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Abstract: Police tasks related with law enforcement and citizen protection have gained a very useful
asset in drones. Crowded demonstrations, large sporting events, or summer festivals are typical
situations when aerial surveillance is necessary. The eyes in the sky are moving from the use of
manned helicopters to drones due to costs, environmental impact, and discretion, resulting in local,
regional, and national police forces possessing specific units equipped with drones. In this paper,
we describe an artificial intelligence solution developed for the Castelldefels local police (Barcelona,
Spain) to enhance the capabilities of drones used for the surveillance of large events. In particular,
we propose a novel methodology for the efficient integration of deep learning algorithms in drone
avionics. This integration improves the capabilities of the drone for tasks related with capacity control.
These tasks have been very relevant during the pandemic and beyond. Controlling the number of
persons in an open area is crucial when the expected crowd might exceed the capacity of the area and
put humans in danger. The new methodology proposes an efficient and accurate execution of deep
learning algorithms, which are usually highly demanding for computation resources. Results show
that the state-of-the-art artificial intelligence models are too slow when utilised in the drone standard
equipment. These models lose accuracy when images are taken at altitudes above 30 m. With our new
methodology, these two drawbacks can be overcome and results with good accuracy (96% correct
segmentation and between 20% and 35% mean average proportional error) can be obtained in less
than 20 s.

Keywords: crowd counting; deep learning; object detection; prediction; security

1. Introduction

The main objective of law enforcement agents is the protection of citizens, public
infrastructure, and governmental institutions. Drones have been shown to be a very useful
asset for all these tasks and are very cost effective. For these reasons, police eyes-in-the-sky
are transitioning from manned helicopters to drones. Drones also reduce the environmental
impact and increase the discretion of surveillance.

During the COVID-19 pandemic, many local, regional, and national police forces
started experimenting with drones. Drones limit physical contact between humans and
avoid the spread of the virus. Additionally, during the curfew streets were nearly empty
and ground risks could be better mitigated. In addition, many countries regulation have
been put in place to support emergency responders and police crews in operating drones
more easily.

Since 2020, many law enforcement agencies have created specific units equipped with
drones. In some cases, drone operations are subcontracted to private security operators.
In both situations, a small fleet of drones is supporting aerial surveillance at political
demonstrations, large sporting events, or summer festivals.

In this paper, we describe the deep learning software solution developed for the
Castelldefels local police (Barcelona, Spain) to enhance the capabilities of drones used for
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surveillance of large events. We developed an on-site solution for them to count the number
of persons seen from the drone. Results show that the current artificial intelligence (AI)
models reach their limits for small devices and at altitudes above 30 m. At high altitudes,
detection using state-of-the-art models results in low accuracy and, thus, new methods
are needed.

Up to 18 datasets with images and videos for crowd counting are well documented
in [1] with all data open licensed under Creative Commons. For instance, the popular
Shanghai dataset has hundreds of labelled images [2]. It has two parts, A and B, one with
highly congested images and the other with sparse people. Nevertheless, most images in
these datasets are taken at ground level or at the altitude of a surveillance camera. Both are
lower than typical drone altitude.

Wen et al. created the Drone Crowd dataset and published it together with their
detection algorithm [3]. Although the Drone Crowd dataset has images taken from an
altitude similar to the altitude used by law enforcement, the angle of vision is zenithal.
In our experience with police tasks, they usually apply some slanted angle to their drone
cameras. There are different reasons for this: in general to avoid the safety risks of hovering
above a crowd, in other cases to avoid being seen, and in most cases, to obtain a global
view of the whole area. Oblique images are better to quickly give an overview of the
situation because they capture the context and any reference point of the geographical area.
A motivating example of the type of images we aim to process is shown in Figure 1. One
can observe the highly different densities of people in the image. This type of image is also
known as uneven distribution.

Figure 1. Image of the start of the Mediterranean Marathon at the Canal Olímpic de Catalunya,
Castelldefels, Spain, 20 March 2020 (source: Policia Local de Castelldefels, permission granted).

The research question that we aim to answer is: “Is it possible to develop a solution to
count persons in real time on images with uneven distribution that can be efficiently run
locally in the same mobile device used to pilot the drone?”

Like many others, the Castelldefels police patrol uses small and compact DJI com-
mercial drones, because of their good quality–price ratio. According to the global market
website Statista 2022, DJI’s market share was 76% of units sold worldwide [4]. The main ob-
jective of our work is to add the functionality of counting people to this type of drone. Our
experience is shared in the paper for those who are aiming at adding a similar functionality
to their drones.

The work has an evident contribution beyond the state-of-the-art that is provided in
three incremental steps:

• Leveraging AI capabilities into the piloting device of a drone. For the first time, we
show that this can be performed without disturbing the critical flight functionality
of the drone, and, thus, it does not affect the safety of the operation. Moreover,
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the proposed solution avoids any additional weight on the drone, and, thus, it does
not affect the endurance of the flight.

• A novel approach to speed up the execution of a deep learning detection model.
Current methods rely on using GPU hardware or on reducing the neural network
size. Adding GPU hardware has been applied on board the drone in previous works,
but GPU is a high-power consumption device that affects the flight time of the drone.
The neural network size-reduction methods (e.g., quantization, pruning or knowl-
edge distillation methods) are known by their loss of accuracy. To our knowledge,
the extensive use of CPU cores of the piloting hand-held device of the drone has
not been demonstrated before in this context. This contribution permits the execu-
tion of large AI models, which allows to return accurate counts in less time in a
hardware-limited device.

• The training of a new AI model to segment crowds in an uneven density image. This
model fosters the smart combination of two AI algorithms and permits solving the
persons count with higher accuracy than the algorithms separately.

The organisation of the rest of the paper is as follows: Section 2 presents the state-of-
the-art of drone image processing methods; Section 3 shows the three progressive solutions
we have developed to help law enforcement in their surveillance tasks; Section 4 presents
the results of our three solutions; and Section 5 puts them into context with existing models,
addresses conclusions, and sets out future trends of drone applications for law enforcement.

2. Previous Work

The absence of a pilot on-board in drones has partially been solved with one or more
cameras on-board and the communication link to download the images captured in the
air. Very early on, the capabilities of image processing arose to help the pilot in flying
and maintaining safety. Image processing proposals have been published for landing area
recognition [5], as support to an emergency landing operation [6], and as a detect-and-avoid
on-board system [7].

High-definition cameras are also the most commonly used payload sensor, together
with infrared cameras or LIDAR. The processing of images from the payload cameras
can be used in missions such as building inspection (i.e., the identification of harmful
asbestos slates [8] or the identification of damage to multiple steel surfaces from panorama
images [9]), road traffic surveillance [10], and search and rescue [11]. Automatically
labelling the images with significant information helps law enforcement agents to detect
situations that need to be corrected or to find people that are lost. For the pandemic,
research has demonstrated that drone images can help to detect and differentiate people
with and without a face mask by using drone images [12,13], and also to measure social
distancing during the pandemic [14]. Hammer et al. [15] propose a solution for detection
and tracking of persons using LiDAR.

Additionally, drone image processing can add counting capabilities useful for capacity
and accountability management. Works can be found that count cars [10], plants [16–19],
or animals [20].

Most of the above works are developed on artificial intelligence (AI) algorithms. The
use of AI in object detection is based on supervised learning and convolutional neural
networks (CNN [21]. In the literature today, we can find many CNN proposals for object
detection, such as the classical VGG-16 [22] with only 13 convolutional layers, to deeper
networks, such as the Mask R-CNN two-stage detector [23] or YOLO one-stage detector
(with an increasing number of layers in the new versions of the algorithm) [24]. Variants and
combinations of known backbone CNN have been created to improve detection in specific
situations. A very extensive and well-studied mission is the detection and geo-localization
of humans lost in nature (search and rescue or SAR missions) [11,25]. The authors propose
new networks, such as RFCCD, that combine three former networks.

In [26], a thorough study on CNN proposals applied to detect small objects shows
that the state-of-the-art detectors obtain low accuracy (less than 40%) in these targets.
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The detection of small objects, defined as less than 50× 50 pixels, remains a challenging
task. Problems mentioned are insufficient information captured by the feature detection
layers, limited context information, the unbalanced ratio of background versus a small
sparsely located object (with ratios from 100:1 to 1000:1), and insufficient positive examples
for the training.

The small object detection problem becomes even worse for images with a dense crowd.
When using a detection algorithm on these images the bounding box of a person overlaps
with the neighbour’s bounding box, complicating the computation of the loss function.
For this reason, other methods based on Density Map estimation, such as CSRNet [27] and
STNNet [3], are mostly used to count crowds. Additionally, using also deep CNN, these
algorithms do not find the anchor box of each detection. Instead they train with density
maps of the same size as the input images. Each image is annotated by adding one pixel in
the centre of each object, generating a sparse binary mask. Then, a pseudo ground truth
density map is created by blurring the ground truth, with a Gaussian smoothing process.
The result is the truth density map used as training set.

A new approach is used by Wang et al. [28] in which the ground truth image is not
blurred in advance to the training, but included in the loss function. Named as Distribution
Matching, this algorithm uses the Optimal Transport function as a loss function to optimize
the density map similarity with the binary annotated ground truth.

Luckily, the number of public datasets containing persons, open to train existing and
new algorithms, is growing. The most popular is probably the Shanghai dataset [2], with a
part-A with highly populated scenes and part-B with sparsely located persons. Increasing
the persons density, we find the UCF-QNRF dataset [29] and the crowd dataset [1], the latter
with image frames extracted from videos recorded at drone altitudes. Datasets, such as
the SAR dataset [25], also contain images taken from drones, in particular, for search and
rescue scenarios.

The public datasets and the challenges opened to the research community, such as
the VisDrone 2021 Crowd Counting challenge, contributed to an impressive improvement
in the crowd counting problem. Results for the VisDrone 2021 dataset, with high-altitude
images with up to 403 persons and fewer than 15× 15 pixels per person, have a mean
average error of less than 20 persons (see Figure 2). All of the research works listed in
the figure proposed the use of deep neural networks with new architectures, new loss
functions, and new algorithms for training.

Figure 2. Leaderboard of the VisDrone 2021 Crowd Counting challenge [30]. MAE stands for Mean
Absolute Error and MAPE for Mean Absolute Proportional Error. MAPE equation is given in Section 2
and for the leaderboard (*) it is calculated globally with the average persons of the full dataset [31].

The challenge still remains open for running these successful solutions on the small
devices of the typical drone used by law enforcement agents. As Ref. [15] highlights,
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it is very important retrieving results in real time and presents a novel approach based
on panoramic point clouds. Unfortunately, LiDAR sensors are not yet available in many
commercial drones, and not found in local police fleets. LiDAR sensors are also significantly
big, in relation to small drones, and their weight and power consumption reduce the
maximum flight time. The contributions presented in this paper are based on current
drones’ sensors and do not impact in the weight nor in the power consumption of the drone.

Advances in other areas of application, such as autonomous driving, and those in-
terested in detecting traffic signals and pedestrians, have similar limitations. Techniques
to reduce the size of the CNN can help to reduce memory requirements and energy con-
sumption. Krishnamoorthi [32] provides a survey of the best methods for quantizing deep
convolutional networks using visualisation tools. Li [33] provides a tool to prune the
less-useful neurons of a CNN. Ad hoc implementations of most popular networks (i.e.,
YOLO-Tiny [34]) are also available. However, the consequence of reducing the size of a
CNN is some loss of accuracy. The balance between requirements on quality and resources
has to be carefully considered and tested.

3. Materials and Methods

Drones are also known by the name of unmanned aircraft systems (UAS). This plural
denomination highlights very clearly that, in addition to the flying vehicle, a drone has
a second important subsystem: the command and control (C&C) device in the hands of
the pilot-in-command. Other typical names of the C&C are remote control, ground control
station, or smart controller.

The way the DJI drones work is very similar to most drones. The unmanned aircraft
has a computer on board that manages the flight control and the payload, while the C&C
has a display to inform the pilot about the flight and offers buttons, sticks, rollers, selectors,
and other input mechanisms to command the drone. In between, one communication
channel transmits orders from ground to air and downloads the flight status. Typically,
a separated communication channel exists for the payload transmissions.

The payload data have a much higher volume than the flight data. First-person view
video transmission is usually active, but in low resolution (for instance, 0.150 Mb per frame
at 30 fps), thus it consumes little bandwidth. Especially critical are the high-resolution
images that current commercial drones can capture. Image size can be up to 8 to 12 Mb each.
High-resolution images are typically held in the on-board memory card and transmitted
to the ground only upon demand. To be able to select a specific image, the low-resolution
footage of the images is downloaded automatically to the C&C.

Considering the above-mentioned characteristics of the functioning of drones, a three-
step approach has been taken for counting the number of persons. We named the solution
POLO in reference to its end-user’s name (POlicia LOcal), but also because of the similar
phonetics with YOLO, the algorithm used.

1. POLOtin: the initial proof of concept that uses low-resolution image footprints and
the state-of-the-art YOLOv3-Tiny [35] detection algorithm and trained model;

2. POLOpar: this is an extension of the previous solution able to process high-resolution
images. Here, we trained a new model with our own set of police images to im-
prove accuracy. The main contribution is that POLOpar parallelises the detection
algorithm in several threads, in order to improve the efficiency of models with good
detection accuracy;

3. POLOseg: this solution completes the full contribution by addressing the counting
of highly congested scenes in parts of the image. The main difference with other
approaches is that the highly congested parts of the image are segmented from the
non-congested, using different methods for each part.

The first two have been fully developed as Android Apps. They are tested with runs in
the command&control of a DJI Mavic2 drone, a model that is often used by law enforcement
crews. Both a DJI Smart Controller and a commercial off-the-shelf rugged tablet have been
tested satisfactorily. To access the drone hardware and to create the user interfaces we used
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the DJI MOBILE and UX software development kits (SDK), and for building the neural
network and loading the model weights we use the OpenCV library. The POLOseg was set
as a proof of concept on how to improve the counting on challenging images with uneven
density crowds.

3.1. POLOtin

This first contribution has three primary objectives: to use an efficient object detection
model from the state-of-the-art, to embed it in an Android application, customized to detect
persons on drone images, and to propose a human interface to show on the C&C the total
count to the agent commanding the drone.

For the model, we select the lightweight version of consolidated object detector
YOLOv3 [24], named “YOLOv3-Tiny” [35]. This is a lightened version of the original
algorithm as a result of reducing the layers from 106 to 24, being the convolutional reduc-
tion from 53 down to 7 and interleaving them with 6 max-pooling layers. The size of the
model decreased from 63, 882 values to 15, 210, 76.2% smaller. Despite the size reduction,
the detection is performed on the same basis as YOLOv3 but just applying two prediction
scales: 13× 13 and 26× 26.

The advantage of the tiny network is its high-speed prediction and small footprint,
being ideal for mobile devices where resources, such as memory usage, are key parameters
when developing the Android application.

Launching the POLOtin it initially shows the flight interface. This is a very similar
interface to the DJI Pilot App, from which the drone can be managed and pictures/videos
can be taken. It also has a second interface where the detection model is executed. Figure 3
shows a capture of it.

Figure 3. Flight interface of POLOtin.

The execution flow for the detection is as follows: first, we look for the footprints of
the images taken during the flight and show them to the user. When the user selects one of
the images then we create the neural network, update its weights with the tiny model and
run the detection algorithm on the image. Since this is a small footprint of the real image
the process is fast (less than 2 s). The model is able to detect 80 different objects, but we
filter only those objects classified as person, show them in bounding boxes and provide the
total count. Section 4 shows the results on a test flight performed with students.

3.2. POLOpar

After demonstrating with POLOtin that it is possible to use state-of-the-art AI models
in DJI drones, we progress with further functionalities. With POLOpar, we aim at processing
high-resolution images, downloaded from the drone upon the pilot’s request, and applying
deep AI models with high detection accuracy.

A new human interface allows the selection of any image, as shown in Figure 4. On the
right, we now observe two new image galleries, in addition to the previews of the images in
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the drone. This one is now named as the Remote Gallery, and, as before, it shows the images
in the SD card on the drone. These are the low-resolution images processed in POLOtin.
By selecting one of them, the high-resolution image is downloaded to the C&C disk, inside
the Downloaded Gallery. Figure 4 shows some images downloaded in previous runs.
Finally, when selecting an image from the Downloaded Gallery, the detection algorithm
runs automatically and the result is shown (see the left-hand side of Figure 4). In addition,
the result is stored as a new file in the Processed Images Gallery. After processing, the image
contains the detection bounding boxes and the total count at the bottom right of the image.

Figure 4. POLOtin human interface design and developed functionalities.

We also use the YOLOv3-Tiny network in POLOpar. The input layer of the model is
416× 416 px, while the images downloaded from the drone are 4000× 2250 px. In most
police images the average size of a person to be detected is around 8× 20 px. If we scale the
image down to the size of the model we will lose most pixels and will highly compromise
the performance of the model. Thus, we decided to train the new model with the current
pixel size of the bounding boxes. For this the images need to be cropped into sub-images,
as shown in Figure 5, instead of down-scaling them.

Figure 5. Example of the high-resolution image cropping that preserves the pixels per person ratio.

For the model training, we manually labelled the police images. Then the bounding
boxes were converted from the absolute coordinates system of the high-resolution image to
the relative coordinate system of the cropped images, and vice versa during the inference.
This is performed automatically and supported with text files and a specific folder structure.

After cropping we had 7776 sub-images for the training. This was conducted in a clus-
ter with 2 Intel Xeon 4210R CPUs, 8 2080Ti GPUs with 11 GB of VRAM each, 128 GB of RAM
memory, and 2 TB of disk storage. It took 11 h to complete a training of 40,000 iterations.
With the help of transfer learning, the convergence of training was fast with a stable loss
after only 2000 iterations and a final loss of 0.353.
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The POLOpar uses the trained model for the person detection. The detection process
works as follows. First the selected image is cropped to 16 images of size 416× 416 px.
Figure 5 shows that the division is not exact and padding is needed in both width and
height dimensions. Each cropped image is then sent to the CNN model and the bounding
boxes of the detection are generated. Once the 16 images are processed, the high-resolution
image is reconstructed and the bounding boxes converted to the absolute pixel reference.
The full process is very CPU/GPU consuming and the elapsed time is considerably long
(see more details in Section 4).

To improve the detection time, we use multi-threading. Multi-threading is the ability
of the CPU to provide multiple threads of concurrent execution. When this CPU has several
cores, the concurrent execution is completed in parallel and the elapsed time can be reduced.
Fortunately, modern handheld devices come with multi-core processors that support this
feature. In consequence, the POLOpar App distributes the cropped images among parallel
threads. Determining the best number of threads to use is very important. It depends on
two main hardware specifications: the number of CPU cores and memory size.

Section 4 details the hardware characteristics of our device and the execution time
of the process for different multi-threading configurations. The final configuration, with
6 threads, 1 per row of cropped images, is shown in Figure 6.

Figure 6. Parallel execution with 6 threads.

3.3. POLOseg

POLOseg is developed focusing on the motivating image of Figure 1. This is a proof
of concept to address more challenging images with dense crowds. It is developed in
Google Colab, with one GPU and CUDA activated for parallel execution. The network
implementation is performed with Keras and Tensorflow [21]. The proof of concept can
be easily integrated in the previous App by providing the police officer in command with
a new option in the selection interface to apply the crowd pre-processing to the image.
In the POLOseg concept, the image is segmented and the crowd processed separately from
the remaining, sparser parts of the image. Figure 7 shows the steps in the pre-processing
of crowds.

The segmentation of the crowd is based on Mask R-CNN [23], an extension of Faster
R-CNN framework. We train a new model able to detect and segment any object with any
shape. First, we manually label the crowds on 600 images, some coming from the Shanghai
dataset in which crowds can be separated from the background, and others from our own
source (local police and pictures taken from drones mostly in Castelldefels). Some images
were also extracted from videos. The training process took around 10 h.
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Figure 7. Steps of the development process of POLOseg.

Table 1 shows the distribution of the images used for training and for testing.

Table 1. Breakdown of datasets and images used during the training process.

Dataset Total Training Testing

Shanghai [2] 473 434 39
Castelldefels 171 154 17

UCF-QNRF [29] 100 - 100

TOTAL 744 588 156

Figure 8 shows the crowd segmentation process, corresponding to steps 02 to 05 in
Figure 7. The pipeline used for the training process is shown at the top of the Figure.
The training uses as input the model trained with MS-COCO and loops over our set of
crowd-labelled images to adapt the model to our needs. The iterative process is stopped
once we obtain a segmentation with an intersection over union of 75%. Once the training
loop finishes, the validated model is applied to the fresh test images (shown in the bottom
left of the image). In the end, the part of the image that contains the crowd is segmented
(the 1 in the blue dot).

For each input image, the program generates two sub-images: one renamed as seg-
mented and the other as negative, with both keeping the original image name at the beginning.
The segmented image is the image containing only the crowd and the negative is the opposite,
the remaining part of the image that is not a crowd. This last sub-image is processed as in
POLOtin and POLOpar to detect isolated persons.

For the segmented image containing crowds, a second step is added in which the
density map is generated using CSRNet [27] (step 6 of Figure 7) after the input image is
resized down to 1024× 1024. CSRNet uses VGG-16 [22] as the front-end to extract features
of the input image because of its strong transfer learning ability and its capability to easily
concatenate the back-end for density map generation. CSRNet provides two additional
functionalities: to graphically represent the density map of congested scenes, and to count
the number of objects in the density map. We use the model pre-trained with the Shanghai
dataset. Figure 9 shows this part of the process. The crowd counting can run in parallel
with the individual person detector algorithm of the POLOpar version. Both counts are
added at the end to obtain the global value.
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CSRNet is a deep learning method able to give a count estimation figure of an input
image and to create its density where the crowd distribution is shown. The density map
plays a key role in understanding the results as one can see in a graphic way the congested
area in the original image and check the quality of counting. Like most deep learning
networks, it is composed of a front-end and a back-end. The front-end is a Convolutional
Neural Network for 2D feature extraction. The back-end is a Dilated Neural Network which
uses dilated kernels to deliver larger reception fields and to replace pooling operations.

Figure 8. Crowd segmentation: training and testing processes.

CSRNet also provides a model trained with four crowd datasets: ShanghaiTech, UCF-
CC50, WorldEXPO’10, and UCSD, and applying augmentation techniques.

It uses small-size convolution filters (like 3× 3) in all layers. The front-end has the
first 10 layers of VGG-16 [22] and the back-end has dilated convolution layers to enlarge
receptive fields and extract deeper features without losing resolutions (pooling layers are
not used).

Figure 9. Crowd counting using Density Map.

The results of the segmentation and of the crowd counting are presented in Section 4.

4. Results

This section presents the results of the three algorithms. First a qualitative view of the
processed image, displayed to the end users, is given. Then quantitative results are given
for the count error (details in next subsection) and for the execution time.

4.1. Metrics Used for the Qualitative Evaluation

To evaluate the results of the person count we use the mean average proportional error
(MAPE) metric. Although the mean average error (MAE) metric is used more extensively
in state-of-the-art works, it has the same scale as the data being measured and, thus, it is a
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scale-dependent accuracy measure. Therefore, MAE cannot be used to make comparisons
between series using different scales. MAPE is a well-known metric in the literature [31]
and more understandable for the end-users. The MAPE metric is very similar to the MAE
(mean average error) but puts the absolute error value in context with respect to the total
count of each image. For test datasets, such as the ones we use, where the number of people
in each image is very different, we believe this metric is the most appropriate.

Numerically, the MAPE is defined as in Equation (1):

MAPE(%) = 1/n ∗
n

∑
t=1
| trueCountt − predCountt

trueCountt
| (1)

where n is the number of images, trueCountt is the ground truth value for image t and
predCountt is the resulting count value of the counting algorithm.

In object detection and in segmentation the results include a bounding box or a
polygon, respectively, where the object is predicted to be. The quality of the detec-
tion/segmentation is given by the overlap of the areas of detection and truth. When
the overlap is too small or null, the detection/segmentation is considered incorrect. To
measure the overlap we use the typical metric of IoU (intersection over union), defined as
in Equation (2):

IoU(%) =
Area_o f _overlap
Area_o f _union

(2)

where areas are measured in pixels. The two areas of comparison in Area_o f _overlap
and Area_o f _union are the resulting areas of the automatic segmentation process and the
manual segmentation area considered as ground truth. An IoU value of 1 represents a
perfect segmentation, while smaller values are less accurate results.

A threshold value of the IoU has to be defined to decide between a good and a
bad prediction. For detection (POLOtin and POLOpar) we set the threshold to 0.25 and
for segmentation we set it to 0.75. When the calculated IoU is below the threshold the
detection/segmentation is considered incorrect.

4.2. POLOtin Results

The YOLOv3-Tiny network, with the ImageNet trained model, was successfully
integrated in the drone ground station as POLOtin and tested for the detection of persons
during flight. A screenshot with the result of the detection and of the counting can be seen
in Figure 10. Observe that the individuals detected are shown to the law enforcement agent
inside red bounding boxes, and the total count is also visible in the top blue box.

Figure 10. Person counting using POLOtin works well for low-altitude and separated targets.

The figure also shows on the right the information about all the images that are
available in the drone. These images are just thumbnails and have a size of 99× 99 pixels,
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while their actual size in full resolution at the drone disk is around 5 Mb. For an efficient
execution of the tiny model the image downloaded and used in the detection algorithm
has a size of 960× 540 pixels (around 500 Kb), one order of magnitude smaller than the full
resolution image.

The use of medium resolution images allows the full process to be fast. From the
selection of the image to the display of the detection results on the C&C, it takes only 1–2 s.
The time depends on the quality of the communication link, but also on the parallel actions
that have been executed with the payload. For instance, the drone is able to capture video
at the same time it takes images, but then the elapsed time seen by the user is longer.

We ran the POLOtin detection algorithm for 70 images. From these, 55 images are
similar to the one in Figure 10, test images taken at the school, and 15 images are from
another dataset. This second dataset has images of Barcelona beaches in summer, with a
much more challenging detection than the one shown in Figure 10. Figure 11 shows the
comparison between the actual number of persons and the predicted one, and Figure 12
the characterization of the images in terms of the average size of a person in pixels. Notice
the important differences between the two sets of images: for the set of images taken at the
school (the first 55 images) and the set of images taken at the beach (the last 15 images).

Figure 11. Person count: predicted vs. truth.

Figure 12. Image characterization (pixels per person, as a percentage).
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For the first 55 images the average resolution of each person is around 0.2–0.3% of the
pixels of the image (bounding boxes of 300–500 pixels). For these images the count error
(1–2) is acceptable, as expected for the state-of-the-art model used.

For the second set the resolution of a person on average is less than 0.02% of the image
(bounding boxes of 10–30 pixels). Observe that the state-of-the-art tiny prediction model is
unable to detect any persons when the drone is flying at high altitudes as is the case in the
beach images. The MAPE of this set is 1 (100% of error) for all images.

The predictions of the person count, compared with the truth count, using integrated
state-of-the-art methods integrated in the drone system can be considered as a good starting
point for the school images. More detailed results for these images are shown in Figure 13,
with the MAPE averaged by ground truth values. Globally the MAPE for all the low-altitude
images resulted in a 35% deviation from the truth count (see average line in the figure).
In seven images, the count is perfect, while in three of them there is a detection when no
person was in view (left bar). Most of the images had five persons in view, for which the
MAPE is even below the average.

Figure 13. Mean average proportional error (MAPE).

4.3. POLOpar Results

A new trained model was used for obtaining the results of POLOpar. The training
was conducted with 7776 cropped images (both for training and validation). Using the
4-GPU cluster it took 11 h to complete a training of 40,000 iterations. The final average loss
obtained was 0.353230, defining loss as the IoU function.

The new model, also using the YOLOv3-Tiny network, has 12,200 weights, 2.1%
smaller than the POLOtin model given that the number of classes is reduced from 80 to 1.
This is two orders of magnitude less than the YOLOv3 model which has 690,000 weights,
and three detection layers instead of two of the tiny model.

The main results are given with the following two figures: Figure 14 shows the persons
detected in the challenging picture presented in Figure 1; Figure 15 shows the execution
time of the detection of an image in POLOpar on a Tripltek 7in Pro rugged tablet, with a
Snapdragon 845 (octa-core CPU) with 6 GB of memory.

Looking at Figure 14, we observe that the quality of the person detection in the
marathon image is very good for the persons that are almost fully visible and well separated
from others. The total count, 236 persons, is very accurate, with only 16 persons missing
(MAPE is 6.78%). Nevertheless, the compact crowd is clearly not detected by our new
model. Further executions show that this area is not detected with any of the available
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existing (no-tiny) models of YOLO and that it needs a different algorithm, such as the
Density Map presented in Section 3.3.

The results on the other hand become worse with the school images (MAPE is 100%).
If in App POLOtin the 4–6 persons were well detected given their high pixel density,
the cropping is clearly unnecessary and inconvenient. For this reason, POLOpar adds the
option of applying different levels of cropping, with no cropping being the best option for
these images.

Figure 14. Visual result of the motivating image. The count is 236, that correctly the detects persons
outside in the runners’ area.

Figure 15. POLOpar inference time depending on the number of threads.

Results on execution time are given in Figure 15. Execution times of the full process,
including the cropping and the parallel execution of the detection, are shown for 1, 6, and
10 threads, and for 3 consecutive runs. The first run is always slower because the CNN has
to be loaded into the memory of the C&C. It is observed that applying the POLOpar model
as in the state-of-the-art solution (with 1-thread execution) raises the execution time from
the 2 s of model POLOtin to 62–67 s (see 1-thread bars in Figure 15). The slowdown is due
to the execution of the detection to the 60 images resulting from the cropping process of a
full resolution image.

When applying our parallel solution, with the execution of the detection distributed
across the CPUs of the ground device, the optimum is found for 6 threads, obtaining an
execution time of 14–19 s.
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Other parallelisation strategies, such as processing the sub-images of each column
of the cropped array in separate thread (10 threads in this case), result in less efficiency.
The reason is that the number of threads exceeds by two the number of cores of the CPU.
By assigning a row of 10 images to each of the 6 threads we find a good combination in
which there are still CPU cores available to control the rest of the application (i.e., the flight
functionalities) and for the operating system.

The prediction numbers of the POLOpar model can be compared with the ground truth
in Figure 16 for the same subset of 70 images as before. Two tests of the model are shown,
one with no image cropping (named as NoCrop) and a second one with 416× 416 cropping
(named as Crop416). The execution of NoCrop is much faster (1–2 s, as in POLOtin) but
results for the high-altitude images are also very bad (MAPE close to 100%). We observe
how the same trained model can obtain better results by means of cropping. Cropping
allows it to work with the pixel resolution available at the high-resolution original image.
Additionally, parallelisation allows to keep the prediction time within the requirements of
the end-user.

Figure 16. POLOpar prediction results.

Looking further at the accuracy of the prediction for the high-altitude images of the
Barcelona beaches, Figure 17 shows the average MAPE of several runs using our trained
POLOpar model after the full training from the police images, and compares it with the
state-of-the-art MS COCO trained models for YOLOv3 and for YOLOv3-Tiny. Notice that
YOLO-V3 uses a CNN with 106 layers, while POLOpar and YOLOv3-Tiny models have
only 23 layers.

We observe that the best results are for YOLOv3, the deeper CNN model. Still this
model benefits from the proposed image cropping process to obtain good results.

Comparing the detection quality of the two small size models: the state-of-the-art
YOLOv3-Tiny model and our model, we observe that the improvement is almost 40% when
cropping is applied.

Our model, POLOpar, is still clearly missing a significant percentage of the persons,
with a MAPE of 67.6% for a dataset of high-altitude images not seen during the training.
For the local police images, the error was 35.3%, which is still high for the expectations of
the end users. There is clearly an important trade-off between the quality and efficiency of
the detection.
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Figure 17. POLOpar MAPE results for high-altitude images.

4.4. POLOseg Results

The results of the crowd segmentation and density map counting processes in the
POLOseg application are shown in Figure 18 for an example image. On the left, we observe
the original image, in the middle the result of the crowd segmentation, and on the right the
density map and the total person count of this part of the image.

Figure 18. Person counting in 2 steps (Source: MARS Intelligence, permission granted).

More results of the segmentation can be seen in Figure 19, which also includes the moti-
vating scene of Figure 1. The segmented images show that the detection of crowds has been
mostly successful, and the background is eliminated for a better density map generation.

Figure 19. Results of the segmentation for three dataset images.
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The full results of the segmentation are given in Table 2. On average, the images
had around 60% of their pixels segmented as a crowd. The table shows the number
and percentage of the test images for which the segmentation was considered correct.
In terms of IoU a value of 75% or more corresponds to a correct segmentation. Since the
test dataset was very successful, we also added some other images from our own dataset.
Surprisingly, the Castelldefels dataset had 6 images that were not correctly segmented,
where the algorithm failed in detecting any crowd. Most of these images are from the police,
and the altitude was much higher than in the rest of the dataset images. This highlights the
important effect the altitude has in the detection algorithms.

Table 2. Results of the segmentation of 56 images.

Dataset Total Images Correct Percentage

UCF-QNRF [29] 100 100 100%
Shanghai [2] 39 39 100%
Castelldefels 17 11 65%

TOTAL 156 150 96%

However, counting results after crowd segmentation showed no significant improve-
ment of the metrics (less than 1% improvement for the MAPE) with the type of images
used in the test (images taken from the Shanghai dataset, with an average of 60.02% of
image pixels representing highly congested areas). Anyway, segmentation is still useful,
as the Density Map method is not able to count isolated persons. Additionally, background
objects (trees, buildings, sky, etc.) are adding noise to the count that is better to eliminate.

A non-seen set of 100 images was taken from the UCF-QNRF dataset [29], a public
dataset with high-resolution images of crowds (average image size of 3926 Kb), to be used
as the POLOseg test set. Only the aerial images were selected, the average image size of
which was 144 Kb.

In addition to the lower rate of success in segmenting high-altitude images, such as the
ones in the Castelldefels dataset, the execution time raised a very important drawback when
testing the POLOseg algorithm on this test set. Running in the cloud, the segmentation
algorithm for the UCF-QNRF dataset takes 27.46 s per image, on average. This is a very
long delay for the expectations of the police officers. Compared with the average processing
time of the Density Map counting algorithm (3.52 s per image, on average) this is, one order
of magnitude higher. This is the reason why we decided to first evaluate the improvement
in count accuracy obtained by the segmentation before we integrating it to the embedded
C&C device.

The MAPE of the person count was calculated for the segmented images and com-
pared with the non-segmented image. The ground-truth values of the counts had to be
recalculated for the segmented images, since some of the persons outside of the crowd
were not present in the scene any more. The results help to assess the benefits given by the
crowd segmentation intermediate step.

Looking at Figure 20, we can observe in bars the individual values of the counting
error, as a function of the crows count, and in dashed lines the trends of these errors. We
observe that the average of the trend lines is between 20% and 30%, with no relevant
differences between segmented and non-segmented.

As the number of people in one image (Figure 20) increases, the error is lower for
non-segmented images. This is as expected, since the algorithm used was oriented towards
very congested scenes. On the contrary, the segmentation converts all images into very-
congested, and, thus, the MAPE trend line is more stable. In the middle of the plot
(the number of persons between 500 and 1000) the segmentation shows some benefits,
although they are not very significant. It is worth noticing that most of the images are
within this range.
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Figure 20. MAPE as a function of the crowd count (in orange with segmentation and in blue
without segmentation).

The MAPE is shown in relation to the image resolution in the plot of Figure 21. This is
a noisy plot in which no clear trends can be found. We can conclude that resolution is not a
significant feature for crowd counting based on density map, and also that the segmentation
of the crowd does not show a clear improvement over non-segmented (or original) results.
Figure 22 combines the two features above in a new feature: pixel density, defined as the
pixels per person of an image. The trends of this plot show that the error increases as
the pixels per person increase. Again, this is a reasonable result for the algorithm used.
Small people, in terms of pixels, are better detected than big persons. We may find that a
reasonable limit is around 7000 pixels, which is close to a bounding box of 80× 80 pixels
on average. Segmentation is found to be helpful for these density levels.

Figure 21. MAPE as a function of the image resolution (in orange with segmentation and in blue
without segmentation).

Figure 22. MAPE as a function of the density (in orange with segmentation and in blue without seg-
mentation).

In the last plot (Figure 23), the error as a function of the percentage of the image that
contains the crowd is shown. Highly congested scenes are typically close to 100%. For this
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reason the trend line of the original algorithm reduces the error as the congestion increases.
With the segmentation the trend is more stable.

Figure 23. MAPE as a function of percentage of area segmented (in orange with segmentation and in
blue without segmentation).

The following Table 3 shows a summary of the results of the three models and their
main contributions:

Table 3. Summary of contributions

Name Model Dataset MAPE Time (s) Main Contributions

POLOtin Pre-trained YOLO-Tiny School
(low-resolution) 35% 1–2 Integration of state-of-the-art

AI models in drone C&C
POLOpar

(with
6 threads)

New trained YOLO-Tiny Police
(high-resolution) 35.3% 14–19 New model +

Parallelisation strategy

POLOseg
New trained

Segmentation + Density
Map

UCF-QNRF
(high-resolution) 20–30% 27.46 + 3.52 Segmentation Strategy +

new model

5. Discussion

This work shows that it is possible to efficiently integrate state-of-the-art artificial
intelligence models in a drone as new functionalities, embedded in the C&C device used
to pilot the drone. In situations such as the COVID-19 pandemic, where strict control of
capacity was needed, or other more common situations where large areas need to be kept
within capacity limits, we have shown the possibility to easily add existing and improved
deep learning detection models in the C&C of the drone for helping law enforcement agents.

With the proposed methodology, the way the agents manage the drone can be kept as
usual, and with just one click any image onboard the drone can be downloaded immediately.
Then, the image can be easily processed to count persons and the results can be presented to
the pilot-in-command in less than 20 s thanks to the proposed parallelisation. Models and
cropping levels can be selected so the agent can change the configuration when the results
are not confident enough. As a rule of thumb, the higher the flight altitude, the deeper level
of cropping is needed. Future work can be done to help to automatically select them.

Two model training processes have been executed. The first one allowed us to create
an ad hoc AI model that improves the individual person detection of the images of the
police dataset. This model can still be improved for other datasets of drone images, since
count errors work for low-altitude images (MAPE from 20% to 30%), but are still too high
(around 65%) in high-altitude images. However, the available public datasets do not contain
images with the characteristics of the police drone flights. A perfect dataset shall be taken
from altitudes between 60 m to 120 m, and very importantly, with some slant camera view.
The task of labelling such images is huge but it is the confidential nature of the images that
makes this task more difficult to achieve. Again, future work can be done in this topic.
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The second training was conducted to create a model able to separate compact
crowds from other parts of the image with more (individually distinguishable) persons.
The segmentation results of this model were very good (96% of correct segmentation for
3 different datasets).

For the motivating image of the Mediterranean marathon (see Figure 1), the segmen-
tation into two sub-images, followed by the execution of the object counting or crowd
counting algorithms to the different sub-parts, was shown to be a good solution. It provided
the best result, with a MAPE of only 0.14% (ground truth of 729 vs. combined result of
730). Several configuration alternatives were tried for this image, with errors varying from
8.64% to 77.64%. We checked alternative options such as: original high-resolution versus
low-resolution, and different levels of cropping (original full-image versus cropped-image
versus different crop sizes 416× 416 pixels, 640× 640 pixels). For the count of the crowd
sub-image, the high-resolution and the full image seen at once gives better results than
cropping or decreasing the resolution.

Although our methodology of segmenting the drone image works very well for the
motivating example, when experimenting with the full test set the results show that the
high computing-power demand of the segmentation algorithm does not justify its scarce
benefits on the quality of the total count number. We believe, in agreement with the end
users, that the best alternative is to leave to the pilot-in-command the decision about
which algorithm is best for each scene. Density map is an algorithm oriented to highly
congested scenes and provides a good count for them. According to our results, the ideal
characteristics are given for high-resolution images with 250 to 1000 people, in which each
person occupies around 1000 pixels, but never more than 8000 pixels, and the percentage of
pixels with crowds is more than 80% of the area.

For future work, we plan to extend the deep learning models for other safety-critical
situations. These will focus on vehicles, to monitor the traffic flow and detect jams, dan-
gerous driving, etc. Other applications can include vegetation control in urban areas,
safe monitoring from the air of an agent working on the ground in a dangerous situation,
and the detection of illegal dumping of garbage or contaminants.

With the development of hand-held devices, with embedded GPUs and a high amount
of RAM memory, the used AI models can progressively transition to deeper networks. This
will, of course, improve the current MAPE results and lower the errors to make counts
more and more reliable in real-time. We still believe that parallelisation is a good option to
extract the maximum resolution of the image while reducing the detection time.

Two other alternatives can also be used to reduce the execution time while using
maximum pixel resolution. The first one, that is already presented in a parallel work, is
the use of the cloud capabilities. The high-resolution image is not processed in the C&C.
Instead the App sends it to a cloud service, with high computation capabilities, to proceed
with the detection with the most successful state-of-the-art models. The processed image
and the total count are then returned to the agents. This solution has the advantage of
broadcasting the results to more places (control centre room, other agents in the area, etc.) In
contrast it has the drawback of the cyber-security threat that all this data transfer supposes.
Most law-enforcement agencies are not confident with this method when the images are
very sensitive.

The other alternative method is the use of drones with cameras that provide zoom
capabilities. Typically zoom cameras are an expensive addition to the cost of the drone that
not all local police can currently afford. Moreover, zoom can reduce crucial information
about the context of the surroundings. However, we believe that, when available, zoom
can help the law enforcement agent to obtain good results from our model POLOpar by
combining the adequate value of zoom with the adequate level of cropping and parallelism.
For instance, if a trained model is available for images taken at 30 m, but the pilot needs
to fly at 60 m, they can always zoom-in the camera as the drones were flying at 30 m and
apply the validated model, being highly confident of the results.
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