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Abstract: The control of an aerial flexible joint robot (FJR) manipulator system with underactuation
is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities,
unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new
robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode
observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system.
First, the underactuated FJR is comprehensively modeled and converted to a canonical model by
employing two state transformations for ease of the control design. Then, based on the availability of
the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estimate the unmeasurable
variables and lumped disturbances simultaneously in fixed-time, and to effectively reduce the
estimation noise. Finally, the FxTSMC scheme for a high-order underactuated FJR system is designed
to guarantee that the system tracking error approaches to zero within a fixed-time that is independent
of the initial conditions. The fixed-time stability of the closed-loop system of the FJR dynamics is
mathematically proven by the Lyapunov theorem. Simulation investigations and hardware tests are
performed to demonstrate the efficiency of the proposed controller scheme. Furthermore, the control
technique developed in this research could be implemented to the various underactuated mechanical
systems (UMSs), like drones, in a promising way.

Keywords: underactuation; flexible joint robot (FJR); drones; aerial manipulation; cascaded
fixed-time sliding mode observer (CFxTSMO); fixed-time sliding mode control (FxTSMO)

1. Introduction

Recently, the research on the trajectory tracking control of the FJR has gained much
more consideration due to its merits such as lightweight, high maneuverability, back-
drivability, low energy consumption, and so on [1]. Still, designing a robust control law
for the FJR system with high motion performance is a huge and challenging mission for
researchers in the control community due to inherent system properties. First, the system
order becomes double in the presence of joint flexibility, which reflects the model and
control design complexity [2]. Second, a strong coupling exists between the motor and
the link via torsional springs, illustrating that the FJR system is underactuated, in which
the number of control inputs is lower than the number of outputs to be controlled. Third,
the control performance FJR often seriously suffers from unfavorable factors such as para-
metric uncertainties, unstructured dynamics, non linearities, and unknown perturbations.
Fourth, residual vibration may degrade the control characters such as settling time, rising
time, and overshoot, and this may even lead to mechanical damage.
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In the existing literature on the tracking controller design of the FJR system, there
have been numerous attempts to address the above issues, including PID, passivity-based
control, adaptive control, singular perturbation control, backstepping, and sliding mode
control, etc. [2–19]. Among them, the sliding mode control (SMC) has proven its reputation
in control engineering society owing to its robust performance against system uncertainties
and perturbations [14,15,20,21]. Although existing SMC schemes have asymptotic and fast
finite-time convergence, they are sensitive to the system state’s initial conditions. To cope
with this issue, the fixed-time SMC (FxTSMC) has been proposed [22], which is adopted in
this paper for an uncertain high-order FJR system.

In addition, the chattering reduction and the lumped disturbance bound relaxation are
generally important perspectives for the SMC method. These are achieved by incorporating
the SMC with disturbance observer techniques. Many existing observers have been previ-
ously reported in the literature [14,15,21] for the FJR system. Furthermore, the extended
state observer (ESO) has been proven as being a promising observer tool in the active
disturbance rejection control techniques for estimating states and disturbance, which have
been applied for different systems such as drones [23,24]. However, the estimation error
of the states and disturbances in the above observer works can only approach to zero
asymptotically and slowly, and they are sensitive to the initial conditions. In reality, the con-
vergence speed of such observers greatly affects the control effectiveness of the FJR plant.
To further enhance the observation equality, the current paper proposes a fixed-time slide
mode observer (FxTSMO) featured with bounded settling time, irregardless of the initial
conditions for an underactuated FJR to estimate unmeasurable states and lumped distur-
bances accurately. Moreover, the cascaded fixed-time sliding mode observer (CFxTSMO) is
adopted to reduce the estimation noise and peaking phenomena in the estimations, which
are critical in the hardware implementation of a high-order system.

The proposed algorithm makes the following contributions:

(i) The integrated dynamic modeling of the underactuated FJR system is well established,
and the detailed analysis is also given. By using the Olfati and flatness transformation,
the established FJR dynamic model is converted into a canonical representation, which
then is cascaded due to two available states. Thus, the coupling issue in the control
input of the underactuated FJR system is handled through these transformations.
Accordingly, no linearization nor approximation are needed due to the fact that the
FJR system in practice has inevitably complex nonlinearities caused by flexibility,
friction, and other sources.

(ii) The CFxTSMO is constructed based on the cascaded structure to greatly smooth out the
measurement noise in the fixed-time estimates of unknown states and disturbances,
which makes the FxTSMC scheme feasible for the real FJR system. Via the aid of
such smooth estimations, a fixed-time sliding surface is newly designed to ensure
a fixed-time convergence, which needs a partial knowledge of the estimation states,
including the velocity and jerk signal, whereas a position and an acceleration signal
can be measured.

(iii) Unlike the existing finite-time convergent controller works [20,25] for fourth-order sys-
tems, the proposed FxTSMC controller for the FJR system with fourth-order practically
guarantees not only fixed-time convergence, even in the presence of the initial condi-
tions, but it also ensures a total robustness against disturbances and estimation error.

(iv) The fixed-time stability of the whole closed-loop FJR plant is theoretically proven.
Compared with some simulations works of fixed-time SMC schemes [26–30], the pro-
posed control scheme is practically validated on the actual FJR system. Extensive
simulations and persuasive experimental results are provided to show its tracking effi-
ciency and robustness performance against disturbances and initial conditions. To the
best of our knowledge, the proposed CFxTSMO-based FxTSMC scheme is reported
here for the first time in the open literature for the FJR system and underactuated
mechanical systems (UMSs). This study presents our controller as a good control
candidate for other kinds of UMSs, including drone systems.
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The following is the organization of the rest of the work. The mathematical model
of the FJR plant, as well as the coordinates transformation, are presented in Section 2.
The proposed controller and observer, and their corresponding stability proofs, are analyzed
in Section 3. In Section 4, the numerical simulations and experimental results validating
the performance of proposed controllers for the real FJR system are provided. In the last,
some concluding remarks wrap up this article in Section 5.

2. Dynamic Modeling
2.1. Description of the Single-Link FJR System

The fly robot arm is amounted to many drones to perform handling and unhandling
tasks, which can be can considered as the FJR system. In this work, we will study the FJR
system under the motion of drones. The FJR system shown in Figure 1 is made up of two
similar springs, a DC motor, an aluminum chassis, two encoders, a free rigid link, and a
set of gear speed reduction. The driving torque for this device is transmitted from the
DC motor to the system link via the gearbox and the springs, according to its operating
principle. Unfortunately, the flexibility of these springs causes the link to vibrate, which
can negatively impact upon the performance of the link movement.

The basic sketch of the FJR system attached to the drones is presented in Figure 1
to show the main coordinates with which the FJR can be characterized in the dynamic
modeling. As illustrated in Figure 1, the variables α and θ are the link deflection angle and
the motor position angle, respectively, which can be read by two encoders, respectively.
The summation of α and θ is the overall link tip position angle denoted by γ.
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Drone with the Fly FJR arm  

Figure 1. Sketch of the FJR system attached to drone.

2.2. FJR Dynamic Modeling

In the introduction of high gear reduction and other elastic mechanisms, as in reality,
the FJR dynamics consist of two sides coupled by the joint flexibility, that is, the link side
dynamics [21]

α̈(t)− a1α(t)− a3θ̇(t) = b1u(t) (1)

and motor side dynamics

θ̈(t)− a2α(t)− a4θ̇(t) = b2u(t) (2)
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with

a1 = −
Ks
(

Jeq + Jarm
)

Jeq Jarm
; a2 =

Ks

Jeq
; a3 =

ηmηgKtKmK2
g + BeqRm

JeqRm
;

a4 = −a3; b1 = −
ηmηgKtKg

JeqRm
; b2 = −b1

where the descriptions and typical values of all involved quantities appearing in (1) and (2)
are: Jarm (0.0019 kg.m2) and Jeq (0.0021 kg.m2) are the inertia of the arm and the equiva-
lent motor, respectively; Ks (1.2485 N.m/rad) is the joint stiffness, Beq (0.004 N.m.s/rad)
is the equivalent viscous friction coefficient, Rm (2.6 Ω) is the armature resistance, Km
(0.00767 V.s/rad) is the motor back-EMF constant, Kt (0.00767 N.m/A) is the constant of
motor torque, Kg (14:5) is the high gear ratio, ηg (0.9) and ηm (0.69) are the efficiencies of
the gearbox and motor, respectively; and u stands for the control voltage, which will be
produced by the proposed control scheme.

In the current paper, taking the parameters variations into account in both the motor
and the link element, we formulate the parametric uncertainties with their upper-bounds,
as follows: ∣∣∣4Jeq

∣∣∣ = ∣∣Jeq − Jeq0
∣∣ ≤ 4Jeq∣∣4Jarm

∣∣ = |Jarm − Jarm0| ≤ 4Jarm

|4Ks | = |Ks − Ks0| ≤ 4Ks (3)∣∣∣4Beq

∣∣∣ = ∣∣Beq − Beq0
∣∣ ≤ 4Beq

where Jeq0, Jarm0, Ks0 and Beq0 represent the nominal parameters of the FJR system as given
above;4Jeq0 ,4Jarm ,4Ks0 , and4Beq0 denote the parametric uncertainties; and4Beq ,4Jarm ,

4Ks , and4Jeq stand for the upper-bounds of the corresponding parameters.
Let us define the FJR system state vector as η = [η1, η2, η3, η4]

T = [α, α̇, θ, θ̇]T .
Using the nominal plant and considering parametric uncertainties, external perturbations,
and nonlinearities resulting from the flexibility and friction, the state–space form of the
overall dynamic of the FJR system in (1) and (2) is described as follows:

Link subsystem η̇1(t) = η2(t)

η̇2(t) = f10(η) + b10u + τdl(η, u, wl) + Osp(α)

Motor subsystem η̇3(t) = η4(t)

η̇4(t) = f20(η) + b20u + τdm(η, u, wm) + Osp,fric(α, θ̇)

System output ηo(t) = [η1(t) = α(t), η3(t) = θ(t)]T (4)

where the output state vector ηo(t) has α(t) and θ(t), which are available for measurement;
f10(η) and f20(η) are the nominal functions of the motor and link subsystem, respectively,
described as

f10(η) = a10α(t) + a30θ̇(t)
f20(η) = a20α(t) + a40θ̇(t). (5)

τdl(η, u, wl) and τdm(η, u, wm) are the lumped disturbances of both subsystem dynam-
ics, which are given by

τdl(η, u, wl) = 4 f1(η) +4b1u + wl(η, t)

τdm(η, u, wm) = 4 f2(η) +4b2u(t) + wm(η, t) (6)
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where wl(η, t) and wm(η, t) are the unmodeled dynamics and external disturbances acting
on both dynamics;4 f1(η) and4 f2(η) are the terms of parametric uncertainty multiplied
by states in both the subsystem functions f1(η) and f2(η), respectively, which are defined as

4 f1(η) = 4a1α(t) +4a3θ̇(t)
4 f2(η) = 4a2α(t) +4a4θ̇(t). (7)

Furthermore, Osp(α) and Osp,fric(α, θ̇) in (4) are high-order nonlinear terms of the link
and motor dynamics due to flexibility and friction. To capture the nonlinearity caused by
the flexibility, since the relationship of spring torque-deflection is nonlinear in practice,
the total spring torque of the elastic mechanism (such as gears, brings, tendons, etc.) is
described by

τsp = Ksα + Ksnα3; Ks > 0 (8)

where Ks denotes the known spring coefficient associated with the linear part; Ksn indicates
the constant associated with the (cubic) nonlinearity. Based on the value of Ksn, the spring
becomes hard if Ksn > 0, linear if Ksn = 0, and soft if Ksn < 0. From (8), the unknown cubic
nonlinearity of the spring is treated as a high-nonlinear term Osp(α), and (8) becomes

τsp = Ksα + Osp(α) (9)

in which its first term is already covered in the differential Equations (1) and (2), while the
second term is considered in (4).

Concerning friction nonlinearities; this is because the friction model in the motor drive
side consists of viscous and Coulomb terms, for an example. To capture the nonlinear
friction behavior, the total friction torque of the motor, along with a speed operation θ̇, is
described by

τfric = Beq θ̇ + Fc sign(θ̇) (10)

where Beq is the linear viscous friction coefficient as defined with the system parameters, and
Fc > 0 denotes the Coulomb friction coefficient associated with the nonlinear part, which
is unknown. By defining the unknown friction nonlinearity Fc sign(θ̇) as the nonlinear
friction term Ofric(θ̇), the friction model (10) can be rewritten as

τfric = Beq θ̇ + Ofric(θ̇) (11)

in which the first term is already included in the motor subsystem dynamics in (2) and
the second complex nonlinearity term is combined with Osp(α) to constitute the total
nonlinearity Osp,fric(α, θ̇) of the motor drive dynamics (4), as follows:

Osp,fric(α, θ̇) = Ksnα3 + Fc sign(θ̇). (12)

2.3. State Transformation Procedure of the Underactuated FJR Manipulator

To get rid of the underactuation and coupling issue in the FJR system (4), the Olfati’s
global coordinate transformation [31] is used as follows

z1(t) = η1(t)−
∫ η3

0

b10

b20
ds = η1(t) + η3(t)

z2(t) = η2(t)−
b10

b20
η4(t) = η2(t) + η4(t)

z3(t) = η3(t)

z4(t) = η4(t) (13)

where

b10 = −
ηmηgKtKg

Jeq0Rm
; b20 = −b10.
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By differentiating (13) by substituting the coupled underactuated FJR (4), the original
FJR system (4) is converted into the following decoupled FJR model in a cascade form as

ż1(t) = z2(t)

ż2(t) = z3 + du(z, wl , wm)

ż3(t) = z4(t)

ż4(t) = f2(α, θ̇) + b2u + dm(z, u, wm) (14)

with
du(z, wl , wm) = −z3 + f10(z) + f20(z) + τdl + τdm + Osp + Osp,fric;

= −z3 + (a10 + a20)(z1 − z3) + τdlm + Ou;

where
τdlm = τdl + τdm; Ou = Osp + Osp,fric

dm(z, u, wm) = τdm + Om and Om = Osp,fric

where z = [z1(t) = γ(t), z2(t) = γ̇(t), z3(t) = θ(t), z4(t) = θ̇(t)]T is the state vector in
the new Z-space; du and dm are the state-dependent unmatched and matched disturbances,
respectively. Ou and Om denote the state-dependent unmatched and matched nonlinearities.

In order to make the controller design of (14) more manageable, the mismatched distur-
bance du(z, wl , wm) is turned out to the matched one by utilizing the flatness method [32].
Based on this method, the output z1(t) of dynamics (14) is differentiated four times, since
the FJR system possesses the four relative degree. Accordingly, let the new states as
x1(t) = z1(t), x2(t) = ż1(t), x3(t) = z̈1(t) and x4(t) =

...
z 1(t) be defined; the flatness

method allows us to explicitly obtain the following input–output differential equation as

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = x4(t)

ẋ4(t) = b0u(t) + ξ(x, u, d)

y(t) = x1(t) (15)

with

b0 =
ηmηgKtKgKs0

Jarm0 Jeq0Rm

which represents a single-input-single output (SISO) dynamics with the new phase variable
vector x = [x1 = γ, x2 = γ̇, x3 = γ̈, x4 =

...
γ]T , including the displacement, velocity, and

jerk signal of the rigid link. As shown in (15), an overall matched disturbance ξ(x, u, d) act-
ing on the SISO FJR plant may include many elements, i.e., the dynamics of nominal motor
and manipulator, unstructured dynamics, parametric uncertainties, external disturbances,
and nonlinearities caused by the flexibility and other sources, and it is mathematically
defined as follows

ξ(x, u, d) = −a30
...
x 1 + a10 ẍ1 +

Ks0a30

Jarm0
ẋ1︸ ︷︷ ︸

FJR manipulator dynamics

+ d(x, u, w)︸ ︷︷ ︸
state-dependent uncertainties

+ O(x, u)︸ ︷︷ ︸
state and input-dependent nonlinearities

(16)

with

d(x, u, w) = τ̈dlm(η, u, wl , wm) + τdm(η, u, wm),

O(x) = Öu(x) + Om(x).
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For the simplified form (15), the basis control objective of the underactuated FJR is to
design a robust fixed-time controller where there are uncertainties, nonlinearities, external
disturbances, and unknown initial conditions. Therefore, the the link end-effector x1 = γ,
the so-called flat output of the canonical SISO system (15), will track and rotate as desired
xd in fixed-time with minimum link oscillations α(t) at the same time.

Remark 1. From the dynamics (14), it is noted that in the second channel equation, there is a zero
dynamics; this illustrates that the output second time derivative ż2(t) = z̈1(t) (acceleration signal)
is expressible as a function of the measurable angular vibration α(t) as

x3(t) = ż2(t) = z̈1(t) = (a10 + a20)(z1 − z3) + dlump(α, t)

= − Ks0

Jarm0
α(t) + dlump(α, t) (17)

where dlump = τdlm + Ou is the lumped disturbance in that channel involving all of the nonlin-
earities and uncertainties. In (17), dlump has a weak influence due to its dependence on a small
amplitude of angular link deflection α(t), which should be well suppressed to attain the control aim
in this paper. Consequently, the physical meaning of (17) is that the angular acceleration of link
x3(t) = ẍ(t) = ż2(t) proportionally affects its oscillation angle α(t) = z1(t)− z3(t).

3. Compound Controller Design and Stability Proof
3.1. CFxTSMO Observer Design and Stability Analysis

Since two availabilities of states measurements exist in the original underactuated
FJR system (4), the dynamics (15) can be cascaded into two independent subsystems.
The control signal u(t) actuates the first subsystem integrated twice to accelerate the
system (15), i.e., the acceleration variable x3(t) = ẍ, considered as the auxiliary input,
actuates the second subsystem with two integrators to lead to the position variable of
the whole system (15), i.e., x1 = θ + α. By utilizing the cascaded structure and the zero
dynamics (17), the fourth-order FJR system (15) can be divided into two dynamics; the first
subsystem dynamics is represented as

ẋ1(t) = x2(t)

ẋ2(t) = x3(t) = −
Ks0

Jarm0
α(t) + dlump(α, t).

(18)

In contrast, the second dynamics regarding x5(t) = ξ(x, u, d) as an extended state is
as follows

ẋ3(t) = x4(t)
ẋ4(t) = x5(t) + b0u(t)

ẋ5(t) = ξ̇(x, u, d).

(19)

Based on (18) and (19), the CFxTSMO technique consists of a fixed-time state observer
(FxTSO) and a fixed-time extended state observer (FxTESO), that is employed not only
to observer virtual states and lumped disturbances in fixed-time, but also to reduce the
level of measurement noise. To estimate the velocity variable x2 in the first subsystem (18),
and the jerk signal x4 and the unknown generalized disturbance ξ in the second subsys-
tem (19), the FxTSO and FxTESO estimator are designed for both dynamics (18) and (19),
respectively, as

˙̂x1 = x̂2 + λ1 ϕ1dẽ1c
1
2 + k1(1− ϕ1)dẽ1c

2+γ1
2

˙̂x2 = x3 + λ2 ϕ1sign(ẽ1) + k2(1− ϕ1)dẽ1c1+γ1
(20)
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and

˙̂x3 = x̂4 + λ3 ϕ2dẽ3c
2
3 + k3(1− ϕ2)dẽ3c

3+γ2
3

˙̂x4 = x̂5 + bou + λ4 ϕ2dẽ3c
1
3 + k4(1− ϕ2)dẽ3c

3+2γ2
3

˙̂x5 = λ5 ϕ2sign(ẽ3) + k5(1− ϕ2)dẽ3c1+γ2

(21)

with ẽ1 = x1 − x̂1, ẽ3 = x3 − x̂3, where x1 and x3 can be measured using two encoders
existing in the actual system; the values x̂i (i = 1, · · · , 5) are the real-time estimates of

states x̂i (i = 1, · · · , 4) and ξ, respectively. The notation dxc
p
= |x|psign(x) is utilized for

the simplicity of expression.
The above estimators’ dynamics are fixed-time convergent when their parameters

satisfy the following conditions.

1. Gains λi, (i = 1, 2) and λi, (i = 3, 4, 5) of the FxTSO and FxTESO estimators,
respectively, are selected as

λ1 = 1.5
√

L1; λ2 = 1.1L1

λ3 = 6 L
1
3
2 ; λ4 = 11L

1
2
2 ; λ5 = 6L2 (22)

in which the disturbance dlump(α, t) is assumed to be uniformly bounded for all time

by a positive number L1 as
∣∣∣dlump(α, t)

∣∣∣ ≤ L1. In addition, we postulate that the first

derivative of the overall disturbance is bounded by L2 ≥
∣∣ξ̇(x, u, d)

∣∣, where L2 is the
known Lipschitz constant.

2. The exponents γj > 0, (j = 1, 2) are small enough and the observer gains ki, (i = 1, 2)
and ki, (i = 3, 4, 5) for both estimators are chosen such that the following second- and
third-order polynomials, respectively,

Po1(s) = s2 + k1s + k2 = (s + wo1)
2

Po2(s) = s3 + k3s2 + k4s + k5 = (s + wo2)
3 (23)

are Hurwitz, and where wo1 and wo1 are the bandwidths of the second terms in
both estimators.

3. The switched functions ϕj for (j = 1, 2) are:

ϕj(t) =
{

0 if t ≤ Tu
1 otherwise,

(24)

where Tu > 0 represents the switching time. By defining the estimation errors as
ẽ1 = x1 − x̂1, ẽ2 = x2 − x̂2, ẽ3 = x3 − x̂3, ẽ4 = x4 − x̂4, and ẽ5 = ξ − x̂5; and then
combining (20) with (18), and (21) with (19), the observers’ error dynamics of (20)
and (21) are governed by

˙̃e1 = ẽ2 − λ1 ϕ1dẽ1c
1
2 − k1(1− ϕ1)dẽ1c

2+γ1
2

˙̃e2 = dlump − λ2 ϕ1sign(ẽ1)− k2(1− ϕ1)dẽ1c1+γ1
(25)

and

˙̃e3 = ẽ4 − λ3 ϕ2dẽ3c
2
3 − k3(1− ϕ2)dẽ3c

3+γ2
3

˙̃e4 = ẽ5 − λ4 ϕ2dẽ3c
1
3 − k4(1− ϕ2)dẽ3c

3+2γ2
3

˙̃e5 = ξ̇ − λ5 ϕ2sign(ẽ3)− k5(1− ϕ2)dẽ3c1+γ2 .

(26)

According to the work [33], the closed loop of both observer error dynamics (25) and
(26) are fixed-time convergent, with the parameters being satisfied for the above three
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conditions. Thus, the observation errors ẽi, (i = 1, · · · , 5) approach to zero within the
fixed-time, independent of their initial conditions. Additionally, it can be deduced that
the estimations by (20) and (21) converge to their true values after a fixed-time instant, as
in x̂1 = x1, x̂2 = x2, x̂3 = x3, x̂4 = x4, and x̂5 = ξ, with a remarkable noise abatement
because of the utilization of the cascaded structure in the CFxTSMO estimator.

3.2. FxTSMC Design and Stability Analysis

In this subsection, we propose an FxTSMC scheme to ensure high-precision tracking
with the fixed-time convergence of the FJR system in the existence of not only the uncer-
tainties and external disturbances, but also the disturbance initial conditions. Now, let the
tracking error vector e = [e1, e2, e3, e4]

T be defined as

e1(t) = x1(t)− xd(t)

e2(t) = ẋ1(t)− ẋd(t)

e3(t) = ẍ1(t)− ẍd(t)

e4(t) =
...
x 1(t)−

...
x d(t) (27)

which contains the trajectory link tracking errors of position, velocity, acceleration, and jerk
variable, where xd(t) represents a time-variant reference command, which can be differenti-
ated by up to four. Based on (27), the tracking error underactuated FJR system dynamics (15)
can be expressed by

ė1(t) = e2(t)

ė2(t) = e3(t)

ė3(t) = e4(t)

ė4(t) = ξ(x, u, d) + b0u− x(4)d (t). (28)

which will be utilized for the design of the tracking controller.
By the means of two FxTSMO estimators in (20) and (21), the estimations of unmea-

surable states and lumped disturbances are obtained. Based on the partial information of
estimation states, the following full-order fixed-time convergent sliding manifold for the
error-space model (28) is newly defined to ensure a fixed-time tracking error convergence as

σ(t) =b0u + ξ̂(x, u, d)− x(4)d (t) + m4dê4cα4 + m3de3cα3 + m2dê2cα2

+ m1de1cα1 + M4dê4cβ4 + M3de3cβ3 + M2dê2cβ2 + M1de1cβ1 (29)

where ê2 = x̂2 − ẋd, ê4 = x̂4 −
...
x d are the estimated tracking errors, and mi, Mi, αi, and βi

are constants. The coefficients mi > 0 and Mi > 0 (i = 1, 2, 3, 4) are selected such that the
following fourth-order polynomials

Polc1(s) = s4 + m4s3 + m3s2 + m2s + m1 = 0

Polc2(s) = s4 + M4s3 + M3s2 + M2s + M1 = 0 (30)

which have the same order of the FJR dynamics (15), are Hurwitz stable, i.e, the roots of the
two polynomials in (30) have to be placed in the left part of the complex domain. Further-
more, the exponents αi and βi for (i = 1, 2, 3, 4) meet the recurrent relations as follows:

αi−1 =
αiαi+1

2αi+1 − αi
, βi−1 =

βiβi+1

2βi+1 − βi
, i = 2, 3, 4 (31)

where αn+1 = βn+1 = 1, αn = αc ∈ (1− ε, 1) and βn = βc ∈ (1, 1 + ε) for sufficiently
small ε > 0.
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Theorem 1. For the uncertain FJR dynamics (28) with fourth-order under the proposed sliding
mode surface (29), if the following output feedback control law of the FxTSMC is constructed as

u = −b−1
0
(
ueq + usw

)
(32)

ueq = ξ̂(x, u, d)− x(4)d (t) + m4dê4cα4 + m3de3cα3 + m2dê2cα2 + m1de1cα1

+ M4dê4cβ4 + M3de3cβ3 + M2dê2cβ2 + M1de1cβ1 (33)

u̇sw = Γsign(σ) (34)

where the switching gain Γ > 0, (Γ ∈ R), which guarantees the output of the FJR system x1, i.e.,
the angular position of the end-effector of link γ converges to its reference xd in fixed-time with a
bounded convergence time independent of the initial states conditions, which can be computed as

TF 6
λ

ρ1
max(P1)

c1ρ1
+

1
c2ρ2λ

ρ2
min(P2)

(35)

with

ρ1 =
1− α4

α4
; ρ2 =

β4 − 1
β4

; c1 =
λmin(Q1)

λmax(P1)
; c2 =

λmin(Q2)

λmax(P2)

where P1, Q1, P2 and Q2 are symmetric positive definite matrices, which will be given later. For more
details on the derivation procedure of bounded settling time (35), one can refer to the paper [22].

The control structure of the proposed FxTSMC with CFxTSMO scheme for the fourth-
dimensional FJR dynamics is described by Figure 2.

d 

FJR system  (4)

Encoder I

Encoder II

Fixed Time extended  
state observer (21)

Fixed t im e sliding 
m ode controller (32)

CFxT SM O estim ator

Fixed-Time state 
observer (20)

Figure 2. Block diagram of FxTSMC scheme with CFxTSMO estimator.

Proof. The following two steps make up the stability proof:

(1) Finite-Time Convergence of Sliding Function:

The control action in (32) is substituted in the sliding manifold defined by (29);
we obtain:

σ = usw (36)

Differentiating the above dynamics (36) with respect to time yields

σ̇ = −Γsign(σ) (37)

Now, in terms of σ, we choose a Lyapunov function as

Vσ =
1
2

σ2 (38)



Drones 2022, 6, 428 11 of 22

Taking the first-order time derivative of Vσ, we acquire

V̇σ = σσ̇ = −Γ|σ| = −
√

2ΓV
1
2 (39)

which represents a finite-time convergent differential equation. To solve the above equation,
V̇σ in (39) is integrated, resulting in

V
1
2

σ (t) = V
1
2

σ (0)− 1√
2

ΓTr (40)

Therefore, σ and Vσ approach to zero in a finite reaching time Tr.

(2) Fixed-Time Convergence of System Dynamics Tracking Errors (During the Slid-
ing Motion):

As the sliding function dynamics σ approaches to zero in finite-time, as proven in (40),
there exists a bounded convergence time tσ=0 = Tr, which satisfies that the system tracking
error (28) at t ≥ tσ=0, and is maintained in the sliding variable, i.e., σ = 0.

With the observer’s estimation errors (25) and (26) in mind, combining (28) and (29) gives

ė4 =−m4de4 − ẽ4cα4 −m3de3cα3 −m2de2 − ẽ2cα2 −m1de1cα1

−M4de4 − ẽ4cβ4 −M3de3cβ3 −M2de2 − ẽ2cβ2 −M1de1cβ1 + ẽ5 (41)

which is prone to the observer estimation errors ẽ2, ẽ4, and ẽ5. Since the CFxTSMO (25) and
(26) guarantee that the estimation errors move to zero in fixed-time, a bounded fixed-time
tẽ=0 exists, satisfying that when t ≥ tẽ=0, ẽ2 = ẽ4 = ẽ5 = 0 are achieved. A bounded
constant T is defined by

T = max{tσ=0, tẽ=0} (42)

As for the tracking errors’ trajectories, when t < T, shall not go to infinity in finite-time;
ei(T) at t = T in the FJR dynamics (28) is bounded. Taking the definition of T into account,
once the sliding variable σ = 0 and estimation errors ẽi = 0 are achieved when t ≥ T,
the dynamics of the FJR system (41) will reduce to

0 = ė4 +
n=4

∑
i=1

{
mideicαi + Mideicβi

}
(43)

Combining (28) and (43) obtains

ė4 = −
n=3

∑
i=1

{
mi+1

⌈
e(i)1

⌋αi+1
+ Mi+1

⌈
e(i)1

⌋βi+1
}
−m1de1cα1 −M1de1cβ1 (44)

which governs the output tracking error of the system dynamics (28) during the sliding
mode when t ≥ Tr. To analyze the overall FJR system error dynamics in (28) during
the sliding motion (i.e., σ = 0), according to (28) and(43), the closed-loop dynamics for
t ≥ (tẽ=0 + Tr) can be reduced to

ė1 = e2

ė2 = e3

ė3 = e4

ė4 = −m4de4cα4 −m3de3cα3 + m2de2cα2 −m1de1cα1

−M4de4cβ4 −M3de3cβ3 −M2de2cβ2 −M1de1cβ1 (45)

which is fixed-time stable and represents the desired system dynamics on the sliding
motion without sacrificing the nominal control performance, provided that the lumped
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disturbance is accurately estimated and then totally compensated. Based on (45), two
algebraic Lyapunov functions are defined as follows

P1 A1 + AT
1 P1 = −Q1, P2 A2 + AT

2 P2 = −Q2 (46)

where P1 > 0 and P2 > 0 are the solutions of the first and second equation in (46),
respectively, Q1 > 0 and Q2 > 0 are fourth-dimensional matrices Q1, Q2 ∈ R(4×4), and
both matrices A1 and A2 are defined in the controllable canonical model as

A1 =


0 1 0 0
0 0 1 0
0 0 0 1
−m1 −m2 −m3 −m4

 and A2 =


0 1 0 0
0 0 1 0
0 0 0 1
−M1 −M2 −M3 −M4

,

where λmin(Q1) and λmin(Q2) are the minimum eigenvalues of Q1 and Q2, respectively,
and the matrices P1 and P2 have the maximum eigenvalues λmax(P1) and λmax(P2), respec-
tively. Now, the estimated convergence fixed-time can be calculated theoretically using
(35), which does not rely on the initial conditions of the tracking errors.

By analyzing the fixed-time stability here, when t ≥ T, the output tracking error of
the FJR will begin from e1(T) and then approach to zero in the fixed-time, regardless of the
initial conditions; i.e., the fixed-time convergence of the end-effector trajectory of the link
to its input reference is attained. Therefore, we have

lim
t→(T+TF)

e1(t) = 0, (47)

that is,

lim
t→(T+TF)

x1(t) = xd(t) (48)

Here, this proof is completed.

In general, the flow chart and algorithm of the proposed control strategy in this paper
is provided in Figure 3.

Start 

Apply the reference 
trajectory  

Calculate tracking 
errors (27) 

Calculate u
eq

 (33) 
and u

sw
 (34) 

Calculate sliding 
surface (29) 

Calculate u (32) 

Measure actual 
position 

Is time 
operation 

finish  

End 

Yes 

No 

CFxTSMO 
(20) & (21) 

FJR system 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Step 7 

Figure 3. Flow chart and algorithm of proposed FxTSMC scheme with CFxTSMO estimator.
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Remark 2. Based the on stability proofs mentioned above, it is noticed that the position tracking
error of the FJR e1(t) in (28) is firstly attracted to the sliding variable (29) in the instance of finite-
time Tr. Then, it moves on the surface to stabilize to the origin point in fixed-time TF, as unmeasured
states and unknown lumped disturbances are precisely estimated. By summing the time upper
bound of the reaching and sliding mode, the overall time horizon is attained in Tt ≤ (Tr + TF).

Remark 3. It is worth declaring that the flexible joint robot, as described by (4), has similar
underactuated characteristics to many underactuated mechanical systems (UMSs), including ball
and beam, crane systems, oscillator with rotational actuator, drones, and others. Although there
have been many control methods for different UMSs [34–44] and so on, fixed-time convergent SMC
controllers for underactuated systems are still rare in the literature due to substantial difficulties
in analyzing fixed-time stabilities of UMSs [45]. From these perspectives, the control algorithm
designed in this paper could potentially be implemented to the aforementioned UMSs.

4. Simulation and Experimental Results
4.1. Comparisons of Controllers for Validation

To evaluate the merits and to validate the results of the proposed scheme in a simu-
lative and practical fashion, we use two comparative control schemes for a comparison.
For the first comparison, an extended state observer (ESO)-based feedback linearization
(FLC) denoted by (FLC+ESO) [2] is also employed here as a comparison. For the second
comparison, the finite time sliding mode control (FTSMC), is derived from the proposed
control by removing the terms with the exponents of βi in the control law (32), which is
also applied for the FJR system.

In Ref. [2], the ESO for the system model (15) is constructed based on only one
measured state x1, as follows:

˙̂xi = x̂i+1 − Fi(x̂1 − x1) (i = 1, 2, 3)
˙̂x4 = x̂5 − F4(x̂1 − x1) + bou
˙̂x5 = −F5(x̂1 − x1) (49)

where Fi, F4, and F5 stand for the observer parameters tuned by ensuring that the following
fifth-order characteristics function

Pol(s)eso = s5 + F1s4 + F2s3 + F3s2 + F4s + F5 (50)

is Hurwitz stable. Based on such estimations x̂i, for i = 1, . . . , 5, the control action of
FLC + ESO [2] is designed as

u f lc =
1
b0
[−x̂5 + x(4)d − κ4(x̂4 −

...
x d)− κ3(x̂3 − ẍd)− κ2(x̂2 − ẋd)− κ1(x1 − xd)] (51)

where κj (j = 1, 2, 3, 4) stands for the control parameters to be designed such that the poles
of the fourth-order characteristics function represented as follows

Pol f lc(s) = s4 + κ4s3 + κ3s2 + κ2s + κ1 (52)

is assigned in the left part of the complex domain.
For the second comparison, the control law of the FTSMC is designed as follows:

UFTSMC = −b−1
0
(
Ueq + Usw

)
(53)

Ueq = ξ̂(x, u, d)− x(4)d (t) + m4dê4cα4 + m3de3cα3 + m2dê2cα2 + m1de1cα1 (54)

U̇sw = Γsign(σ) (55)



Drones 2022, 6, 428 14 of 22

with

σ(t) =b0u + ξ̂(x, u, d)− x(4)d (t) + m4dê4cα4 + m3de3cα3 + m2dê2cα2 + m1de1cα1 (56)

where the switching gain Γ > 0, (Γ ∈ R) and mi is the sliding surface and control gains,
which can be calculated from the first formula of (30).

The control gains in the proposed control (32), in the FLC+ESO (51) and the FTSMC (53)
strategy must be considered for performing a fair comparison, which are equally tuned by
simplifying their fourth-order characteristics functions (30) and (52), respectively, into

Polc1(s) = Polc2(s) = Pol f lc(s) = (s + ωc)
4 (57)

where ωc = 45 is the aforementioned controllers bandwidth. For our designed controller,
the observer and controller parameters are chosen as

L1 = 14, L2 = 20, 000, wo1 = wo2 = 250,
Tu = 0.05, γ1 = γ2 = 0.06, Γ = 10

α4 = 19/20, α3 = 19/21, α2 = 19/22, α1 = 19/23
β4 = 21/20, β3 = 21/19, β2 = 21/18, β1 = 21/17

In the FLC controller, the parameters of ESO estimator (49) are adjusted based on its
fifth-order polynomial function (50) as

peso(s) = (s + ωeso)
5 (58)

where ωeso = 50 is the bandwidth of the ESO.
Note that the real-time simulation and experimental system use Intel (R) Core (TM),

i5-2500 CPU @3.30 GHz, 3.29 GHz, and 3.16 GB of RAM.

4.2. Simulation Results (Robustness Verification against Initial Conditions)

In this subsection, the simulation results are presented to verify the robustness of the
proposed FxTSMC method against the initial distubance conditions. In the simulation, we
adopt a zero input reference xd = 0 to test the fixed-time convergence of the tracking error
trajectories of the FJR dynamics to the origin. The control parameters are maintained as
those tuned and given previously, except that the control bandwidth is chosen as wc = 40
due to a large discrepancy between the actual and simulated FJR dynamics. In order to
realize the initial conditions insensitivity of the proposed scheme, we consider four sets
of different initial conditions of the FJR system states as follows: x2(0) = 0, x3(0) = 0,
x4(0) = 0, and varying initial values x1(0). These initial values are chosen according to the
angular position range [−450, 450] in the real FJR system.

The simulative results for different cases of the positive initial conditions of the position
are illustrated in Figure 4, in which the time evolution of the link angular displacement,
speed, acceleration, and jerk errors are plotted in Figure 4a–d, respectively. From those, we
see that the tracking error trajectories ei(t), (i = 1, . . . , 4) of the FJR dynamics converge to
zero in fixed-time at about 1.35 s, irrespective of the initial conditions. The zoomed time
history of such tracking errors around the convergence time is provided in these subplots
to show a week dependence on the fixed-time convergence on the initial conditions.

To further confirm the fixed-time convergence property of the proposed controller,
the conventional finite-time SMC (FTSMC) method is used for a comparison. To design a
comparative control, the FTSMC can be recovered from our designed FxTSMC controller
by removing nonlinear terms with exponents greater than one deicβi in the control law (32),
as designed in (53). From Figure 5, the convergence of the link position error to zero with a
precision of 10−7 is within the fixed settling time at about 1.35 s, regardless of the negative
initial conditions of the position. However, the comparative finite-time SMC method does
not settle down during the simulation time under all initial conditions cases.
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Figure 4. Time histories of link tracking errors with different initial conditions. (a) e1(t); (b) e2(t);
(c) e3(t); (d) e4(t).
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Figure 5. Profiles of position tracking errors of link under different initial conditions.
(a) x(0) = [−100, 0, 0, 0]T ; (b) x(0) = [−200, 0, 0, 0]T ; (c) x(0) = [−300, 0, 0, 0]T ;
(d) x(0) = [−400, 0, 0, 0]T .

The vibration suppression in the FJR manipulators is an important aspect in both
theory and engineering applications. Due to this significance, the angular vibration of
the link under different initial conditions is presented in Figure 6. As shown by Figure 6,
the oscillation of the link vanishes to the minimum at the same fixed-time convergence with
a precision of 10−5, even in the presence of the initial disturbance conditions. Thus, it can
be deduced that the proposed FxTSMC is a useful technique for high-precision applications
that require high-accuracy and less residual vibration.
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Figure 6. Profile of angular vibration of link under different initial conditions.
(a) x(0) = [−100, 0, 0, 0]T; (b) x(0) = [−200, 0, 0, 0]T; (c) x(0) = [−300, 0, 0, 0]T; (d) x(0) = [−400, 0, 0, 0]T.

4.3. Introduction of the Experimental Setup

A photograph of the Quanser FJR experimental test setup is shown in Figure 7,
consisting of a Quanser SRVO2 plant, a Quanser flexible joint module, a Quanser Q8-USB
data acquisition board, a VoltPAQ-X1 amplifier, and a PC station equipped with Quanser
WinCon. The rotary FJR module mainly has a direct current (DC) motor, two encoders,
an aluminum chassis and frame, a set of high gear reducers, a rigid link, and two identical
springs. As depicted in Figure 8, the DC servo motor is the most important component of
the platform, which is encased in the solid aluminum frame and equipped with a planetary
gearbox. The function of the gearbox is to provide a driving torque to a top part (including
the aluminum chassis and the solid link) via its internal and external gears. In the top
part, via the gearbox and springs, the driving torque rotates the rigid link mounted on
the aluminum platform in the horizontal plane. Meanwhile, the link vibrates because of
the flexibility of the springs that negatively affects the angular motion of the link. In the
process of operation, two optical encoders measure the motor position angle θ and the link
vibration angle α; the first one is installed on the motor shaft and the second is fixed in the
shaft end with the link.

Rotary Single-link 
Flexible Joint Robot  

(FJR) 
manufactured by 

Quanser company

VoltPAQ-X1 Amplifier
Q8 USB Data 

Aquisition Device 

Control PC station 

Figure 7. Experimental platform of a Quanser FJR system.
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In this section, five sets of experimental tests are performed on the experimental setup
of the underactuated FJR system to permit one to ensure the feasibility of our proposed
method in terms of the tracking trajectory and robustness effectiveness, even when there
are system uncertainties and external disturbances.
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Adjustable bar load  

Arm anchor point Body anchor point 
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 Spring  

Base 
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DC Motor 

Figure 8. Experimental module of a Quanser FJR system.

4.4. Experimental Results (Robustness Verification against FJR System Uncertainties)

This section verifies the efficiency and robustness of our proposed method by per-
forming a number of experiments on the actual FJR system under different situations and
reference commands.

4.4.1. Sinewave Tracking Performance and Robustness (Tests 1 and 2)

In Test 1, the tracking trajectory efficiency of the FJR plant under no payload is tested.
The desired reference command is a sinusoidal signal that is set by its amplitude and
frequency of 35 deg and 0.1 Hz, respectively. The experimental results in Figure 9a–d
demonstrate the angle of link position, the position error, estimated acceleration, and con-
trol input, respectively. As shown in Figure 9b, the proposed strategy achieves less tracking
error than FLC. Furthermore, since the cascaded feature in the proposed observer con-
struction is adopted, the noisy estimations are remarkably reduced and the chattering is
well-reduced in the control signal, as clearly illustrated in Figure 9c,d, respectively.
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Figure 9. Experimental results with sinusoidal and no payload.

To test the robustness of the proposed control against an uncertain payload, Test 2 is
carried out by uploading an extra link to the original link payload. Figure 10a,b shows the
angle of link position and the position tracking error, respectively. Figure 10a demonstrates
that the proposed controller can closely track the desired reference even when the payload
is present. The tracking error presented in Figure 10b is still smaller than the FLC approach
in this test.
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Figure 10. Experimental results with sinusoidal and payload.

4.4.2. Dual Sine Waveform Tracking Performance and Robustness (Tests 3 and 4)

In both experiments 3 and 4, the trajectory tracking responses of the FJR are eval-
uated under a dual sinusoidal command. Here, the input reference is a combination of
two sinusoidal signals determined by xd(t) = A1sin(2πF1t) + A2sin(2πF2t), in which
A1 = 27.7◦, A2 = 10◦, F1 = 0.1 Hz and F2 = 0.05 Hz, respectively. An inspection of
Figure 11 demonstrates the practical results of experiment 3 in the absence of the payload
effect, in which Figure 11a,b displays the link angular position and the tracking error,
respectively. As can be shown from Figure 11, our designed control accomplishes a better
performance, even in this different reference command, in contrast to the FLC approach.

Experiment 4 attaches an extra mass and increases the springs tension torque. Figure 12
illustrates the experimental results of Test 4, in which Figure 12a–d shows the position angle
of the link, the tracking error, acceleration estimation, and the control signal, respectively.
It is clearly found that the proposed controller causes little tracking error and fewer noises,
even with the existence of the system uncertainties.
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Figure 11. Experimental results with dual sinusoidal and no payload.
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Figure 12. Experimental results with dual sinusoidal, and mass and spring changes.

4.4.3. Sudden Load Compensation Capability (Test 5)

In this test, an external shock load disturbance is inserted to the control input
channel in order to examine the efficacy of the proposed control in the existence of external
disturbances. In the real situation, the sudden disturbance insertion emulates the robot
arm that is attached to the drone, which could be impacted by an object, interact with a
human, or be affected by a wind. As a result, those effects deflect the robot link from its
zero equilibrium displacement. For this case, the control aim here is to enforce the link to
return back to the equilibrium position as quickly and as precisely as possible. To carry
out this case, we adjust the input reference to be zero, and then we apply two impulse
voltages to the FJR plant at intervals of 5 s and 20 s, each having an amplitude of 1.5 V
and a duration of 0.25 s. The angular position of the link illustrated in Figure 13 obviously
shows that our designed controller fulfills a better anti-disturbance capability with a quick
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backdrivability of the link to the zero level, compared to the FLC method. Accordingly,
the link part here can interact with this environmental situation freely.
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Figure 13. Experimental results of the FJR, subject to shock disturbance.

4.5. Quantitative Comparison and Summary

To summarize the aforementioned experimental results, a quantitative analysis is
performed by comparing the root mean square (RMS) values of the link tracking errors for
the proposed controller and the FLC scheme, as shown in Table 1. It can be indicated that
the proposed control approach attains a smaller RMS(e) in all aforementioned experiments,
compared with the FLC approach.

Table 1. Performance Comparisons of Controllers in terms of RMS of tracking errors (deg).

Method Test 1 Test 2 Test 3 Test 4

Proposed 0.0709 0.1414 0.1115 0.1453
FLC 0.2878 0.3723 0.2835 0.3289

Improvement (%) 75.4 62 60.6 55.8

5. Conclusions

This article has proposed a FxTSMC scheme based on a CFxTSMO for the under-
actuated aerial FJR manipulator fly arm attached to drones systems subjected to noise,
uncertainties, and external disturbances. The mathematical model of the FJR with the
underactuation has been transformed into the canonical representation via two trans-
formations for the ease of the control design without the necessity of linearization and
approximation. The main benefits of the proposed composite controller are that not only (i)
can the parametric uncertainties, nonlinearities, and the external disturbances be estimated
by the CFxTSMO estimator to relax the need for the uncertainty bound and to reduce the
chattering by using a smaller switching gain, and (ii) the noise amplification in the states
and disturbance estimations is remarkably minimized by employing the cascaded structure
in the estimator design, resulting in the FxTSMC scheme being more feasible in practice for
controlling the high-order FJR system, but also (iii) the fixed-time error convergence in the
proposed CFxTSMO-based FxTSMC approach is well achieved, regardless of the unknown
disturbance initial conditions. The extensive simulations and comparative experimental
results for the actual FJR system have verified the superior performance and robustness
of the proposed method. As a result, due to the ease of the practical implementation, this
investigation suggests that our controller is a viable control option for other UMSs plants,
such as drone systems.

Although the major limitation of the study is the measurement noise from the FJR sys-
tem, according to the aforementioned benefits, this work brings significance for academics
and practice to the control community by making the proposed control more feasible for
high-order systems. In future work, we will experimentally test a fly robot mounted on
drones under high frequencies of the reference trajectories by using the proposed con-
trol scheme.
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