral maneuvers, and finally hover around the target.
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The commonly used methods of visual servo control can be divided into position-
based visual servo (PBVS), image-based visual servo (IBVS), and end-to-end visual servo.
PBVS establishes the mapping relationship between the image signal and the helicopter
pose, calculates the pose information, and compares it with the required pose to form a
closed-loop control. As PBVS needs accurate image signals, even a small error in the image
measurements can lead to a large offset in the pose estimation. IBVS directly compares
the image signal measured in real time with the image signal of required pose and uses
the obtained image error for feedback control. The end-to-end servo method takes the
captured image as the input, and directly outputs the control signals by constructing neural
networks. However, there exist challenges including time complexity and servo stabilities
when using this method. For a low-altitude flight, the target is generally unknown and
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far away from the helicopter. It is difficult to extract a characteristic point of the image
and calculate relative pose information using PBVS. Therefore, we adopted IBVS to realize
visual servo control; the control framework is illustrated in Figure 7. We used the size and
position of the anchor boxes provided by the YOLO network as the control commands of
the helicopters control channels. The control commands were calculated as follows:

Sbox = bwbh, (13)

uRe f = −ku(Sbox − Sdes), (14)

rRe f = −kr(bx − bmid), (15)

vRe f = Vdes − α1(Sbox − Sdes)− α2(bx − bmid), (16)

uRe f =

{
u f orward, St = 0, by

t−k > 0
ubackward, St = 0, by

t−k < 0
, (17)

where Sbox represents the area of the anchor box, which characterizes the distance from
the helicopter to the target. We defined a desired box area Sdes that points to the desired
distance, and counted the error during feedback to the control command of linear velocity
uRe f . ku is the control gain. The target center is restricted to the horizontal center of the
image to ensure that the helicopter is always oriented to the target. The error between target
center bx and image center bmid is calculated and multiplied by the control gain kr as the
control command of the yaw rate rRe f . We set Vdes as the desired lateral velocity and correct
it through the errors of box area and helicopter orientation to generate the control command
of lateral velocity vRe f , as shown in Equation (16), where α1 and α2 are the correction factors.
In this way, priority is given to the helicopter maintaining its distance and orientation to
the target, and then maneuvering laterally to hover around the target. Furthermore, in case
the target is lost and deviates from the image, i.e., the anchor box area becomes 0, we preset
longitudinal flight maneuvers to retrieve the target, as shown in Equation (17). When the
target disappears from the top of the image, and the vertical coordinate of the target center
before disappearing is positive (by

t−k > 0), the helicopter will fly forward to approach the
target; otherwise, it will fly backward with linear velocity ubackward.
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According to the above control frame, the IBVS method was established, and the
control gains were determined. We set up the initial positions of helicopter and target, and
we carried out flight simulations. The virtual camera was mounted under the helicopter
body with a downward pitch angle of 20◦. The sample time of the virtual camera was set as
0.01 s and the resolution of each frame was set to 640× 360 to maintain image accuracy and
detection efficiency. The flight path of the helicopter hovering around the static target is
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shown in Figure 8. It can be seen that the helicopter approached the target from a distance
and gradually maintained a stable circular trajectory. The linear velocity of the helicopter
contained high-frequency oscillations caused by the visual servo control, but the overall
trend was regular and stable, as shown in Figure 9. Figure 10 shows the anchor box size
during the flight. The width and height of the anchor box changed periodically in a large
range, which was caused by the different target poses under different viewing angles.
The target was lost at some point and could be retrieved rapidly to continue tracking.
On the basis of simulations around static targets, we carried out flight simulations to
circle and hover around a moving target. The flight path is illustrated in Figure 11, which
demonstrates the effectiveness of the control framework. Therefore, the proposed IBVS
method can be further applied in low-altitude flight.
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3.2. Terrain Avoidance

Terrain avoidance is a basic task in low-altitude flight, whereby the helicopter senses
objects according to the airborne sensors, and autonomously executes obstacle avoidance
and path planning in an unknown environment. Therefore, the global obstacle avoidance
methods which rely on complete prior information are generally inappropriate. Moreover,
low-altitude flight generally requires a helicopter to reach the destination rapidly to re-
duce flight time and risks. A reactive local obstacle avoidance method is more adaptable
compared with a global mapping method. The terrains of mountainous areas are compli-
cated and contain various environment objects. Radar and Lidar equipment have been
commonly used for manned helicopters to sense and avoid terrain obstacles in mountain-
ous terrains. Considering the sensing equipment, algorithm efficiency, spatial complexity,
and application scenes, the 3D VFH (vector field histogram) method based on Lidar sen-
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sors was established to realize terrain avoidance for unmanned helicopter operations in
this research.

The 3D VFH algorithm originates from the widely used VFH algorithm in a 2D
environment. It does not need specific map information, but it can provide multiple paths
to maintain different requirements by designing different path weights, which is especially
suitable for low-altitude flight. For 3D environment applications, the 3D VFH method
divides the voxels near the helicopter into multiple cells through the two dimensions of the
azimuth angle βz and the elevation angle βe, as shown in Figure 12. The spherical voxels
unfold into a 2D primary polar histogram, where each cell represents the possible direction
of the helicopter.
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Figure 12. Formation of the 2D primary polar histogram.

We built a virtual Lidar sensor which was fixed under the helicopter cockpit in the
simulation environment. It enabled the helicopter to sense the surrounding terrain obstacles
in a determined range. The vertical and horizontal fields of view of the Lidar sensor were
set as 60◦ and 360◦, respectively. The detection range was set to 300 m to maintain the
effectiveness and data scale. As shown in Figure 13, the Lidar sensor generated the point-
cloud data in an ellipsoid range centered on the helicopter.
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For any node Pi of the point-cloud data, we assume the coordinates (xi, yi, zi). The
azimuth angle and elevation angle can be calculated using Equations (18) and (19), where α
is the resolution of the 2D polar histogram, and the floor function creates natural numbers
as the coordinates of the 2D primary polar histogram. Using the point-cloud data, we can
evaluate the distance and size of terrain obstacles to calculate the risk weights, and add
them to the 2D primary polar histogram. The weight of the voxels can be calculated using
Equation (20), where op is the occupancy certainty, lP is the Euclidean distance, which is
influenced by the helicopter radius, safe radius, and voxel size, and a and b are predefined
constant values. The detailed derivations can be found in [63].

βz = floor(
1
α

arctan
xi
yi
). (18)

βe = floor(
1
α

arctan
zi√

xi
2 + yi

2
). (19)

Hz,e =

 ∑
P

op
2(a− blP) , if e ∈

[
βe − λ

α , βe +
λ
α ] and z ∈

[
βz − λ

α , βz +
λ
α

]
0, otherwise

. (20)

The 2D primary polar histogram presents a simplified description of collision risks
at different directions. A 2D binary polar histogram was established to further reduce
the information. This was accomplished by comparing every cell in the 2D primary polar
histogram with a threshold τ. The size of the threshold depends on the helicopter radius,
flight speed, sensor resolution, and bounding sphere size. When the cell weight is higher
than τ, the point will be 1 in the 2D binary polar histogram. When the value is lower than
τ, the point will be 0 in the 2D binary polar histogram.

The VFH method searches for available paths and detects openings by moving a
window around the 2D binary polar histogram. This window marks the path passable if all
the elements in the window are equal to 0. It defines three path weights combined for the
candidate direction to select the path with lowest path weight µ, as shown in Equation (20).
The first path weight µ1 is used to multiply the difference between the target angle kt and
the candidate direction vc. The second path weight µ2 multiplies the difference between the
helicopter yaw angle ψ and the candidate direction vc. The last path weight µ3 multiplies
the difference between the previous selected direction kt−1 and the candidate direction
vc. The function ∆ (x, y) calculates the difference between the two direction vectors. By
changing the path weights, multiple flight paths with different preferences can be obtained.
For low-altitude flight in mountainous terrains, we can change the path weight allowing
the helicopter to maintain low-altitude flight using turning motions or climbing motions to
approach the target aggressively.

µ = µ1 · ∆(kt,vc) + µ2 · ∆(vψ,vc) + µ3 · ∆(kt−1,vc). (21)

A narrow mountainous area with dense terrain obstacles was built to verify the terrain
avoidance performance of the VFH method, as shown in Figure 14. We arranged an
additional static mesh of obstacles in the terrains to increase the difficulty of obstacle
avoidance. At each simulation step, the VFH method provided a desired direction and
desired yaw angle according to the virtual Lidar sensor. For helicopters in low-altitude
flight, turning maneuvers are more sensitive and stable than lateral maneuvers. Therefore,
we took the desired yaw and vertical components of the desired direction as the helicopter
control command to realize terrain avoidance in the low-altitude flight. The lateral control
channel maintained the helicopter stability, and the longitudinal control channel changed
the approaching speed of the helicopter to the destination.
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Lastly, we carried out flight simulations using the VFH method, where the helicopter
was placed in a narrow mountainous area without map information. The virtual Lidar had
a range resolution of 0.2 m. The vertical resolution and horizontal resolution of the Lidar
were set as 2.5◦ and 5◦, respectively. The vehicle size and minimum distance to obstacles
of the VFH method were set as 5 m and 20 m. The sample time of the virtual Lidar was
0.1 s. A distant destination was defined, and the helicopter approached the destination
and executed terrain avoidance during the flight. The path weights in Equation (21) were
set as 3, 2, and 0.3, respectively. The flight path and linear velocities of the helicopter are
illustrated in Figures 15 and 16, which demonstrates that the helicopter could maintain a
low altitude and stably approach the destination. Figure 17 further shows the helicopter
during the low-altitude flight. The helicopter avoided all the terrain obstacles in the
narrow environment. This shows the good adaptability of the proposed VFH method in
mountainous areas for the helicopter.
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4. Autonomous Decision-Making Framework
4.1. Visibility Judgment

For low-altitude flight in mountainous terrains, helicopters can effectively avoid spe-
cific facilities or threats such as dense buildings, fires, and danger using obstacle avoidance
and path replanning methods. In previous studies, these threats were often regarded as
obstacles during the flight. However, in many situations of military applications, low-
altitude flight requires the helicopter to resist ground detection and avoid ground defense
to improve flight survivability. Since flying at low altitude can effectively block the detec-
tion of ground radars, the visibility of the helicopter to the ground facilities is crucial for
decision making and maneuver selection. The helicopter needs to not only bypass and
avoid the threats, but also escape from the sight range of the threats. Human pilots estimate
the visibility of the helicopter using their eyes and intuition to make decisions such as
taking cover, avoiding reconnaissance, or executing circuitous flight. On the other hand,
the visibility judgement is quite difficult for unmanned operations, which generally needs
complete state estimation, threat location, and accurate map information.

Here, we propose an intuitive direct-viewing method which can quickly judge the
helicopter’s visibility, as shown in Figure 18. The threat detection method uses a deep
neural network, which is the same as the target recognition method presented in Section 3.1.
We can add samples to the dataset and train a detection network to simultaneously identify
targets and threats. When the helicopter detects a threat during low-altitude flight, it
immediately turns to head to the target using the visual servo control method as mentioned
in Section 3.1. At this moment, the helicopter is visible to the threat. To change its visibility,
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the helicopter maneuvers laterally. This is because when the helicopter is heading to the
threat, lateral maneuvers gain more variation than longitude and vertical maneuvers in
the sight range of the threat. This also helps the helicopter to approach terrain cover in
mountainous areas. During lateral maneuvers, if the threat is lost from view and the Lidar
sensor can detect obstacles ahead, it can be considered that the line of sight between the
helicopter and the threat is blocked, and the visibility is changed. In order to ensure the
complete concealment of the whole helicopter, we set a margin to make the helicopter
continue to fly laterally for a certain distance after its visibility changed.
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The proposed method of the visibility judgment is essentially based on the line of sight,
which is inspired by the perception method of human intuition. It is simple and effective,
but requires the helicopter to keep heading to the threat. Obviously, continuously heading
to the threat is not the optimal method to avoid it. This limits the helicopter’s movement
and possibly further exposes the helicopter to the threat. However, it provides a fast and
reliable method to realize real-time judgement of the visibility without comprehensive map
information or a complex calculation process. Moreover, the helicopter has good lateral
maneuverability; when facing a threat, lateral maneuvers are faster and more continuous
than turning or other maneuvers to hide. Overall, this provides a reactive method to judge
and change the helicopter’s visibility, which is easy to deploy and especially suitable for
implementation in complex unknown environments.

4.2. Finite State Machine

Visibility judgement and target and threat recognition are fundamental factors of
decision making in low-altitude flight. The visual servo control and terrain avoidance
methods presented in this research were verified to be effective in target tracking and
obstacle avoidance. On this basis, a finite state machine was established to combine the
decision-making and control methods, thus forming the overall framework for unmanned
helicopter operations in low-altitude flight, as shown in Figure 19. The finite state machine
established a continuous operation process without human interference and covered most
scenes in the low-altitude flight.
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In low-altitude flight, a helicopter is given a distant destination and required to
approach the destination at low altitude. Meanwhile, the detection network works to
detect targets and threat facilities. Once the target is detected, the helicopter immediately
heads to the target through visual servo control and revises the target’s position. In this
case, the helicopter does not know its exact position with respect to the target on the map;
however, it is able to estimate the distance and yaw direction using airborne equipment.
Therefore, the helicopter can estimate the target’s direction on the basis of its heading.
Several target points are placed along the target direction for path replanning of the VFH
method. The helicopter continues heading toward the target. Generally, keeping the target
in the center of the camera can ensure that the target is not lost during the flight approach.
In case the target is lost, the helicopter continues flying to the defined target points to
approach the target and returns to visual servo control when the target is rediscovered.
After arriving at the target, the helicopter can revise the destination location to fly to the
original destination or end the flight mission. This fast approach process can realize a quick
attack on or reconnaissance of specific facilities.

If the detection network detects a threat during the flight, the threat degree E is firstly
evaluated. We propose a simple way to quantitatively evaluate the threat, as expressed
in Equation (22). ξclass is the coefficient for different classes of threats. Sbox implies the
distance to the threat. Basically, a closer distance indicates a greater threat. There are more
intricate methods of threat evaluation, but they are outside the scope of this research. We
calculated the threat degree mainly to distinguish between serious threats and small threats,
so as to design different control strategies. We defined a threat threshold ET, whereby a
threat degree that higher than ET is considered as a serious threat. In this situation, the
helicopter executes fast avoidance flight to escape the sight range of the threat as soon as
possible, seeking terrains as cover to change its visibility. For this purpose, the helicopter is
forced to head to the threat for visibility judgement. The target points of the VFH method
are reset as the points of the history path. Then, the helicopter executes lateral maneuvers
so as to quickly restore invisibility behind terrain cover. When the threat is lost in the
camera, the helicopter can fly away from the threat or carry out further orders. In this
research, we gave a higher priority to fast avoidance than to fast approach. The helicopter
executes fast avoidance upon detecting a serious threat, regardless of whether a target is
detected in the view. If multiple threats are detected during the flight, the helicopter heads
toward the threat with highest threat degree to execute fast avoidance.
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If the threat degree is lower than ET, the detected threat is considered a small threat,
and the helicopter executes circuitous flight. In this situation, the top priority is still
restoring the helicopter’s invisibility, which requires the helicopter to head toward the
threat and seek cover. However, the helicopter is allowed to move laterally. The target
points of the VFH method are reset to the sides of the helicopter. When the threat is lost,
the helicopter resets the target points and continues its approach to the destination. In this
study, the helicopter automatically placed the target points on the opposite site of the threat
and followed the path of the VFH method. Many other path-planning methods can also be
used for circuitous flight; however, we mainly focused on introducing visibility judgement
and realizing reactive threat avoidance.

E = Sboxξclass. (22)

The finite state machine presents a detailed decision-making framework through the
state transitions of different flight tasks, such as long-range penetration, fast approach, fast
avoidance, and circuitous flight. These flight tasks contain multiple objectives, and their im-
plementation is complicated. Here, we designed the control law for each flight task, all the
control methods were derived from the visual servo control and terrain avoidance method
in Section 3. Since the control channels are decoupled as illustrated in Section 2.2, we can
clearly explain the control method through the control commands of different channels.

For the long-range penetration task, the helicopter approaches the destination and
avoids terrain obstacles according to the VFH method. Specifically, the VFH method
provides the control commands of the yaw channel and altitude channel, as shown in
Equation (23). RGB is the conversion matrix from ground coordinates to body coordinates.
The desired direction produced by the VFH method is defined in the ground coordinates
and must be converted to body coordinates to generate control commands. u, v, and w
are the control gains of the linear velocities. The longitude channel and lateral channel
maintain the helicopter’s stability.

ψ = ψVFH
u = u
v = 0
w = wRGBZVFH

. (23)

For the fast approach task, the control command of the helicopter yaw channel is
provided by the visual servo control method allowing the helicopter toward head to the
target. The target points are placed according to the heading direction of the helicopter, as
shown in Equation (24), where d is a predefined value that affects the interval between target
points, and Z is the reference altitude of the low-altitude flight. The longitude channel,
lateral channel, and altitude channel are all controlled by the VFH method, as shown
in Equation (25), enabling safe terrain avoidance when the helicopter heading direction
is locked to the target. If the target is lost in view, which may be caused by detection
network failure, helicopter attitude oscillation, or terrain occlusion, the fast approach task
is converted back to the long-range penetration task with revised target points.

XTarget = X + nd cos ψ

YTarget = Y + nd sin ψ

ZTarget = Z
, n = 1, 2, 3, . . . (24)


rRe f = −kr(bx − bmid)
u = uRGBXVFH
v = vRGBYVFH
w = wRGBZVFH

. (25)

The control laws of the fast avoidance and circuitous flight are similar to those of the
fast approach, as shown in Equation (23). The VFH method provides different maneuvers
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by setting different target points. The target points of fast avoidance and circuitous flight
are placed as shown in Equations (26) and (27), respectively, where T is the predefined time
interval to sample the history path points, and (XDestination, YDestination) are the coordinates
of the original destination. For circuitous flight, the target points are placed on the side of
the helicopter, and the desired direction of the VFH method is converted to lateral control
commands in the body coordinates. The direction of the lateral maneuver is determined
according to the threat position, destination position, and history path. Generally, using
three control channels to follow the control commands of the VFH method can ensure
that the helicopter safely escapes the threat and takes cover behind the terrain to change
its visibility. 

XTarget = Xt−nT
YTarget = Yt−nT
ZTarget = Zt−nT

, n = 1, 2, 3, . . . (26)


XTarget = X− nd sin ψsgn(∆(

[
cos ψ
sin ψ

]
,
[

XDestination − X
YDestination −Y

]
))

YTarget = Y + nd cos ψsgn(∆(
[

cos ψ
sin ψ

]
,
[

XDestination − X
YDestination −Y

]
))

ZTarget = Z

, n = 1, 2, 3, . . . (27)

5. Simulation Experiments

In order to verify the performance of the proposed control framework, we built a typi-
cal mountainous map including target or threat facilities, as shown in Figure 20. The target
and threat facilities were set at the same position, as were the helicopter initial position and
original destination, to better compare the flight performance of the different flight tasks.
We designed four flight scenes by defining different facilities in the target/threat position
to carry out long-range penetration, fast approach, fast avoidance, and circuitous flight.
The installation and parameters of the virtual camera and Lidar were the same as those of
the simulations in Section 3.
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The long-range penetration flight path is illustrated in Figure 21a. The target/threat
was removed from the map. The helicopter followed the command of the VFH method
on the premise of low altitude. The helicopter first flew along the hillside of the right-side
mountain, and then selected the middle valley to approach the destination. At this moment,
the left-side terrain blocked the destination, and the helicopter continued to fly along the
hillside of the left-side terrain. When the terrain altitude became low, the helicopter went
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over the terrain gap and finally arrived at the destination. The whole flight path was similar
to that observed for terrain avoidance in Section 3.2, showing good performance.
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The flight path of the fast approach is illustrated in Figure 21b. A target facility was
set in the target/threat position. At the initial position, the target was blocked by the
right-side mountain, and the helicopter followed the command of the VFH method. When
the helicopter bypassed the right-side mountain, the target was detected. The helicopter
flew straight toward the target along the middle valley. Here, the forward velocity could be
tuned by changing the control gain u to realize a faster approaching speed while satisfying
other task requirements. The sight range of the middle valley was wide; the helicopter kept
the target in view and finally reached the target position.

Figure 21c shows the flight path of the fast avoidance task. The facility in the tar-
get/threat position was identified as a serious threat by the detection network. When the
threat was detected, the target points of the VFH method were reset as the path points
behind the right-side mountain. The helicopter maintained its heading toward the threat
and then moved horizontally to fly away from the threat. The control gains of the linear
velocities could be tuned to decrease the flight oscillations and increase the flight stability.
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Finally, the helicopter flew behind the obstacles and changed its visibility in a short time,
verifying the effectiveness of the fast avoidance method. The helicopter continued to fly
laterally for a while after the threat was lost from view, before turning around to head to
the target points.

Figure 21d shows the flight path of the circuitous flight, which mainly contained three
flight phases. The facility in the target/threat position was identified as a small threat.
Firstly, the helicopter executed long-range penetration and flew along the hillside of the
right-side mountain, just as in the previous flight simulations. Then, the helicopter detected
the threat and carried out visual servo control to maintain its heading toward the threat.
The target points of the VFH method were reset and placed on the left side of the helicopter,
which was closer to the destination. The helicopter moved laterally to the left side and
finally flew behind the left-side terrain, changing its visibility. Subsequently, the target
point was set as the original destination, and the helicopter turned left to approach the
destination. Here, the VFH method considered the cost of the current direction, and we
could change the path weight to ensure that the helicopter would not return to the threat
once its visibility changed. We could also manually define a rule for the helicopter to
choose a direction away from the threat. If the threat was detected again during the flight,
the helicopter would repeat the above operations to change the target points and escape
the threat. In the flight simulation, the helicopter bypassed the left-side terrain and finally
arrived at the destination without detecting the threat. For a better comparison of the flight
paths, we present all flight tasks in Figure 22. The decision making and approximate paths
of all flight tasks are shown, verifying the overall control framework and control method
proposed in this study.
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6. Conclusions

In this study, the implementation of unmanned helicopter operations for low-altitude
flight was investigated. Specific flight scenes in mountainous terrains were discussed in
detail. We introduced target and threat recognition into the overall control framework,
and we disassembled the low-altitude flight into several basic tasks. The target and threat
were identified using the YOLO network. Using the anchor box of the YOLO network, the
helicopter realized stable and effective visual servo control in the flight simulations. The 3D
VFH method was used for terrain avoidance of the helicopter, achieving good adaptability
and performance in unknown mountainous terrains.

Visibility judgment is crucial for low-altitude flight, yet it was rarely investigated
in previous research. We proposed a direct-viewing method which can quickly estimate
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helicopter visibility without comprehensive map information or threat positions. On this
basis, we built the overall control framework using a finite state machine. Such a design
incorporated four flight tasks to cover most flight scenes encountered in low-altitude
flight. A coupling control method of visual servo control and terrain avoidance was
developed to realize these tasks, and their performance was verified through high-fidelity
flight simulations.

Using the overall control framework presented in this research, the helicopter could
automatically complete complex flight tasks such as fast attack, cover concealment, and
circuitous flight similar to human pilots. The control methods are explicable, and the
control gains can be tuned to adapt to various flight tasks and scenes. Furthermore, some
implementations of the framework can be optimized. For example, the detection network
may lose the target, rendering the visual servo control invalid. This can be improved by
designing state observers and filters. The target point selection of the VFH method can be
further optimized to improve the flight performance and efficiency.
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software, Z.J. and L.N.; validation, Z.J. and L.N.; formal analysis, Z.T.; investigation, Z.J.; resources,
D.L. and J.X.; data curation, Z.J.; writing—original draft preparation, Z.J. and L.N.; writing—review
and editing, D.L. and Z.T.; supervision, D.L. and Z.T.; project administration, D.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hassan, S.; Ali, A.; Rafic, Y. A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance,

fault diagnosis and tolerant control. IEEE Aerosp. Electron. Syst. Mag. 2018, 33, 14–33.
2. Lee, H.; Kim, H.J. Trajectory tracking control of multirotors from modelling to experiments: A survey. Int. J. Control Autom. Syst.

2016, 15, 281–292. [CrossRef]
3. Yang, H.; Lee, Y.; Jeon, S.Y.; Lee, D. Multi-rotor drone tutorial: Systems, mechanics, control and state estimation. Intell. Serv. Robot.

2017, 10, 79–93. [CrossRef]
4. Nascimento, T.P.; Saska, M. Position and attitude control of multi-rotor aerial vehicles: A survey. Annu. Rev. Control 2019, 48,

129–146. [CrossRef]
5. Skowron, M.; Chmielowiec, W.; Glowacka, K.; Krupa, M.; Srebro, A. Sense and avoid for small unmanned aircraft systems:

Research on methods and best practices. Proc. Inst. Mech. Eng. 2019, 233, 6044–6062. [CrossRef]
6. Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using monocular visual-inertial

fusion. J. Field Robot. 2018, 35, 23–51. [CrossRef]
7. Faessler, M.; Fontana, F.; Forster, C.; Mueggler, E.; Pizzoli, M.; Scaramuzza, D. Autonomous, Vision-based Flight and Live Dense

3D Mapping with a Quadrotor Micro Aerial Vehicle. J. Field Robot. 2015, 33, 431–450. [CrossRef]
8. Doukhi, O.; Lee, D.J. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in

Unknown Outdoor Environments: Real-Time Flight Experiments. Sensors 2021, 21, 2534. [CrossRef]
9. Zhou, Y.; Lai, S.; Cheng, H.; Hamid, M.; Chen, B.M. Towards Autonomy of Micro Aerial Vehicles in Unknown and GPS-denied

Environments. IEEE Trans. Ind. Electron. 2021, 68, 7642–7651. [CrossRef]
10. Jin, Z.; Li, D.; Wang, Z. Research on the Operating Mechanicals of the Helicopter Robot Pilot. In IOP Conference Series: Materials

Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 887, p. 012022.
11. Jeong, H.; Kim, J.; Shim, D.H. Development of an Optionally Piloted Vehicle using a Humanoid Robot. In Proceedings of the

52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014.
12. Kovalev, I.V.; Voroshilova, A.A.; Karaseva, M.V. On the problem of the manned aircraft modification to UAVs. In Journal of Physics:

Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1399, p. 055100.
13. Hu, J.; Gu, H. Survey on Flight Control Technology for Large-Scale Helicopter. Int. J. Aerosp. Eng. 2017, 2017, 5309403. [CrossRef]
14. Xiang, Y.; Zhang, Y. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects. Prog.

Aerosp. Sci. 2015, 74, 152–166.

http://doi.org/10.1007/s12555-015-0289-3
http://doi.org/10.1007/s11370-017-0224-y
http://doi.org/10.1016/j.arcontrol.2019.08.004
http://doi.org/10.1177/0954410019867802
http://doi.org/10.1002/rob.21732
http://doi.org/10.1002/rob.21581
http://doi.org/10.3390/s21072534
http://doi.org/10.1109/TIE.2020.3008378
http://doi.org/10.1155/2017/5309403


Drones 2022, 6, 150 24 of 25

15. Bijjahalli, S.; Sabatini, R.; Gardi, A. Advances in Intelligent and Autonomous Navigation Systems for small UAS. Prog. Aerosp. Sci.
2020, 115, 100617. [CrossRef]

16. Marantos, P.; Karras, G.C.; Vlantis, P.; Kyriakopoulos, K.J. Vision-based Autonomous Landing Control for Unmanned Helicopters.
J. Intell. Robot. Syst. 2017, 92, 145–158. [CrossRef]

17. Lin, C.H.; Hsiao, F.Y.; Hsiao, F.B. Vision-Based Tracking and Position Estimation of Moving Targets for Unmanned Helicopter
Systems. Asian J. Control Affil. ACPA Asian Control Profr. Assoc. 2013, 15, 1270–1283. [CrossRef]

18. Lin, F.; Dong, X.; Chen, B.M.; Lum, K.Y.; Lee, T.H. A Robust Real-Time Embedded Vision System on an Unmanned Rotorcraft for
Ground Target Following. IEEE Trans. Ind. Electron. 2012, 59, 1038–1049. [CrossRef]

19. Yong, C.; Liu, H.L. Feature article: Overview of landmarks for autonomous, vision-based landing of unmanned helicopters. IEEE
Aerosp. Electron. Syst. Mag. 2016, 31, 14–27.

20. Miao, C.; Li, J. Autonomous Landing of Small Unmanned Aerial Rotorcraft Based on Monocular Vision in GPS-denied Area.
IEEE/CAA J. Autom. Sin. 2015, 2, 109–114.

21. Andert, F.; Adolf, F.; Goormann, L.; Dittrich, J. Autonomous Vision-Based Helicopter Flights through Obstacle Gates. J. Intell.
Robot. Syst. 2009, 57, 259–280. [CrossRef]

22. Marlow, S.Q.; Langelaan, J.W. Local Terrain Mapping for Obstacle Avoidance Using Monocular Vision. J. Am. Helicopter Soc. 2011,
56, 22007. [CrossRef]

23. Hrabar, S. An evaluation of stereo and laser—Based range sensing for rotorcraft unmanned aerial vehicle obstacle avoidance. J.
Field Robot. 2012, 29, 215–239. [CrossRef]

24. Paul, T.; Krogstad, T.R.; Gravdahl, J.T. Modelling of UAV formation flight using 3D potential field. Simul. Model. Pract. Theory
2008, 16, 1453–1462. [CrossRef]

25. Javier, G.; Gandolfo, D.C.; Salinas, L.R.; Claudio, R.; Ricardo, C. Multi-objective control for cooperative payload transport with
rotorcraft UAVs. ISA Trans. 2018, 80, 481–502.

26. Gimenez, J.; Salinas, L.R.; Gandolfo, D.C.; Rosales, C.D.; Carelli, R. Control for cooperative transport of a bar-shaped payload
with rotorcraft UAVs including a landing stage on mobile robots. Int. J. Syst. Sci. 2020, 51, 3378–3392. [CrossRef]

27. Watson, N.A.; Owen, I.; White, M.D. Piloted Flight Simulation of Helicopter Recovery to the Queen Elizabeth Class Aircraft
Carrier. J. Aircr. 2020, 57, 742–760. [CrossRef]

28. Topczewski, S.; Narkiewicz, J.; Bibik, P. Helicopter Control During Landing on a Moving Confined Platform. IEEE Access 2020, 8,
107315–107325. [CrossRef]

29. Ngo, T.D.; Sultan, C. Variable Horizon Model Predictive Control for Helicopter Landing on Moving Decks. J. Guid. Control Dyn.
2021, 45, 774–780. [CrossRef]

30. Zhao, S.; Hu, Z.; Yin, M.; Ang, K.Z.; Liu, P.; Wang, F.; Dong, X.; Lin, F.; Chen, B.M.; Lee, T.H. A Robust Real-Time Vision System
for Autonomous Cargo Transfer by an Unmanned Helicopter. IEEE Trans. Ind. Electron. 2014, 62, 1210–1219. [CrossRef]

31. Truong, Q.H.; Rakotomamonjy, T.; Taghizad, A.; Biannic, J.-M. Vision-based control for helicopter ship landing with handling
qualities constraints. IFAC-PapersOnLine 2016, 49, 118–123. [CrossRef]

32. Huang, Y.; Zhu, M.; Zheng, Z.; Low, K.H. Linear Velocity-Free Visual Servoing Control for Unmanned Helicopter Landing on a
Ship with Visibility Constraint. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 2979–2993. [CrossRef]

33. Chen, Y.B.; Yu, J.Q.; Su, X.L.; Luo, G.C. Path Planning for Multi-UAV Formation. J. Intell. Robot. Syst. 2015, 77, 229–246. [CrossRef]
34. Bassolillo, S.R.; Blasi, L.; D’Amato, E.; Mattei, M.; Notaro, I. Decentralized Triangular Guidance Algorithms for Formations of

UAVs. Drones 2022, 6, 7. [CrossRef]
35. Fei, Y.; Sun, Y.; Shi, P. Robust Hierarchical Formation Control of Unmanned Aerial Vehicles via Neural-Based Observers. Drones

2022, 6, 40. [CrossRef]
36. Karimoddini, A.; Lin, H.; Chen, B.M.; Tong, H.L. Hybrid three-dimensional formation control for unmanned helicopter. Automatica

2013, 49, 424–433. [CrossRef]
37. Hu, D.; Yang, R.; Zuo, J.; Zhang, Z.; Wang, Y. Application of Deep Reinforcement Learning in Maneuver Planning of Beyond-

Visual-Range Air Combat. IEEE Access 2021, 9, 32282–32297. [CrossRef]
38. Yang, Q.; Zhang, J.; Shi, G.; Hu, J.; Wu, Y. Maneuver Decision of UAV in Short-Range Air Combat Based on Deep Reinforcement

Learning. IEEE Access 2019, 8, 363–378. [CrossRef]
39. Kivelevitch, E.; Ernest, N.; Schumacher, C.; Casbeer, D.; Cohen, K. Genetic Fuzzy Trees and their Application Towards Au-

tonomous Training and Control of a Squadron of Unmanned Combat Aerial Vehicles. Unmanned Syst. 2015, 3, 185–204.
40. Chamberlain, L.; Scherer, S.; Singh, S. Self-aware helicopters: Full-scale automated landing and obstacle avoidance in unmapped

environments. In Proceedings of the 67th American Helicopter Society International Annual Forum 2011, Virginia Beach, WV,
USA, 3–5 May 2011; pp. 3210–3219.

41. Nikolajevic, K.; Belanger, N. A new method based on motion primitives to compute 3D path planning close to helicopters’
flight dynamics limits. In Proceedings of the 7th International Conference on Mechanical and Aerospace Engineering (ICMAE),
Cambridge, UK, 18–20 July 2016; Volume 23, pp. 411–415.

42. Schopferer, S.; Adolf, F.M. Rapid trajectory time reduction for unmanned rotorcraft navigating in unknown terrain. In Proceedings
of the International Conference on Unmanned Aircraft Systems (ICUAS), Wyndham Grand, Orlando Resort, Orlando, FL, USA,
27–30 May 2014; pp. 305–316.

http://doi.org/10.1016/j.paerosci.2020.100617
http://doi.org/10.1007/s10846-017-0702-7
http://doi.org/10.1002/asjc.654
http://doi.org/10.1109/TIE.2011.2161248
http://doi.org/10.1007/s10846-009-9357-3
http://doi.org/10.4050/JAHS.56.022007
http://doi.org/10.1002/rob.21404
http://doi.org/10.1016/j.simpat.2008.08.005
http://doi.org/10.1080/00207721.2020.1815096
http://doi.org/10.2514/1.C035733
http://doi.org/10.1109/ACCESS.2020.3000294
http://doi.org/10.2514/1.G005789
http://doi.org/10.1109/TIE.2014.2345348
http://doi.org/10.1016/j.ifacol.2016.09.021
http://doi.org/10.1109/TSMC.2021.3062712
http://doi.org/10.1007/s10846-014-0077-y
http://doi.org/10.3390/drones6010007
http://doi.org/10.3390/drones6020040
http://doi.org/10.1016/j.automatica.2012.10.008
http://doi.org/10.1109/ACCESS.2021.3060426
http://doi.org/10.1109/ACCESS.2019.2961426


Drones 2022, 6, 150 25 of 25

43. Whalley, M.S.; Takahashi, M.D.; Fletcher, J.W.; Moralez, E.; Ott, L.C.R.; Olmstead, L.M.G.; Savage, J.C.; Goerzen, C.L.; Schulein,
G.J.; Burns, H.N.; et al. Autonomous Black Hawk in Flight: Obstacle Field Navigation and Landing—Site Selection on the
RASCAL JUH—60A. J. Field Robot. 2014, 31, 591–616. [CrossRef]

44. Sridhar, B.; Cheng, V.H.L. Computer vision techniques for rotorcraft low-altitude flight. Control Syst. Mag. IEEE 1988, 8, 59–61.
[CrossRef]

45. Friesen, D.; Borst, C.; Pavel, M.D.; Stroosma, O.; Masarati, P.; Mulder, M. Design and Evaluation of a Constraint-Based Head-Up
Display for Helicopter Obstacle Avoidance. J. Aerosp. Inf. Syst. 2021, 18, 80–101. [CrossRef]

46. Zheng, J.; Liu, B.; Meng, Z.; Zhou, Y. Integrated real time obstacle avoidance algorithm based on fuzzy logic and L1 control
algorithm for unmanned helicopter. In Proceedings of the Chinese Control And Decision Conference (CCDC), Shenyang, China,
9–11 June 2018; pp. 1865–1870.

47. Chandrasekaran, R.; Payan, A.P.; Collins, K.B.; Mavris, D.N. Helicopter wire strike protection and prevention devices: Review,
challenges, and recommendations. Aerosp. Sci. Technol. 2020, 98, 105665. [CrossRef]

48. Merz, T.; Kendoul, F. Dependable Low-Altitude Obstacle Avoidance for Robotic Helicopters Operating in Rural Areas. J. Field
Robot. 2013, 30, 439–471. [CrossRef]

49. Wang, D.; Li, W.; Liu, X.; Li, N.; Zhang, C. UAV environmental perception and autonomous obstacle avoidance: A deep learning
and depth camera combined solution. Comput. Electron. Agric. 2020, 175, 105523. [CrossRef]

50. Aldao, E.; Gonzalez-Desantos, L.M.; Michinel, H.; Gonzalez-Jorge, H. UAV Obstacle Avoidance Algorithm to Navigate in
Dynamic Building Environments. Drones 2022, 6, 16. [CrossRef]

51. Hermand, E.; Nguyen, T.W.; Hosseinzadeh, M.; Garone, E. Constrained Control of UAVs in Geofencing Applications. In
Proceedings of the 26th Mediterranean Conference on Control and Automation, Zadar, Croatia, 19 June 2018; pp. 217–222.

52. Jiang, M.; Xu, C.; Ji, H. Path Planning for Aircrafts using Alternate TF/TA. In Proceedings of the Chinese Automation Congress
(CAC), Shanghai, China, 6–8 November 2020; pp. 3702–3707.

53. Kosari, A.; Kassaei, S.I. TF/TA optimal Flight trajectory planning using a novel regenerative flattener mapping method. Sci. Iran.
2020, 27, 1324–1338. [CrossRef]

54. Chen, H.-x.; Nan, Y.; Yang, Y. A Two-Stage Method for UCAV TF/TA Path Planning Based on Approximate Dynamic Program-
ming. Math. Probl. Eng. 2018, 2018, 1092092. [CrossRef]

55. Hao, L.; Cui, J.; Wu, L.; Yang, C.; Yu, R. Research on threat modeling technology for helicopter in low altitude. In Proceedings of
the 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016;
pp. 774–778.

56. Machovina, B.J. Susceptibility Modeling and Mission Flight Route Optimization in a Low Threat, Combat Environment. Doctoral
Thesis, University of Denver, Denver, CO, USA, 2010.

57. Woo, J.W.; Choi, Y.S.; An, J.Y.; Kim, C.J. An Approach to Air-To-Surface Mission Planner on 3D Environments for an Unmanned
Combat Aerial Vehicle. Drones 2022, 6, 20. [CrossRef]

58. Tang, Q.; Zhang, X.; Liu, X. TF/TA2 trajectory tracking using nonlinear predictive control approach. J. Syst. Eng. Electron. 2006,
17, 396–401. [CrossRef]

59. Hilbert, K.B. A Mathematical Model of the UH-60 Helicopter; No. NASA Technical Memorandum 85890; NSNA: Washington, DC,
USA, 1984.

60. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

61. Yang, L.; Liu, Z.; Wang, X.; Xu, Y. An Optimized Image-Based Visual Servo Control for Fixed-Wing Unmanned Aerial Vehicle
Target Tracking with Fixed Camera. IEEE Access 2019, 7, 68455–68468. [CrossRef]

62. Yang, L.; Liu, Z.; Wang, X.; Yu, X.; Wang, G.; Shen, L. Image-Based Visual Servo Tracking Control of a Ground Moving Target for
a Fixed-Wing Unmanned Aerial Vehicle. J. Intell. Robot. Syst. 2021, 102, 81. [CrossRef]

63. Vanneste, S.; Bellekens, B.; Weyn, M. 3DVFH+: Real-Time Three-Dimensional Obstacle Avoidance Using an Octomap. In
Proceedings of the Morse 2014—Model-Driven Robot Software Engineering, York, UK, 21 July 2014; Volume 1319, pp. 91–102.

http://doi.org/10.1002/rob.21511
http://doi.org/10.1109/37.480
http://doi.org/10.2514/1.I010878
http://doi.org/10.1016/j.ast.2019.105665
http://doi.org/10.1002/rob.21455
http://doi.org/10.1016/j.compag.2020.105523
http://doi.org/10.3390/drones6010016
http://doi.org/10.24200/sci.2019.51314.2109
http://doi.org/10.1155/2018/1092092
http://doi.org/10.3390/drones6010020
http://doi.org/10.1016/S1004-4132(06)60068-6
http://doi.org/10.1109/ACCESS.2019.2918686
http://doi.org/10.1007/s10846-021-01425-y

	Introduction 
	Problem Formulation 
	Low-Altitude Flight in Complex Mountainous Terrains 
	Modeling Method of the Simulation Environment 

	Target Tracking and Terrain Avoidance 
	Target Tracking 
	Target Recognition 
	Visual Servo Control 

	Terrain Avoidance 

	Autonomous Decision-Making Framework 
	Visibility Judgment 
	Finite State Machine 

	Simulation Experiments 
	Conclusions 
	References

