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Abstract: Bottle marine debris (BMD) remains one of the most pressing global issues. This study
proposes a detection method for BMD using unmanned aerial vehicles (UAV) and machine learning
techniques to enhance the efficiency of marine debris studies. The UAVs were operated at three
designed sites and at one testing site at twelve fly heights corresponding to 0.12 to 1.54 cm/pixel
resolutions. The You Only Look Once version 2 (YOLO v2) object detection algorithm was trained
to identify BMD. We added data augmentation and image processing of background removal to
optimize BMD detection. The augmentation helped the mean intersection over the union in the
training process reach 0.81. Background removal reduced processing time and noise, resulting
in greater precision at the testing site. According to the results at all study sites, we found that
approximately 0.5 cm/pixel resolution should be a considerable selection for aerial surveys on BMD.
At 0.5 cm/pixel, the mean precision, recall rate, and F1-score are 0.94, 0.97, and 0.95, respectively, at
the designed sites, and 0.61, 0.86, and 0.72, respectively, at the testing site. Our work contributes to
beach debris surveys and optimizes detection, especially with the augmentation step in training data
and background removal procedures.

Keywords: bottle marine debris; UAV; machine learning; object detection; background removal
image; data augmentation

1. Introduction

Estimating bottle marine debris (BMD) on beaches, as well as many other types of
marine pollution, has become an urgent issue due to high quantities and potential hazards.
BMD remains one of the top ten marine debris items removed from global coastlines
and waterways [1,2]. Polyethylene terephthalate (PET) bottles pose a risk of “estrogenic”
damage to human beings [3–5]. Hence, assembling quantitative data on BMD loads on
beaches is critical from an environmental standpoint.

Until recently, visual census has been the primary method in related studies of marine
debris [6–8]. However, some studies have noted notable drawbacks to this approach, such
as over-subjective recognition, immoderate time and labor consumption, and constrained
area coverage [9–11]. Meanwhile, some recent studies have implemented satellite images to
save time and expand research space. However, image resolution is insufficient to facilitate
recognizing objects such as average-sized bottles (5 to 50 cm) [12,13]. Hence, there is a need
for approaches in remote monitoring and optimization of the detection efficiency in marine
debris studies.

To overcome these shortcomings, Martin et al. (2018) [11] suggested a novel approach
involving the use of unmanned aerial vehicles (UAVs) and machine learning techniques for
automatic detection and quantification of marine debris. The method has since been ad-
vanced and expanded to other studies [11,14–16]. The object detection system as a random
forest was implemented by integrating a histogram of oriented gradients (HoG) [11] with
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three additional color spaces [17]. Martin et al. (2018) compared the performance of three
methods: standard visual census, manual screening, and automatic recognition and clas-
sification; the outcomes emphasized that the proportion of categories, excluding small
items, from the three approaches was not significantly different [11]. Gonçalves et al. (2020)
improved the accuracy of object identification for mapping marine litter on a beach dune
system using techniques of the centroid of automatic output and manual procedure out-
put [15]. Fallati et al. (2019) used commercial software with a deep learning convolutional
neural network as its basic algorithm to recognize plastic debris [14]. Kako et al. (2020)
employed a deep learning model based on the Keras framework to estimate plastic debris
volumes [16]. Martin et al. (2021) estimated litter density on shores by developing a Faster
R-CNN [18]. Takaya et al. (2022) employed the RetinaNet integration with non-maximum
suppression to enhance the efficiency of debris detection [19]. Maharjan et al. (2022) created
a plastic map of rivers by implementing different detection models in the You Only Look
Once (YOLO) family [20]. Although pioneering works have highlighted the efficiency
and broad applicability of machine learning in observing marine debris, they have also
suggested different altitudes and resolutions in terms of operation. For instance, 10 m
(0.5–0.7 cm/pixel) in Martin et al. (2018), 10 m (0.44 cm/pixel) in Fallati et al. (2019), 20 m
(0.55 cm/pixel) in Gonçalves et al. (2020), 17 m (0.5 cm/pixel) in Kako et al. (2020), 10 m
(0.27 cm/pixel) in Martin et al. (2021), 5 m (0.11 cm/pixel) in Takaya et al. (2022), and 30 m
(0.82 cm/pixel) in Maharjan et al. (2022). These variations in fly height were primarily
based on coverage, flight time, number of images, and subjective image quality assessment.
Remarkably, object detection performance was not assessed. The optimal resolution range
of aerial images for surveys to achieve the highest efficiency in marine debris research
remains elusive.

Therefore, this study aims to determine the considerable range of image resolution in
a UAV-based approach to enhance the efficiency of BMD research or marine debris. The
experiments were implemented on a sandy beach sector of Taoyuan, Taiwan. We organized
three designed sites for setting up training datasets, a testing algorithm named You Only
Look Once version 2 (YOLO v2), and a testing site to observe our approach on a complex
sandy beach. At each study site, UAVs hovered and took aerial photos at different fly
heights, and the range of optimal resolutions was determined based on the evaluation of
detecting performance across four indices. We further proposed some methods to overcome
the data limitations in machine learning that we encountered.

2. Materials and Methods
2.1. Study Area

Taoyuan beach, situated on the northwestern coast of Taiwan, is a region that requires
unique conservation, especially when considering marine debris issues. The intertidal algal
reefs are the ecological highlights on this coast, which host rich marine biodiversity and
are essential ecosystems [21,22]. Coastal debris, particularly BMD, is one of the damaging
factors for organisms by entanglement and “estrogenic” damage, as previously mentioned.

In this study, we conducted four cohesionless extents on a sandy beach of Taoyuan.
We set up case study areas with a range of 10 m by 15 m, consisting of three designed sites
(25◦4′44.60′′ N, 121◦9′8.84′′ E; 25◦4′41.34′′ N, 121◦ 8′53.21′′ E; 25◦ 4′38.60′′ N, 121◦ 8′37.57′′ E)
and a testing site (25◦ 4′27.12′′ N, 121◦7′44.76′′ E). Figure 1a shows the geographic locations
of the sector of Taoyuan beach, and Figure 1b shows a detailed map with the sites marked
as small red rectangles. Figure 1c shows a closed-sight view at designed site 1. The testing
site (Figure 1d) near the landfill area of Taoyuan City was used to judge our method on such
a complex sandy beach. We surveyed a supratidal zone and neglected the intertidal zone
because marine debris in the intertidal zone was dominated by sizes ranging from 0.2 cm to
2 cm [23], while this research only considered BMD as mentioned.
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Figure 1. Location and overview of the study sites. (a) Position of the study region in Taiwan, a sector
of Taoyuan beach marked as a red rectangle; (b) detailed map of the study sites (red rectangles);
(c) the designed site 1 overview taken during the field experience, with the drone and an aerial view
of the beach; (d) the testing site overview from UAV flight.

2.2. Survey Method

Our field surveys were conducted at designed sites on 27 August 2020 and 6 December
2021, and the testing site was surveyed on 5 November 2021. Once on site, the surveyors
marked the study area at a size of 10 m by 15 m. The ancillary data, such as the time, season,
summary of current weather conditions, and environmental features, were simultaneously
recorded. Three designed sites were cleaned before 85, 45, and 42 bottles were randomly
arranged in four different states following the standard procedures: (1) placed intact on the
beach surface, (2) partially buried in the ground, (3) overlapped or clustered together, and
(4) deformed by impact. Notably, designed site 1 was first set up for accumulating datasets
to train and test our detection approach.

For collecting aerial images, two quadcopters, a DJI Mavic 2 Professional (M2P)
and a DJI Phantom 4 Professional (P4P), were employed. The drones were equipped
with a camera sensor of 1-inch complementary metal oxide semiconductor (CMOS) with
a 12.83 mm width and a 20-megapixel camera fixed on a three-axis gimbal. The P4P had
a lens of 24 mm focal length and a mechanical shutter supporting the capture of 4K at
60 fps. The M2P camera had a 28 mm lens and a rolling shutter recording 4K video.
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The GPS/GLONASS satellite system helped both UAVs attain a hovering accuracy range
of ±0.5 m vertical and ±1.5 m horizontal with GPS positioning status. The two drones
captured images every 5 m at fly heights ranging from 5 m to 60 m. The UAVs were
operated in a hovering mode (approximately stationary) that could minimize the motion
of the camera and reduce the blurring effects on the captured images. However, it was
noted that blurring effects might be an important issue in the case of real-time surveys.
The oblique-view reconnaissance caused a significant effect on object coordinates [24]
and on the object shapes due to radiometric and geometric deformations [25]. Therefore,
the camera was tilted with a heading of 90 degrees toward the ground while capturing
images [14,17,26]. The image area was based on image size and resolution, where the
corresponding image resolutions were defined as:

Resolution
(

cm
pixel

)
=

SW× FH
FL× IW

, (1)

where SW is the sensor width, FH is the flight height, FL is the focal length of the cam-
era, and IW is the image width [14,27]. Hence, the image resolutions were from 0.12 to
1.54 cm/pixel. The image resolution changed with the flight altitude, as shown in Figure 2.
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2.3. Machine Learning Procedure

This research employed the You Only Look Once version 2 (YOLO v2) convolutional
neural network as the object detection system for BMD detection. YOLO v2 was created by
Joseph Redmon and Ali Farhadi in 2017 [28]. The YOLO v2 was chosen because this model
has been proven to be a useful tool to identify marine debris with satisfactory accuracy and
computing speed. YOLO v2 has been applied in many studies in recent years [29–32]. In
addition, the YOLO v2 achieves a score of 78.6 on mean average precision on testing the
well-known dataset of Pascal VOC 2007, which is the best among many other models [28].
Notably, other new models (e.g., YOLO v7) have recently been developed; future works on
testing how these new models improve the performance of identifying marine debris could
contribute to the detection of marine debris.

YOLO v2 uses anchor boxes to detect objects in an image. Anchor boxes are predefined
boxes that best match the given ground truth boxes and are defined by K-mean clustering.
The anchor boxes are used to predict bounding boxes [28]. Estimating the number of anchor
boxes is an important step in producing high-performance detectors [33]. Processing images
with YOLO v2 has three main parts: (1) resizing the input image to size 416 × 416 pixels;
(2) conducting a single convolutional network on the image; and (3) thresholding the
resulting detections by the model’s confidence. Every input image is divided into an S × S
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grid of cells after resizing and predicts a fit B number of “bounding boxes”, “confidence
scores” of those boxes, and C class probabilities. Each bounding box consists of five
predictions: x, y, w, h, and confidence; where (x, y) are the center coordinates of that
box, w and h correspond to its width and height. The confidence is calculated based on
Formula (2), where Pr(object) is the probability of the object in the current grid and IoUtruth

pred
represents the intersection over union (IoU) between the predicted box and the ground
truth box. After obtaining those predicted boxes, the output predictions of an input image
will be encoded as an S × S × (B ∗ 5 + C) tensor. As only one category (BMD) is considered,
we used C as equal to 1.

Confidence = Pr(object)× IoUtruth
pred , (2)

To save training time, the YOLO v2 system first automatically resizes images into
416 × 416 pixels, but it includes a flaw in changing image resolution and reducing the
pixel information. Therefore, we created a simple application for image segmentation and
anchor design. Each training image was divided into segments according to the desired
size, and ground truth boxes were then hand-marked to gradually store their information,
including image geolocation, BMD coordinates, and image size. Our effort contributes to
ensuring the obviousness of training images, increasing pixel information of training data,
and reducing the ability to misidentify natural items as debris.

In our training data procedure, as depicted in Figure 3a, twenty aerial photos taken at
0.12 cm/pixel resolution on designed site 1 were accumulated as an image source. This se-
lection was conducted based on objects’ obviousness and the continually changing direction
of UAVs, allowing BMD to be captured in various forms. Those images were first applied
in our created application with the desired size at 1400 × 1400 pixels, corresponding to
0.42 cm/pixel resolution in the training procedure, and 624 segments and their information
were totally produced for the training datastore. Eighty percent of the data were randomly
selected for training, while the rest were used to test the usability of the model. The data
augmentation, our additional phase, was extended in this procedure to overcome the
limitation of the data quantity. Each segment was changed by flipping and adjusting the
brightness (Figure 3b). As a result, the source quantity was enlarged to four times higher,
which meant that every segment had four versions: original, bright, dark, and changing
direction. The settings in the YOLO were then modified during every training run with
inputs of different hyperparameters of minibatch size, initial learning rate, and max epochs
(Table 1). We used seven anchor boxes for training in this study. The YOLO v2 was applied
to the training and testing sets at different runs or with different training settings. After this
step, the model which had good performances was used for detecting objects; hereafter, we
call the framework/procedure of the overall object detection a “detector”.

Table 1. Training hyperparameter values.

Parameter Value

Training option Sdgm (stochastic gradient descent with momentum)
Mini-batch size 8, 16

Number of epochs 50, 100, 150, . . . , 2000
Initial learning rate 10−3, 10−4, 10−5

Learning rate drop factor 0.8
Learning rate drop period 80
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2.4. Background Removal

One challenge of automatic detection is the influence of the background environment,
and background removal has been suggested in some research related to this topic to
enhance training products and analysis accuracy. Some suggested approaches include
the local binary pattern-based approach [34], hybrid center–symmetric local pattern fea-
ture [35], multi-Bernoulli filter [36], and analyzing the temporal evolution of pixel features
to possibly replicate the decisions previously enforced by semantics [37]. To enhance auto-
matic detection, these approaches have been widely applied in research related to object
detection or even for detecting moving obstacles [38–42].

In this study, every raw image was first changed to a gray level to unify all the pixel
indices, and then the Gaussian filter and local standard deviation filter were applied before
creating a binary mask according to closed polygons (Figure 4a). The two filters were
applied to smooth out the sandy background and enhance the edges of the items inside.
Those edges were extended and highlighted by image dilation to shape more closed poly-
gons, and a binary image was aimed at covering the image background. Consequently,
the background removal image was proposed to focus on BMD within a scene. We imple-
mented two different types of image source for training: original image (Figure 4b) and
background removal image (Figure 4c).
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2.5. Detecting Process

This study performed three stages of analysis to examine for both original or back-
ground removal images: (1) it was divided into segments; (2) the detection was performed
via 57 detectors; and (3) validated with reference data (Figure 5a). To ensure the resolution
between the training data and the input image were the same, the segment size was first
calculated according to the correlation between the actual border range of the training data
and the segment’s resolution B (Figure 5b). Notably, threshold control is the supplementary
phase of detecting items in background removal images to shorten the time. This phase
was conducted according to the color histogram of segments; a segment with a histogram
lower than the threshold was omitted to identify the following items. The whole processing
time (T) was determined to compare the detection performance between two image types.

Drones 2022, 6, x FOR PEER REVIEW 8 of 19 
 

 

Figure 5. Detecting procedure. (a) Flowchart of the detailed workflow. (b) Procedure for making 

segments of input images. 

2.6. Performance Assessment 

Training and detection performance was validated by four indices: intersection over 

union (IoU), precision, recall rate, and F1-score. IoU was set to measure the spatial ratio 

between the predicted box A (detected box) and ground truth box B as Formula (3) [43], 

and this was the critical index for validating trained models. This study used a 0.5 IoU 

threshold, in line with other studies [44–48]. In other words, every positive detection re-

sult was defined when the IoU was 0.5 or higher. 

IoU =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
 , (3) 

To evaluate the detection performance, each image used for automatic detection was 

visually screened in the GIS environment, and the objects identified as BMD were simul-

taneously hand-marked. The objects detected by the detector and by image screening 

were compared with each other via their overlap, and the match determined the detecting 

outcome as true positive (TP), false positive (FP), or false negative (FN). 

To assess the detection performance, precision (4) is the ratio of the correctly pre-

dicted objects over the actual number of BMD: 

Figure 5. Cont.



Drones 2022, 6, 401 8 of 18

Drones 2022, 6, x FOR PEER REVIEW 8 of 19 
 

 

Figure 5. Detecting procedure. (a) Flowchart of the detailed workflow. (b) Procedure for making 

segments of input images. 

2.6. Performance Assessment 

Training and detection performance was validated by four indices: intersection over 

union (IoU), precision, recall rate, and F1-score. IoU was set to measure the spatial ratio 

between the predicted box A (detected box) and ground truth box B as Formula (3) [43], 

and this was the critical index for validating trained models. This study used a 0.5 IoU 

threshold, in line with other studies [44–48]. In other words, every positive detection re-

sult was defined when the IoU was 0.5 or higher. 

IoU =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
 , (3) 

To evaluate the detection performance, each image used for automatic detection was 

visually screened in the GIS environment, and the objects identified as BMD were simul-

taneously hand-marked. The objects detected by the detector and by image screening 

were compared with each other via their overlap, and the match determined the detecting 

outcome as true positive (TP), false positive (FP), or false negative (FN). 

To assess the detection performance, precision (4) is the ratio of the correctly pre-

dicted objects over the actual number of BMD: 

Figure 5. Detecting procedure. (a) Flowchart of the detailed workflow. (b) Procedure for making
segments of input images.

2.6. Performance Assessment

Training and detection performance was validated by four indices: intersection over
union (IoU), precision, recall rate, and F1-score. IoU was set to measure the spatial ratio
between the predicted box A (detected box) and ground truth box B as Formula (3) [43],
and this was the critical index for validating trained models. This study used a 0.5 IoU
threshold, in line with other studies [44–48]. In other words, every positive detection result
was defined when the IoU was 0.5 or higher.

IoU =
|A∩ B|
|A∪ B| =

|A∩ B|
|A|+ |B| − |A∩ B| , (3)

To evaluate the detection performance, each image used for automatic detection
was visually screened in the GIS environment, and the objects identified as BMD were
simultaneously hand-marked. The objects detected by the detector and by image screening
were compared with each other via their overlap, and the match determined the detecting
outcome as true positive (TP), false positive (FP), or false negative (FN).

To assess the detection performance, precision (4) is the ratio of the correctly predicted
objects over the actual number of BMD:

Precision =
TP

TP + FP
, (4)

Recall (5) is the proportion of correctly marked items from the total detections:

Recall =
TP

TP + FN
, (5)

Both precision and recall failed to capture the whole picture of the detecting performance,
so we measured the F1-score, which is “the harmonic mean of precision and recall” [49]:

F1− score =
2TP

2TP + FP + FN
, (6)

3. Results
3.1. Performance of the Augmentation Phase

The image datasets before and after background removal were separately trained.
Figure 6 shows an example of the loss reduction curve. For the three values of initial learning
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rate (10−3, 10−4 and 10−5), we found that the model was unstable during the training process
when the initial learning rate was 10−4. When the initial learning rate was 10−3 and 10−5,
the loss curve was steady with small fluctuation. The training loss value decreased when the
number of epochs increased, and final average loss varied from 0.28 to 1.02.
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Data augmentation was our additional phase in the training process, as previously
mentioned. Table 2 compares the performance of this supplementary phase in both image
types according to the IoU, precision, recall rate, and F1-score values described in Section 2.5.
Except for precision, all ratios belonging to processes with the augmentation phase were
greater. The model made from background removal images obtained the highest IoU at
approximately 0.81. The best evaluation results were from training data; models made
from the original image source and augmentation phase obtained a mean IoU, precision,
recall and F1-score of about 0.78, 0.98, 0.0.97, and 0.98, respectively. The overall worst
was the outcome of the testing data, with datasets made by the original image source and
without the augmentation step. Furthermore, the precision measures of the models without
augmentation were close to 1 because of the low number of samples, as well as the high
power of YOLO v2. Table 2 emphasizes that, in all kinds of image sources, the performance
of the process with the augmentation phase is better in both the training and testing data.

Table 2. Comparison of training results with and without the augmentation phase (unit: mean ± std,
aug: augmentation).

IoU Precision Recall F1-Score

Aug No Aug Aug No Aug Aug No Aug Aug No Aug

Training
data

Background
removal image

source
0.81 ± 0.02 0.74 ± 0.01 0.96 ± 0.03 1.00 ± 0.00 0.98 ± 0.01 0.36 ± 0.02 0.97 ± 0.02 0.52 ± 0.02

Original
image source 0.78 ± 0.01 0.66 ± 0.01 0.98 ± 0.02 1.00 ± 0.00 0.97 ± 0.01 0.34 ± 0.02 0.98 ± 0.01 0.51 ± 0.01

Testing
data

Background
removal

image source
0.70 ± 0.01 0.57 ± 0.00 0.97 ± 0.04 1.00 ± 0.00 0.96 ± 0.03 0.27 ± 0.01 0.96 ± 0.02 0.42 ± 0.01

Original
image source 0.68 ± 0.00 0.50 ± 0.01 0.98 ± 0.02 1.00 ± 0.00 0.99 ± 0.01 0.31 ± 0.03 0.98 ± 0.01 0.47 ± 0.02
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Fifty-seven models were trained with or without the augmentation phase, and we
selected all of those models for detecting BMD. Hereafter, those models are called “de-
tectors”. Because the objects of the marine debris might be complicatedly distributed in
real-world situations, a small number of detectors might not have good performance in
various conditions. Therefore, 57 detectors with different initial parameter settings were
trained in different runs to increase the randomness. The results from the 57 detectors were
then compared to evaluate the performance of these initial settings.

3.2. Performance at Designed Sites

The detection results at the three designed sites were measured as the mean values and
are illustrated in Figure 7 via indices of precision, recall, and F1-score. The mean precision
at all designed sites fluctuated between 0.8 and 1, especially that of designed site 1, which
remained at approximately 0.9 as the location of the training data source. These good ratios
may be due to the segmentation step’s effect in the object detection process (Section 2.4).
The mean recall and mean F1-score values of the original images were higher than those of
the background removal images at most resolutions; this showed a better performance of
the original images at each site. Considerably, both recall and F1-score had a downward
trend by 0.57 and 0.39 at designed site 1, by 0.55 and 0.52 at designed site 2, and by 0.66
and 0.67 at designed site 3, respectively, and a significant decrease by over 0.3 in both those
indices of designed site 2 and designed site 3 compared to designed site 1, indicating the
influences of environmental factors and sample conditions on the detection performance.
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Each study area has a large variation in the range from 0.12 to 0.65 cm/pixel resolution;
the remarkable peaks of mean precision, recall rate, and F1-score are 0.94, 0.97, and 0.95,
respectively, at designed site 1 when the resolution is 0.54 cm/pixel; 0.85, 0.77, and 0.80,
respectively, at designed site 2 when the resolution is 0.27 cm/pixel; and 0.81, 0.82, and
0.81, respectively, at designed site 3 when the resolution is 0. 27 cm/pixel. Therefore,
resolutions between 0.3 and 0.5 cm/pixel should be the best choice for the resolution range
at the designed sites. In contrast, background removal images show their high efficiency in
detecting time: particularly faster than 0.09 s to over 2.83 s at designed site 1; more rapid
than approximately 0.23 to nearly 3.33 s at designed site 2; and quicker than approximately
0.68 to 3.74 s at designed site 3 (Figure 8). In summary, while the original images at the
three designed sites have better detection performance in the indices of recall and F1-score,
the background removal images show their efficiency in saving more time.
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3.3. Performance at Testing Site

The outcomes at our testing site are noticeably different from those of the designed sites.
Precision values of background removal images and original images increase by 0.26 and 0.23,
respectively, in the testing site (Figure 9). This increase is due to the change in obviousness by
resolutions, which means the more significant the image resolution, the clearer the objects.
Furthermore, the occurrence of other items (noise) in the background are the same as some
effects, such as sunlight, sand cover, and shadows, and is more obvious in high resolution.
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Furthermore, background removal images perform better in the testing site, par-
ticularly from 0.12 to 0.65 cm/pixel resolution (Figure 9). The precision values of the
background removal images are larger by approximately 0.23 and 0.05 than those of the
original images, while their F1-scores are greater by at least 0.06. Remarkably, background
removal images obtain a local peak at 0.54 cm/pixel resolution, and the occurrence ratios
of mean precision, recall rate, and F1-score are 0.61, 0.86, and 0.72, respectively. Comparing
the range of recommended resolution (0.3 to 0.5 cm/pixel), which is described in Section 3.2,
we selected approximately 0.5 cm/pixel as a highly suggestive resolution for aerial surveys
related to BMD research. Background removal images also dominate in processing time at
all resolutions, and they are faster from 0.88 to 31 s (Figure 10).
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4. Discussion
4.1. Effects on the Detection Performance

Image types and landscape features are the two critical factors that influence BMD
detection, and this was demonstrated by the difference in detection performance between
background removal images and original images, as well as across study sites. At the
designed sites, background removal images revealed lower values in recall rates and F1-
scores, because of some misdetection (FN) in the background removal performance. A few
bottles were removed through filtering in the background removal process due to the
similar color between items and sand, or due to the diffuse boundaries when they were
partially covered with sand, clustered together, or reflected by light. Examples of FN results
are shown in Figure 11, where a bottle removed in filtering is marked by a red ellipse. In
this image, a bottle removed after filtering while subtracting the background was marked
with a red ellipse, and a misdetection bottle in both types of images was marked with
green circles. Furthermore, YOLO v2 can work well in areas with a similar background to
its training data. In this context, the sandy coast at designed site 1 (training source) and
designed sites 2 and 3 (two evaluating areas) were quite similar. Therefore, the original
images were more dominant in detecting BMD at the designed sites.
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Figure 11. Example of FN on images with and without background removal at designed site 1
at 1.06 cm/pixel resolution. Detecting results on the original image (a) and background removal
image (b) are marked as yellow boundary boxes, while (c,d) are, respectively, the closed view sight
corresponding to the white areas in the two above.

Landscape features at the testing site were remarkably different from those at designed
site 1 (training data source), which caused a significant change in detection performance.
The analysis results of the background removal image dominated the precision, F1-score,
and processing time, while the outcomes of the original images were significantly dispersed.
Specifically, in the initial resolution range from 0.12 to 1.06 cm/pixel, the recall index com-
pared to the precision on the original image was more than double, even more than triple,
at a resolution of 0.38 cm/pixel. This contradiction can be explained based on the high
noise (e.g., change in sunlight, footprints, wooden sticks, plastic bags, styrofoam boxes,
and shadows), which were misidentified as BMD on the beach landscape, and those FP
outcomes are indicated in Figure 12. Therefore, operating surveys under similar solar condi-
tions can reduce the influence of light, darkness, and environmental conditions on analysis
outcomes, consistent with other studies [14,17]. According to the much lower density of
noise and FP in the background removal image than in the original image in Figure 12, we
believe that our suggestion regarding the background removal process is a more radical
solution that boosts detection efficiency. In other words, the background removal image
has the potential for application in study regions with many influencing factors.
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Figure 12. Example of noise and FP on images with and without background removal at the testing
site. Detection result on the original image (a) and background removal image (b) at 0.54 cm/pixel
resolution are marked as yellow boundary box, while (c,d) are, respectively, the closed view sight
corresponding to the white areas in the two above. These zoomed views indicate that some objects,
particularly footprints, wooden sticks, styrofoam boxes, and shadows, were mistakenly identified
as BMD.

To enhance the automatic detection efficiency, the data augmentation phase was
supplemented in the training process, and the image segmentation step was applied in
both the training and detection processes. Despite those efforts, the two issues of FN and
FP were still obtained in both image types at all study sites (Figures 11 and 12), and the
low number of training samples was, we believe, the leading cause of these issues. To
mitigate these weaknesses and optimize the capacity of the machine learning algorithm,
we intend to conduct two future development strategies: (1) increasing the quantity of
training data by surveying wider regions with various beach terrains; and (2) developing
the data augmentation phase by supplementing more transformation versions of different
light levels and rotational directions.

As time savings were one of the key purposes of utilizing machine learning in research
of marine debris, the detection time on the two image types was compared with each
other in this context, and the background removal image was again underlined in high
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research efficiency. At all study sites, the background removal images obtained results
more quickly than the original images, and the difference was significant at the testing site
(Figures 10 and 12). The threshold control step in the detection process (Section 2.4) was
our method to reduce the time consumption, and it was set up on background removal
images due to the great difference between the background and object colors. There is no
doubt that the background removal process is feasible, both to save analysis time and to
increase BMD recognition efficiency.

4.2. The Potential Approach and Future Improvements

Recent works have applied and simultaneously evaluated the effectiveness of auto-
matic detection by machine learning. Some notable results have been highlighted, and
some outcomes are consistent with this study. Martin et al. pointed out that the proportion
of categories (excluding small items) in detection and classification was not significantly
different from the visual census method [11]. In terms of performance, the precision, recall
rate, F1-score, and other parameters used in previous studies are listed in Table 3 to com-
pare with the setting of our study. Despite using just 624 segments for training data, the
performance of our work at designed sites obtained high efficiency, and the performance
at the testing site was quite similar to that of Golcaves et al. (2020) [17] and Takaya et al.
(2022) [19].

Table 3. Main materials and outcomes of prior research related to BMD via machine learning and
this work.

Reference Resolution
(cm/pixel)

Machine
Learning Tool Training Sample Precision Recall F-Score

Martin et al. (2018) [11] 0.5~0.7 Random forest 243 images,
2349 samples 0.08 0.44 0.13

Fallati et al. (2019) [14] 0.44 Deep-learning-
based software

Thousands of
images per class 0.54 0.44 0.49

Gonçalves et al. (2020) [15] 0.55 Random forest

311 images,
1277 blocks
of training
data source

0.73 0.74 0.75

Gonçalves et al. (2020) [17] 0.55
Random forest

394 samples
0.75 0.70 0.73

SVM 0.78 0.63 0.69
KNN 0.67 0.63 0.65

Papakonstantinou et al. (2021) [26] 0.49 VGG19 15,340 images 0.84 0.72 0.77

Martin et al. (2021) [18] 0.27 Faster R-CNN 440 images 0.47 0.64 0.44

Takaya et al. (2022) [19] 0.11 RetinaNet 2970 images 0.59 0.90 0.71

Maharjan et al. (2022) [20] 0.82

YOLO v2

500 samples
each river

- - 0.66

YOLO v3 - - 0.75

YOLO v4 - - 0.78

YOLO v5 - - 0.78

This work:
0.54 YOLO v2

20 images,
624 segments,

81 BMD samples
• designed sites 0.94 0.97 0.95
• testing site 0.61 0.86 0.72

In the planning of the study, we attempted to add complexities that would match
real-world situations. For example, different colors and sizes (from 5 to 50 cm) of marine
bottles were used in the training process. Fifty-seven detectors were used to increase the
randomness in the auto-detection process. Detection algorithms and analysis procedures
were also tested and studied in both the designed and testing (real-world) sites. The results
indicated that resolution was an significant factor that definitely affected the performance
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of detection. We also found that the image resolution used in other studies ranged from
0.11 to 0.82 cm/pixel (Table 3), and many studies used a resolution of around 0.5 cm/pixel
in their surveys. As a result, a resolution of 0.5 cm/pixel could be a considerable choice
that has potential application in large-scale surveys.

The main limitation of this study was that the detector we used was YOLO v2; other
new models (e.g., YOLO v7) have recently been developed. Future works on testing how
these new models improve the performance of identifying marine debris could contribute
to the detection of marine debris.

5. Conclusions

This study was carried out to determine the most appropriate image resolution range
for aerial photogrammetric surveys. Our work quantified BMD on Taoyuan beach by oper-
ating UAVs at image resolutions from 0.12 to 1.54 cm/pixel. To boost research efficiency,
we proposed the process of image background removal, the image segmentation step, the
data augmentation phase in training process, and threshold control in detecting images.
The data augmentation phase optimized the training process and generated detectors with
an IoU index of approximately 0.81. The original images obtained higher efficiency at the
three designed sites, achieving an F1-score of 0.95, whereas the background removal image
obtained a considerable effect at the testing site, reaching an F1-score of 0.72; a notably
shorter detection time was confirmed at all study sites. A resolution range of approximately
0.5 cm/pixel was recommended for aerial surveys based on comparing the evaluated
values at different resolutions and observations with prior research. Environmental con-
ditions have a significant impact on detection performance. The best performance on
background removal images emphasizes the potential of this image type in regions with
many influences.
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