
Citation: Patrinopoulou, N.;

Daramouskas, I.; Meimetis, D.;

Lappas, V.; Kostopoulos, V. A

Multi-Agent System Using

Decentralized Decision-Making

Techniques for Area Surveillance and

Intruder Monitoring. Drones 2022, 6,

357. https://doi.org/10.3390/

drones6110357

Academic Editors: Mou Chen,

Xiwang Dong, Xiangke Wang and

Fei Gao

Received: 20 October 2022

Accepted: 12 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Multi-Agent System Using Decentralized Decision-Making
Techniques for Area Surveillance and Intruder Monitoring
Niki Patrinopoulou 1,* , Ioannis Daramouskas 1,2, Dimitrios Meimetis 1, Vaios Lappas 3

and Vassilios Kostopoulos 1

1 Applied Mechanics Lab, University of Patras, 26504 Patras, Greece
2 Computer Technology Institute and Press “Diophantus, N. Kazantzaki Str., University Campus,

26504 Patras, Greece
3 Department of Aerospace Science & Technology, National Kapodistrian University of Athens,

10563 Athens, Greece
* Correspondence: n.patrinopoulou@upnet.gr

Abstract: A decentralized swarm of quadcopters designed for monitoring an open area and detecting
intruders is proposed. The system is designed to be scalable and robust. The most important aspect
of the system is the swarm intelligent decision-making process that was developed. The rest of the
algorithms essential for the system to be completed are also described. The designed algorithms were
developed using ROS and tested with SITL simulations in the GAZEBO environment. The proposed
approach was tested against two other similar surveilling swarms and one approach using static
cameras. The addition of the real-time decision-making capability offers the swarm a clear advantage
over similar systems, as depicted in the simulation results.

Keywords: real-time decision making; decentralized monitoring; swarm surveillance algorithm;
autonomous quadcopters; swarm intelligence

1. Introduction

The decision-making capability is an important attribute, essential for designing
autonomous and intelligent systems. Agent-based real-time decision-making based on the
data collected by the swarm is proven that can increase the efficiency of the solution and
remain robust to dynamic changes and uncertainties. The aim of this work is to examine
the efficiency of a decision-making algorithm for swarms compared with other methods,
where the decision-making is not existing, and evaluate the methods with a series of metrics
in six different scenarios ensuring that the swarm can operate autonomously and safely
regarding the inter-agent collisions.

We present a scalable and robust swarm, designed for surveilling a specific area and
tracking intruders. The concept is based on that when the swarm starts its operations,
it does not have any knowledge about whether intruders exist or not in the monitored
area. The intruders spawn at random places in the world during initialization and then
there is a fixed time window in which new intruders spawn in the world. The main
algorithm behind the swarm’s operation is a stochastic optimization-based decision-making
algorithm, responsible for selecting the next task of each agent from a large total of options.
The selection criteria are designed so that decision- making is optimized in a system level
rather than in an agent level, since we consider that global optimization provides better
results for our system. The algorithms needed to support the operation of the swarm are
described as implemented.

The key findings of our work are that a swarm with key components such as Task
allocation, Collision Avoidance, V2V communications, and V2G communications can
perform precisely and robustly a series of tasks in contrast to swarms with no cognitive
intelligence, as proven by our experiments. We can observe that when the swarm activates

Drones 2022, 6, 357. https://doi.org/10.3390/drones6110357 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6110357
https://doi.org/10.3390/drones6110357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-2589-064X
https://orcid.org/0000-0002-2446-0584
https://doi.org/10.3390/drones6110357
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6110357?type=check_update&version=1

Drones 2022, 6, 357 2 of 27

the decentralized decision-making, the effectiveness of the system is increased significantly,
as measured by a group of metrics.

Section 2 contains a brief state-of-the-art review focusing on decision-making and task
allocation algorithms. Section 3.1 introduces the UAVs and sensors used in the system. The
rest of Section 3 presents the developed algorithms and the proposed system architecture.
Section 3.7 depicts the tools used to implement and simulate the designed system. In
Sections 3.8 and 3.9, the behavior of the simulated intruders and the parameters of the
experiment scenarios are presented accordingly. In Section 4, the metrics used to assess the
algorithm and the experiment results are provided, where in Section 5 we present the key
findings of our work. Finally, in Section 6 we present the conclusions we made conducting
these series of experiments.

2. Related Work

The state-of-the-art presents a plethora of different approaches to the use of decision-
making in the task allocation problem. According to [1], the multi-robot task allocation
problem is an example of a Discrete Fair Division Problem, as an Optimal Assignment
Problem, an ALLIANCE Efficiency Problem or a Multiple Traveling Salesman Problem.
The methods to solve the multi-robot task allocation problem can be categorized to be
auction based, game theory based, optimization based, learning based and hybrid, as they
are listed below.

Auction based: In this type of approach, tasks are offered via auctions, the agents
can bid for tasks and the agent with the higher bid is assigned the corresponding task.
Each agent bids a value representing the gain of the utility function in case the agent gets
assigned that task. The utility function is designed based on the criteria of each problem and
takes as inputs the agent’s current state, the task’s description, and the local environment
perception of the agent [2]. The auctioneer might be a central agent, or as it is more
common, the auction could be held in a decentralized manner, such as in [3]. The authors
in [4] address the task allocation problem for multiple vehicles using the consensus-based
auction algorithm (CBAA) and the consensus-based bundle algorithm (CBBA), which is
a modification of the first one to be applied in multi-vehicle problems. The Contract Net
Protocol (CNP) presented in [5] was the first negotiation platform used in task allocation
problems and constitutes the base for numerous task allocation algorithms. CNP was tested
in [6] using a variety of simulation environments to solve the task allocation problem for
multiple robots. The authors concluded that because of the interdependency of the tasks
in a multi-robot task allocation problem, the original CNP approach does not solve the
problem sufficiently.

Game theory based: Game theory-based approaches describe the strategic interactions
between the players of a game. Each decision-making agent is considered a player and
the game strategy of a player consists of the tasks that the player chose. When the task
allocation solution proposed has been optimized globally, all the players will stop changing
their strategies, since the optimal outcome has been reached; that condition is called Nash
equilibrium. In [7], the authors present several applications of game-theoretic approaches
to UAV swarms. Authors in [8] proposed a decentralized game theory-based approach
for single-agent and multi-agent task assignment for detecting and neutralizing targets by
UAVs. In their scenario, UAVs might not be aware of the strategies of other UAVs and a
Nash Equilibrium is difficult to achieve. Instead, they used a correlated equilibrium.

Optimization based; Optimization algorithms focus on finding a solution from a set
of possible solutions, so that the solution’s cost is minimized, or the solution’s profit is
maximized depending on the specific problem’s criteria. Optimization techniques can be
distinguished into deterministic or stochastic methods. Deterministic methods always
produce the same results for equal inputs, while stochastic methods produce with high
probability similar results for equal inputs. Probably the most famous deterministic opti-
mization method used for task allocation is the Hungarian Algorithm (HA) [9]. The HA
attempts to solve the General Assignment Problem (GAP) in polynomial time by maxi-

Drones 2022, 6, 357 3 of 27

mizing the weights of a bipartite graph. In [10], the authors approach the task allocation
problem as a Vehicle Routing Problem (VRP) in order to solve a multi-agent collaborative
route planning problem. In this case, HA is employed after it has been modified to be able
to consider constrains, and a detour resolution stage has been added.

A subcategory of stochastic algorithms with great interest for us is the metaheuristics
methods which include evolutionary algorithms, bio-inspired algorithms, swarm intelli-
gence, etc. [11] presents the Modified Distributed Bees Algorithm (MDBA), a decentralized
swarm intelligence approach for dynamic task allocation, which shows great results when
compared with the state-of-the-art auction-based and swarm intelligence algorithms. In [12],
three different algorithms are presented inspired from Swarm-GAP, a swarm intelligence,
heuristic method for the GAP. Authors in [13] use a genetic algorithm (GA) optimization
for decentralized and dynamic task assignment between UAV agents. The task assignment
includes an order optimization stage, using GA optimization, for ordering the tasks from a
single-agent point of view and a communications and negotiation stage for reallocating
tasks between neighboring agents.

Learning based: A commonly used learning-based method is reinforcement learning,
a machine learning subcategory. Reinforcement learning algorithms adjust their parameters
based on the data gathered from their experiences, to achieve better behaviors. Q-learning
is a model free reinforcement learning method, which describes the environment as a
Markov Decision Process (MDP). In [14], a Q-learning implementation for the dynamic task
allocation is presented, while the adaptability of Q-learning to uncertainties is showcased
in [15], where it is used for multi-robot task allocation for the fire-disaster response.

Hybrid: Hybrid approaches combine some of the methods listed above to solve the
task allocation problem. In [16], the authors study the Service Agent Transport Problem
(SATP), a problem in the family of task-schedule planning problems, using a Mixed-integer
linear programming (MILP) of the optimization-based category and an auction-based
approach. [17] proposes an improved CNP technique for solving the problem of task allo-
cation for multi-agent systems (MAS), combining CNP with an ant colony algorithm using
the dynamic response threshold model and the pheromone model for the communication
between agents. [18] uses a CBBA-based approach, combined with the Ant Colony System
(ACS) algorithm and a greedy-based strategy to solve the problem of task allocation for
multiple robots’ unmanned search and rescue missions.

The multi-agent surveillance and multi-target monitoring and tracking problem has
been studied by several researchers, and a variety of decision-making techniques have been
proposed. A gradient model for optimizing target searching based on beliefs regarding the
target’s location is presented in [19,20]. They propose a decentralized architecture for the
implementation of their algorithm, in which it is assumed that the agents’ belief is globally
known across the system, and each agent optimizes its own actions based on the global
belief. Authors in [21] present a decentralized approach, in which UAV agents are organized
in local teams, in which the target estimations are communicated. A particle filter is used
to track the targets and the estimations are approximated as Gaussian Mixtures using
the expectation-maximization algorithm. The leaders of the local teams are responsible
for dynamically assigning regions to the team members. A system of UAVs and ground
sensors is studied in [22] for surveillance applications. Targets are detected from both
the ground and aerial sensors and UAVs are assigned targets based on a decision-making
methodology, so that a multi-attribute utility function is maximized. Partially Observable
Markov Decision Processes (POMDPs) have been proposed to model surveillance missions
to deal with uncertainties. A methodology to use POMDPs in a scalable and decentralized
system is presented in [23], based on a role-based auctioning method. In [24], an integrated
decentralized POMDP model is presented to model the multi-target finding problem in
GPS-denied environments with high uncertainty.

Drones 2022, 6, 357 4 of 27

3. Materials and Methods
3.1. Drone Characteristics
3.1.1. Drone Kinematic Model

The vehicle used in our tests is a simple quadcopter, shown in Figure 1, that can be
controlled by linear velocity commands in the x, y and z axis. The yaw of the vehicle
remains constant with small variations at its initial value, yaw = 0. For all the experiments
we assume a constant flight altitude is used.

Drones 2022, 6, x FOR PEER REVIEW 4 of 29

and ground sensors is studied in [22] for surveillance applications. Targets are detected

from both the ground and aerial sensors and UAVs are assigned targets based on a deci-

sion-making methodology, so that a multi-attribute utility function is maximized. Par-

tially Observable Markov Decision Processes (POMDPs) have been proposed to model

surveillance missions to deal with uncertainties. A methodology to use POMDPs in a scal-

able and decentralized system is presented in [23], based on a role-based auctioning

method. In [24], an integrated decentralized POMDP model is presented to model the

multi-target finding problem in GPS-denied environments with high uncertainty.

3. Materials and Methods

3.1. Drone Characteristics

3.1.1. Drone Kinematic Model

The vehicle used in our tests is a simple quadcopter, shown in Figure 1, that can be

controlled by linear velocity commands in the x, y and z axis. The yaw of the vehicle re-

mains constant with small variations at its initial value, yaw = 0. For all the experiments

we assume a constant flight altitude is used.

Figure 1. The iris drone as it is visualized in the GAZEBO simulator.

3.1.2. Sensors

The camera of the agent is directed vertically downwards, as presented in Figure 2.

The camera’s field of view (FOV) for every given moment is a rectangle defined by its

height, width, and center. The center of the rectangle coincides with the position of the

drone, while the height and width are given by the Equations (1) and (2).

ℎ𝑒𝑖𝑔ℎ𝑡𝑓𝑜𝑣 = 2 × 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 × tan(
𝑓𝑜𝑣𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑎𝑛𝑔𝑙𝑒

2
) (1)

𝑤𝑖𝑑𝑡ℎ𝑓𝑜𝑣 = 2 × 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 × tan(
𝑓𝑜𝑣ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑎𝑛𝑔𝑙𝑒

2
) (2)

In our case, the flight altitude of the drones was predefined to 20 m for all the simu-

lations and the camera in use has fovverticalangle = 0.785rad and

fovhorizontalangle = 1.047rad.

Figure 1. The iris drone as it is visualized in the GAZEBO simulator.

3.1.2. Sensors

The camera of the agent is directed vertically downwards, as presented in Figure 2.
The camera’s field of view (FOV) for every given moment is a rectangle defined by its
height, width, and center. The center of the rectangle coincides with the position of the
drone, while the height and width are given by the Equations (1) and (2).

height f ov = 2× altitude× tan
(

f ov vertical angle
2

)
(1)

width f ov = 2× altitude× tan
(

f ov horizontal angle
2

)
(2)

Drones 2022, 6, x FOR PEER REVIEW 5 of 29

Figure 2. The field of view of the iris drone with downwards oriented optical camera. The dimen-

sions of the field of view in this figure are measured for a flight altitude of 20 m.

3.2. System Overview

The system is described as a surveillance system with decentralized decision-making

capabilities and a central entity acting as a single point of truth. Each agent runs the same

code separately and can make its individual decisions. Before each decision is made the

agent asks from the central entity to provide him with information about the map/world.

That information is gathered in the central entity as each agent sends the data that he is

collecting. For every agent an identification number, unique in the swarm, is allocated.

Figure 3 shows the main data exchange between the agents and the central entity.

Figure 3. Central entity and agent data exchange.

The messages exchanged between each agent and the central entity are listed below:

• From an agent to the central entity:

• Scan data: The scan data message includes the identification number of the agent, the

number of intruders caught in the square, the number of the intruders detected but

not caught while scanning and the 2-D coordinates of the square scanned. The mes-

sage is sent from the agent to the central entity every time that the agent transitions

from the “Scan” mode to the “Go to” mode.

Figure 2. The field of view of the iris drone with downwards oriented optical camera. The dimensions
of the field of view in this figure are measured for a flight altitude of 20 m.

Drones 2022, 6, 357 5 of 27

In our case, the flight altitude of the drones was predefined to 20 m for all the simulations
and the camera in use has fov vertical angle = 0.785 rad and fov horizontal angle = 1.047 rad.

3.2. System Overview

The system is described as a surveillance system with decentralized decision-making
capabilities and a central entity acting as a single point of truth. Each agent runs the same
code separately and can make its individual decisions. Before each decision is made the
agent asks from the central entity to provide him with information about the map/world.
That information is gathered in the central entity as each agent sends the data that he is
collecting. For every agent an identification number, unique in the swarm, is allocated.
Figure 3 shows the main data exchange between the agents and the central entity.

Drones 2022, 6, x FOR PEER REVIEW 5 of 29

Figure 2. The field of view of the iris drone with downwards oriented optical camera. The dimen-

sions of the field of view in this figure are measured for a flight altitude of 20 m.

3.2. System Overview

The system is described as a surveillance system with decentralized decision-making

capabilities and a central entity acting as a single point of truth. Each agent runs the same

code separately and can make its individual decisions. Before each decision is made the

agent asks from the central entity to provide him with information about the map/world.

That information is gathered in the central entity as each agent sends the data that he is

collecting. For every agent an identification number, unique in the swarm, is allocated.

Figure 3 shows the main data exchange between the agents and the central entity.

Figure 3. Central entity and agent data exchange.

The messages exchanged between each agent and the central entity are listed below:

• From an agent to the central entity:

• Scan data: The scan data message includes the identification number of the agent, the

number of intruders caught in the square, the number of the intruders detected but

not caught while scanning and the 2-D coordinates of the square scanned. The mes-

sage is sent from the agent to the central entity every time that the agent transitions

from the “Scan” mode to the “Go to” mode.

Figure 3. Central entity and agent data exchange.

The messages exchanged between each agent and the central entity are listed below:

• From an agent to the central entity:
• Scan data: The scan data message includes the identification number of the agent, the

number of intruders caught in the square, the number of the intruders detected but not
caught while scanning and the 2-D coordinates of the square scanned. The message is
sent from the agent to the central entity every time that the agent transitions from the
“Scan” mode to the “Go to” mode.

• Path data: The path data message includes the identification number of the agent
and a list of the intruders that were detected and not caught while moving from the
previous target to the next. The message is sent from the agent to the central entity
every time the agent transitions from the “Go to” mode to the “Scan” mode, since
that is when the agent has completed its path to the new target. Moreover, the path
data message will be sent if in the process of following an intruder, another intruder
gets detected.

• Next-square target: The next target message includes the identification number of the
agent and the 2-D coordinates of the next target that the agent selected. That message
is sent from the agent to the central entity every time the agent decides on a next target.

• From the central entity to an agent:
• World map: The world map message is a 2-D matrix with the information about the

world, as described in Section 3.3.
• The agents’ behavior consists of three different modes:
• Scan: “Scan” mode is activated when the agent is in the boundaries of its square-target.

The agent delineates a zig-zag coverage pattern to surveille the whole square-target
and check for intruders in that square. If an intruder is detected, then the agent
will transit to “Follow intruder” mode. The algorithm used is described in detail in
Section 3.4.

• Go to: In this mode, the agent has decided on the next square-target and it moves
towards the target in a straight line connecting its current position and the vertex of
the square-target that is closer to the current position.

Drones 2022, 6, 357 6 of 27

• Follow intruder: Independent of the previous mode, when an intruder is detected the
agent changes to “Follow intruder” mode. If the agent is already following an intruder,
it will keep following the previous intruder and when the intruder is caught the agent
will follow the new intruder if the new intruder is still in the agent’s detection range
(in the FOV of the agent), otherwise the agent will change to “Go to” mode and move
towards the next square-target. In the case that another agent is in a distance that
allows him to detect the intruder as well, the agent will drop the “Follow intruder”
mode with a probability of 0.1. That characteristic is added to avoid agent congestion
over a specific intruder or small group of intruders. The drop probability used may
seem too small, but we need to consider that the algorithm runs in a ROS node with a
frequency of 5 Hz, so for every second each agent in that situation has a probability of
0.5 to drop the mode.

The agents’ modes and the trigger mechanisms for transitioning between modes are
summed up in Figure 4.

Drones 2022, 6, x FOR PEER REVIEW 7 of 29

Figure 4. Agents’ mode sequence and change triggers. The three modes of the agent “Scan”, “Go

to” and “Follow” are visualized as rectangles and the transitions between the modes are arrows,

explaining the type of the cause that triggered the transition.

3.3. World Representation

The world is treated as a 2-D grid of 𝑛×𝑛 size, which consists of equal sized squares.

A similar approach to discretize the area search problem has been introduced in [25,26].

Each square corresponds to one task and each task can be assigned to one agent at any

given moment. Each agent is responsible for one task and only when that task is com-

pleted or dropped, is when the agent can select a different task. If an agent has selected a

task, the central entity flags the square corresponding to that task, so that no other agent

is able to select the same task. If two or more agents select the same task simultaneously

then the central entity is responsible to inform one of them through a message asking to

change their task and repeat the selection process.

The central entity initializes a 2-D matrix containing the grid’s information. The ma-

trix is updated by the central entity based on the data that are received from the agents.

When an agent needs to select its next task considering the world information, the agent

receives the grid matrix from the central entity. Each node of the matrix includes the fol-

lowing information:

• Time of last visit: that contains the time stamp of the last time that the corresponding

node was scanned by an agent.

• Probability: that expresses the estimated probability of finding an uncaught intruder

in that node. The probability is calculated based on the number of intruders that were

detected and not caught in that node and in its neighboring nodes. The probability

value pi is initialized at 0.1 for all the nodes (Equation (3)). When a square-target is

selected by an agent, its corresponding node’s probability takes a negative value so

that no other agent selects that square-target until the current agent has completed

its task (Equation (4)). The probability is repaired to its non-negative value when

scanning is completed. When scan or path data are received, the probability updates

as described at Equations (6)–(10).

Initialize all square probabilities to 0.1:

𝑝𝑖 = 0.1∀𝑖 ∈ 𝐺𝑟𝑖𝑑 (3)

When a next target message is received for square i as the target assigned to an agent:

𝑝𝑖 = 𝑝𝑖 − 100 (4)

Figure 4. Agents’ mode sequence and change triggers. The three modes of the agent “Scan”, “Go
to” and “Follow” are visualized as rectangles and the transitions between the modes are arrows,
explaining the type of the cause that triggered the transition.

3.3. World Representation

The world is treated as a 2-D grid of n×n size, which consists of equal sized squares.
A similar approach to discretize the area search problem has been introduced in [25,26].
Each square corresponds to one task and each task can be assigned to one agent at any
given moment. Each agent is responsible for one task and only when that task is completed
or dropped, is when the agent can select a different task. If an agent has selected a task, the
central entity flags the square corresponding to that task, so that no other agent is able to
select the same task. If two or more agents select the same task simultaneously then the
central entity is responsible to inform one of them through a message asking to change
their task and repeat the selection process.

The central entity initializes a 2-D matrix containing the grid’s information. The
matrix is updated by the central entity based on the data that are received from the agents.
When an agent needs to select its next task considering the world information, the agent
receives the grid matrix from the central entity. Each node of the matrix includes the
following information:

• Time of last visit: that contains the time stamp of the last time that the corresponding
node was scanned by an agent.

• Probability: that expresses the estimated probability of finding an uncaught intruder
in that node. The probability is calculated based on the number of intruders that were

Drones 2022, 6, 357 7 of 27

detected and not caught in that node and in its neighboring nodes. The probability
value pi is initialized at 0.1 for all the nodes (Equation (3)). When a square-target is
selected by an agent, its corresponding node’s probability takes a negative value so
that no other agent selects that square-target until the current agent has completed
its task (Equation (4)). The probability is repaired to its non-negative value when
scanning is completed. When scan or path data are received, the probability updates
as described at Equations (6)–(10).

Initialize all square probabilities to 0.1:

pi = 0.1 ∀ i ∈ Grid (3)

When a next target message is received for square i as the target assigned to an agent:

pi = pi − 100 (4)

When a scan message is received after scanning square i:

I f pi < 0 : pi = pi + 100 (5)

• If no intruders were detected in the square i after a full scan:

pi = 0.1 (6)

• If N intruders were detected and not caught in the square i:

Find the neighborhood ni o f i (7)

∀ square j ∈ ni : vj =
1

1 + e−(dmax−dj)
(8)

∀ square j ∈ ni : pj = pj + N ∗
vj

∑ vk
(9)

I f pi > 1 : pi = 1 ∀ i ∈ Grid (10)

The value vj is computed for every square separately and it is dependent on its distance
di from the center, since intruders tend to move towards the center and the probability of
their next move to be in a square closer to the center has a higher probability. Where dmax is
the maximum distance computed from the neighborhood to the target (in our experiments
the center of the map). Before it is added to the probability of the square, the value vj is
divided by the sum of all values vj calculated for the neighborhood so that ∑k ∈ ni

vj
∑ vk

= 1,
where ni is the neighborhood of square i. The size of the neighborhood depends on the
speed of the intruders and the size of the squares. In our implementation, the neighborhood
consisted of only the squares adjacent to the square i, creating a neighborhood of nine
squares (3 × 3 square neighborhood), containing the square i.

3.4. Coverage Algorithm

The objective of the coverage path planning algorithms is to compute a path that
crosses over all points of an area of interest while avoiding obstacles [27]. As mentioned
above, each square of the grid corresponds to an agent’s task. The task to be implemented
is for the agent to scan the whole area of the square using a coverage algorithm. Since the
main objective of the system is to detect intruders, the scanning is dropped if an intruder
is detected, in which case the agent starts following the intruder, activating the “Follow
intruder” mode. If no intruder is detected, the task is completed when the area of the
square has been scanned.

Drones 2022, 6, 357 8 of 27

The scan mode is activated only after the “Go to” mode and the event that triggers
that transition is the arrival of the agent at one of the corners of the square to be scanned.
Since the FOV of the agent is considered to be a rectangle, the agent does not actually have
to be on the edges of the square for them to be scanned. We assume a rectangle smaller
than the square and with the same center (the inner rectangle as presented in Figure 5). The
height and width of the rectangle depends on the height and the width of the field of view
accordingly and is given by Equations (11) and (12).

heightrectangle = edgesquare − 2× 2
6
× height f ov (11)

widthrectangle = edgesquare − 2× 2
6
× width f ov (12)

where the heightrectangle and the widthrectangle represent the height and the width accord-
ingly of the inner rectangle, the edgesquare is the length of the edge of each square-target
and the heightfov and widthfov are the height and width of the Field Of View of the agents.

Drones 2022, 6, x FOR PEER REVIEW 9 of 29

The agent moves in the boundaries of the inner rectangle, drawing a zig-zag shaped

route. The scanning movement starts with a repeating shift on the x axis until the right-

side or left-side (depending on the starting corner) boundary is reached and continues

with a shift at the y axis for
2

3
× heightfov. The sequence of shifts is repeated with the di-

rection of the shift on the x axis to be inverted for each repetition until the upper-side or

downer-side (depending on the starting corner) is reached. When the movement is com-

pleted, the agent has visited all the corners of the inner rectangle, and by doing so, it has

scanned the whole area of the square.

Figure 5. Scanning movement: The agent starts at the up-left corner of the inner rectangle. Then, the

agent moves to the right along the x axis until it reaches the right edge of the inner rectangle. After,

it moves downwards along the y axis for a distance equal to two thirds of the height of the FOV.

The agent continues its movement, moving to the left along the x axis until it reaches the left edge

of the inner rectangle. Finally, the agent repeats its downwards movement until it reaches the down

side of the inner rectangle and it moves to the right until it reaches the down-right corner of the

inner rectangle.

3.5. Swarm Intelligence—Decision Making

The most important part of the system is the agents’ ability of decision-making to

select their next square-target. That is handled by a stochastic algorithm, partially inspired

from the ant colony pheromone deposition [28] idea. The decision-making process is acti-

vated when an agent has completed a task and it needs to choose the next square-target

as its task. To make its decision, it uses the world information provided by the central

entity as a 2-D matrix, containing the probability and time of the last visit of all the square-

targets of the grid. The decision-making process is depicted in Figure 6. The agent first

decides if it will stay in its current neighborhood or travel to another neighborhood of the

map. That decision is not deterministic, and the agent chooses its current neighborhood

with a probability of 0.7, the center neighborhood with probability of 0.06 or a random

square-target with probability of 0.24. The ability to travel across the map instead of stay-

ing in neighboring squares is added to force the agents to move around the map; this helps

to escape local minima by exploring areas of the map that have not been explored recently

or detect intruders during the flight and add more information to the world’s matrix. After

the agent decides the neighborhood of its next square-target, it needs to select the exact

square-target. It computes the margin of every square of the neighborhood based on the

Equation (13):

𝑚𝑎𝑟𝑔𝑖𝑛𝑖 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖
7 ×

(𝑡𝑖𝑚𝑒𝑛𝑜𝑤 − 𝑡𝑖𝑚𝑒𝑜𝑓𝑙𝑎𝑠𝑡𝑣𝑖𝑠𝑖𝑡)

600

3

 (13)

The sum of all the margins of the neighborhood gives the marginsum:

Figure 5. Scanning movement: The agent starts at the up-left corner of the inner rectangle. Then,
the agent moves to the right along the x axis until it reaches the right edge of the inner rectangle.
After, it moves downwards along the y axis for a distance equal to two thirds of the height of the
FOV. The agent continues its movement, moving to the left along the x axis until it reaches the left
edge of the inner rectangle. Finally, the agent repeats its downwards movement until it reaches the
down side of the inner rectangle and it moves to the right until it reaches the down-right corner of
the inner rectangle.

The agent moves in the boundaries of the inner rectangle, drawing a zig-zag shaped
route. The scanning movement starts with a repeating shift on the x axis until the right-side
or left-side (depending on the starting corner) boundary is reached and continues with a
shift at the y axis for 2

3 × heightfov. The sequence of shifts is repeated with the direction of
the shift on the x axis to be inverted for each repetition until the upper-side or downer-side
(depending on the starting corner) is reached. When the movement is completed, the agent
has visited all the corners of the inner rectangle, and by doing so, it has scanned the whole
area of the square.

3.5. Swarm Intelligence—Decision Making

The most important part of the system is the agents’ ability of decision-making to select
their next square-target. That is handled by a stochastic algorithm, partially inspired from
the ant colony pheromone deposition [28] idea. The decision-making process is activated
when an agent has completed a task and it needs to choose the next square-target as its
task. To make its decision, it uses the world information provided by the central entity as
a 2-D matrix, containing the probability and time of the last visit of all the square-targets

Drones 2022, 6, 357 9 of 27

of the grid. The decision-making process is depicted in Figure 6. The agent first decides
if it will stay in its current neighborhood or travel to another neighborhood of the map.
That decision is not deterministic, and the agent chooses its current neighborhood with a
probability of 0.7, the center neighborhood with probability of 0.06 or a random square-
target with probability of 0.24. The ability to travel across the map instead of staying in
neighboring squares is added to force the agents to move around the map; this helps to
escape local minima by exploring areas of the map that have not been explored recently or
detect intruders during the flight and add more information to the world’s matrix. After
the agent decides the neighborhood of its next square-target, it needs to select the exact
square-target. It computes the margin of every square of the neighborhood based on the
Equation (13):

margini = probability7
i ×

(time now− time o f last visit)
600

3
(13)

Drones 2022, 6, x FOR PEER REVIEW 10 of 29

𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑢𝑚 = ∑ 𝑚𝑎𝑟𝑔𝑖𝑛𝑖
𝑖∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑

 (14)

Each margin computed is divided by the marginsum to compute the probability of

selecting each square-target.

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑏𝑖 =
𝑚𝑎𝑟𝑔𝑖𝑛𝑖
𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑢𝑚

 (15)

Finally, the next square-target is selected in a non-deterministic manner and each

square-target has a probability selectionprobi to be selected. After the agent selects its

next target, it informs the central entity by sending a “Next square-target” message con-

taining its identification number and its selected target.

Figure 6. Flowchart of the proposed decision-making algorithm for the selection of the next square-

target.

For the random selection based on probabilities, a simple wheel selection algorithm

similar to the one proposed in [29] was developed. The algorithm is presented in Algo-

rithm 1.

Figure 6. Flowchart of the proposed decision-making algorithm for the selection of the next square-target.

The sum of all the margins of the neighborhood gives the marginsum:

marginsum = ∑
i ∈ neighborhood

margini (14)

Drones 2022, 6, 357 10 of 27

Each margin computed is divided by the marginsum to compute the probability of
selecting each square-target.

selection probi =
margini

marginsum
(15)

Finally, the next square-target is selected in a non-deterministic manner and each
square-target has a probability selection probi to be selected. After the agent selects its next
target, it informs the central entity by sending a “Next square-target” message containing
its identification number and its selected target.

For the random selection based on probabilities, a simple wheel selection algo-
rithm similar to the one proposed in [29] was developed. The algorithm is presented
in Algorithm 1.

Algorithm 1. Random selection wheel

1: Choose a random number p in the range [0, 1]
2: Create a list prob_list containing all the probabilities
3: Initialize i as 0
4: Set prob as prob= prob_list[i]
5: If prob <= p
6: The i element is selected, and the algorithm is terminated
7: Else
8: p = p-prob
9: i++
10: Repeat from step 4

The decision-making algorithm uses the idea of pheromones and evaporation intro-
duced in the ACS, which in our case is implemented by saving the time of the last visit of
each square. The agent’s decision is based on how recently the square that it is considering
on selecting was visited. In that way, a square that has been scanned recently and hence
has higher probability of not having intruders has a lower probability to be picked by the
agent. It is clear that in our case the existence of pheromones acts as a suspending factor on
visiting an area, which is in contrast to the way that the pheromones are used in the ant
colony as described in [28], where the existence of pheromones increases the probability of
an agent to visit the area.

The probability of finding intruders in a square can also be described as an attractive
pheromone, which does not obey the evaporation phenomenon. The intruder-related
pheromone only increases until the agent scans the corresponding square, and if no intrud-
ers are detected it is decreased to its initialization value of 0.1.

We should note here that in the scenario under study the behavior of one intruder is
independent on the behavior of the rest of them. Under that assumption, it is not valid to
use the information of an intruder that has been caught to predict the behavior of the rest of
them. So, the probability of finding an intruder in a square is computed using information
regarding only intruders that were detected, but they were not caught. It would be prudent
to say that if the behavior of each intruder influences the rest of the intruders, the data
concerning the intruders that have been caught would also be useful in determining the
probability of finding an intruder in a specific area.

3.6. Collision Avoidance

The most crucial block when dealing with swarms is to ensure that each agent can
perform autonomously with safety. Hence, a collision avoidance algorithm is needed to
ensure that the agents do not collide on each other. In the literature, a variety of methods
exists with many different characteristics and capabilities. A potential field method [30]
was selected both for guiding the agents to a point of interest and for preventing inter-agent
collisions. The implemented collision avoidance method is decentralized and it requires for
every agent to be aware of the position of the other agents in a distance shorter or equal

Drones 2022, 6, 357 11 of 27

to 7 m by utilizing V2V communication. The collision avoidance block is enabled only at
the “Go to” and “Intruder following” modes. In the “Scan” mode, no conflicts occur, since
only one agent could be in the “Scan” mode on a particular square-target at every moment.
If two or more agents either in the “Go to” or in the “Intruder following” mode detect a
collision in their path, they all act to ensure deconfliction. If one or more agents not in the
“Scan” mode detect a possible collision with an agent in the “Scan” mode, the agents that
are not in “Scan” mode deconflict while the scanning agent continues its route.

In the “Go to” and the “Intruder following” modes, the objective is similar; navigate
to a specific point of interest while avoiding collisions with other agents. The difference
between the modes is the type of the point of interest, which is a constant point in the case
of the “Go to” mode and a moving ground target in the case of the “Intruder following”
mode. Thus, the calculation of the movement commands is conducted in the same way in
both modes.

The computed desired velocity of each agent is the sum of attractive velocity and
repulsive velocity. The attractive velocity is caused by an attractive force acting on the
agent and causing it to move towards the point of interest. The repulsive velocity is caused
by a repulsive force acting between agents, which is responsible for not allowing agents to
come too close, preventing the possibility of a collision.

The attractive velocity is analyzed at v_attri,x and v_attri,y as shown in Equations (16)
and (17) and it is dependent on the distance from the target. The coordinates of the target are
given as a 2-D point (goali,x,goali,y), as is the position of the agent i (positioni,x, positioni,y).

v_attri,x =

{
2× goali,x−positioni,x

|goali,x−positioni,x| , i f |goali,x − positioni,x| ≥ 2

goali,x − positioni,x, i f |goali,x − positioni,x| < 2
(16)

v_attri,y =

2× goali,y−positioni,y

|goali,y−positioni,y| , i f
∣∣goali,y − positioni,y

∣∣ ≥ 2

goali,y − positioni,y, i f
∣∣goali,y − positioni,y

∣∣ < 2
(17)

The repulsive velocity is also analyzed at v_repi,x and v_repi,y and it is calculated from
Equations (18) and (19), where the position of another agent j in the detection distance of
7 m is defined as (positionj,x, positionj,y), and distancei,j is the Euclidean distance between
the two agents.

v_repi,x =

∑
j
−2× positionj,x−positioni,x

distancei,j
∀ j : 2 < distancei,j ≤ 7

∑
j
−2× positionj,x−positioni,x

|positionj,x−positioni,x| ∀ j : distancei,j ≤ 2
(18)

v_repi,y =

∑
j
−2× positionj,y−positioni,y

distancei,j
∀ j : 2 < distancei,j ≤ 7

∑
j
−2× positionj,y−positioni,y

|positionj,y−positioni,y| ∀ j : distancei,j ≤ 2
(19)

The overall desired velocity is expressed in the x, y axes as vi,x and vi,y for each agent
i, and it is computed from Equations (20) and (21).

vi,x = v_attri,x + v_repi,x (20)

vi,x = v_attri,y + v_repi,y (21)

The computed velocity here is the desired velocity of the agent and it is sent to the
autopilot, who is responsible for achieving it in a robust and efficient manner. That provides
us with the freedom of not having to ensure the continuity of the velocity functions. If
the velocities computed here were fed directly to the motors, the continuity of the velocity
functions should be ensured, either by computing the velocity indirectly via computing the
attraction or repulsion forces, or by adding a maximum velocity change step.

Drones 2022, 6, 357 12 of 27

One of the main problems caused by the potential fields family of algorithms is the
existence of local minimum that cause the agents to immobilize before they reach their
goal [31]. Local minima could be resolved with three approaches: Local Minimum Removal,
Local Minimum Avoidance and Local Minimum Escape (LME) [32]. Since the environment
that we are working in does not contain any static obstacles, the agents could fall into local
minimum caused only by the existence of other agents nearby. We choose to resolve local
minimum using a local minimum escape method. In the LME approaches, the agents reach
a local minimum and then an escape mechanism is triggered to resolve it.

The local minimum detection and resolution is implemented in a decentralized manner
by each agent separately. After the agent has computed its desired velocity, it checks if
he is trapped in a local minimum. If the agent’s desired velocity is equal to zero (using a
threshold near zero) and his attractive velocity does not equal to zero, then the agent is
considered trapped. At that point, the agent assumes that all the other agents from which
the agent is currently deconflicting are also trapped in the same local minimum. The agent
computes the average position of all agents trapped in the same local minimum.

positionlocalminimum
=

∑
n_trapped
i=0 positioni

n_trapped
(22)

where n_trapped is the number of the agents trapped in that local minimum and i belongs
in the set of agents trapped in that local minimum. Each agent i performs a circular motion
around the positionlocalminimum

in an anti-clockwise direction with a constant speed. The
agent recomputes its desired velocity in every time step and it continues with the circular
motion until it is no longer trapped, in which case it continues with its path.

3.7. Implementation—Simulation

To validate our algorithms and the effectiveness of our system, we performed a series
of experiments in simulated worlds. To make our swarm more realistic and applicable to
real world scenarios, we decided to use the famous robotics framework ROS [33]. Using the
ROS architecture capabilities, we can add to our system all the desirable aspects for every
block we described. The nodes were developed at C++ and python and the ROS version
used was ROS melodic. The simulations were conducted using the GAZEBO 7 physics
engine [34], where the PX4 autopilot [35,36] was used to control the drones and the selected
vehicle was the iris quadcopter, as provided by the PX4.

The central entity is managed by a python script that creates a ROS node is named
the central_node, while a ROS node named drone_node was developed in C++ to control
the agents. For each agent, an instance of the drone_node runs, given different values
for each node. The essential data for each drone_node instance initialization are: the
identification number, and the x and y cartesian coordinates of the corresponding agent’s
spawn position. The drone_node instances also send control commands with the desired
velocity in the x, y and z axis to the PX4 autopilot. The intruders are managed by a python
script, which creates a ROS node named intruders_node. The intruders_node is responsible
for spawning them and moving them, as described in Section 3.8, and keeping logs of the
metrics presented under Section 4.2. All of the components described communicate with
each other by exchanging messages (publish or subscribe) to specific ROS topics. For the
communication of the node developed by our team, special message types were developed
to include the exact types of variables needed.

Figure 7 presents the overall system architecture of the implementation of a swarm
containing two agents only for demonstration purposes. The figure has been produced
from the rqt_graph ROS tool. The nodes are represented by eclipses, while the arrows
connecting them represent the topics which they use to exchange messages. The gazebo and
gazebo_gui nodes are related to the simulation and the simulation’s graphical user interface.
The uav0/mavros and uav1/mavros nodes’ purpose is to transfer information between
the ROS environment and the autopilot [37]. The MAVROS package [38] enables the data

Drones 2022, 6, 357 13 of 27

exchange between ROS nodes and autopilots equipped with the MAVLink communication
protocol [39]. The nodes central_node, drone_node0 and drone_node1 were implemented
by our team.

Drones 2022, 6, x FOR PEER REVIEW 14 of 29

Figure 7. The rqt graph with the ROS nodes. The rqt graph includes two agents and the central entity

for simplicity. The ROS nodes are represented by ellipses while the ROS topics used for message

exchange between the nodes are the arrows connecting them. The/uav0/mavros and/uav1/mavros

nodes are created from the mavros ROS package to enable the communication of the ROS nodes

with the drones’ firmware.

3.8. Intruders’ Behavior

In this section, we will present the intruders’ behavior. An intruder in our simula-

tions can be ground moving objects (either people or robots with constant speed and

smaller in amplitude to the drone’s speed). An intruder’s goal is to reach the center of the

world and stay there for 10 s. The attributes defining the behavior of the simulated intrud-

ers are summarized here:

• Spawn positions: It is assumed that the world was not being surveilled before the

simulation starts, so at the beginning of the simulation, five intruders are spawned

at random positions through the world. After that, the intruders are spawned only at

the edges of the world, randomly distributed along the four edges of the boundaries

of the world.

• Spawn time: Spawn time is defined as the time interval between the spawn of two

consequential spawning groups of intruders after the simulation starts. In our simu-

lation, that value was constant and equal to 10 s and the size of the spawning group

was set to two intruders, so every 10 s, two more intruders were spawned in the

simulation.

• Movement type: The intruders’ goal is to reach the target, so each intruder’s average

movement is on a straight line starting from its spawn position and ending at the

target. To recreate a more realistic movement pattern, a stochastic element is added

to the constant velocity movement. For every four steps that the intruders make,

three of them are the right direction and one of them is in a random direction. After

reaching the target, the intruders stay over it for 10 s before they complete their mis-

sion. If an intruder completes its mission, it is removed from the simulation.

• The intruders are simulated as non-dimensional points with holonomic movement.

Since the intruders are assumed to be non-dimensional, inter-intruder collision is not

considered.

• An intruder is considered caught after it has been tracked by an agent for a prede-

fined tracking time. When an intruder is caught, it is removed from the simulation

and the metrics related to the caught intruder are saved.

• An intruder is considered alive from its spawn time until it is caught, or it reaches

the target.

• An intruder is detected from an agent, if the intruder is in the FOV of the agent’s

camera.

Figure 7. The rqt graph with the ROS nodes. The rqt graph includes two agents and the central entity
for simplicity. The ROS nodes are represented by ellipses while the ROS topics used for message
exchange between the nodes are the arrows connecting them. The/uav0/mavros and/uav1/mavros
nodes are created from the mavros ROS package to enable the communication of the ROS nodes with
the drones’ firmware.

3.8. Intruders’ Behavior

In this section, we will present the intruders’ behavior. An intruder in our simulations
can be ground moving objects (either people or robots with constant speed and smaller
in amplitude to the drone’s speed). An intruder’s goal is to reach the center of the world
and stay there for 10 s. The attributes defining the behavior of the simulated intruders are
summarized here:

• Spawn positions: It is assumed that the world was not being surveilled before the
simulation starts, so at the beginning of the simulation, five intruders are spawned at
random positions through the world. After that, the intruders are spawned only at the
edges of the world, randomly distributed along the four edges of the boundaries of
the world.

• Spawn time: Spawn time is defined as the time interval between the spawn of two con-
sequential spawning groups of intruders after the simulation starts. In our simulation,
that value was constant and equal to 10 s and the size of the spawning group was set
to two intruders, so every 10 s, two more intruders were spawned in the simulation.

• Movement type: The intruders’ goal is to reach the target, so each intruder’s average
movement is on a straight line starting from its spawn position and ending at the
target. To recreate a more realistic movement pattern, a stochastic element is added to
the constant velocity movement. For every four steps that the intruders make, three of
them are the right direction and one of them is in a random direction. After reaching
the target, the intruders stay over it for 10 s before they complete their mission. If an
intruder completes its mission, it is removed from the simulation.

• The intruders are simulated as non-dimensional points with holonomic movement.
Since the intruders are assumed to be non-dimensional, inter-intruder collision is
not considered.

• An intruder is considered caught after it has been tracked by an agent for a predefined
tracking time. When an intruder is caught, it is removed from the simulation and the
metrics related to the caught intruder are saved.

• An intruder is considered alive from its spawn time until it is caught, or it reaches
the target.

• An intruder is detected from an agent, if the intruder is in the FOV of the agent’s camera.

Drones 2022, 6, 357 14 of 27

3.9. Scenario

Six scenarios were designed to test the performance of the algorithm. Each scenario
has a different world size and swarm size to evaluate the scalability of the algorithm. The
parameters to describe each scenario are listed below:

• World size: the size of the simulated world.
• Grid size: the size of the grid applied in the world.
• Square size: the size of the individual square of the grid depends on the size of the

world and the size of the grid and is calculated based on the Equation (23).

square size =
world size
grid size

(23)

• Swarm size: the number of the agents of the swarm.
• Environment type: an empty environment was selected with no static obstacles that

would cause collision risks and visibility constraints.
• Simulation duration: the duration of the simulation remained constant for all three

scenarios at 33 min in real time simulation.
• Intruders spawned: the total amount of intruders spawned during the simulation;

that value is constant at 401 intruders for all the scenarios and experiments that
were conducted.

• Intruders’ average speed: That is computed by dividing the average time that the
intruders need to reach the target by the average distance between their spawn position
and the target.

• Target: The target is defined as the center of the world.
• Intruder tracking time: That is defined as the duration of time that an agent needs

to track an intruder for the intruder to be considered caught. That was set to 10 s for
all scenarios.

• Density of agents: That is defined as the number of agents of the swarm divided by
the world area.

Table 1 summarizes the different parameters used between the different scenarios.
Two sets of scenarios were designed, such that the density of the agents is maintained
constant for all scenarios of the set. The size of the surveilled area, the swarm size and the
speed of the intruders was changed in every scenario. The speed of the intruders changed
proportionally to the area size to maintain the time of the intruders’ life constant and test
the algorithms in increasingly difficult scenarios.

Table 1. Scenarios’ parameters.

Set 1 Scenario 1 Scenario 2 Scenario 3

World size 100 m × 100 m 140 m × 140 m 200 m × 200 m
Grid size 10 × 10 14 × 14 20 × 20

Swarm size 4 8 16
Intruders’ speed 0.28 m.s−1 0.39 m.s−1 0.56 m.s−1

Set 2 Scenario 1 Scenario 2 Scenario 3

World size 150 m × 150 m 210 m × 210 m 300 m × 300 m
Grid size 15 × 15 21 × 21 30 × 30

Swarm size 4 8 16
Intruders’ speed 0.42 m.s−1 0.59 m.s−1 0.84 m.s−1

In each scenario of the same set, the world size, number of agents and speed of the
intruders is increased proportionally, aiming to examine the scalability of our system.

4. Results

In this section, the results from all the experiments conducted are presented.

Drones 2022, 6, 357 15 of 27

4.1. Collision Avoidance

A separate scenario was designed for testing the collision avoidance algorithm devel-
oped. The scenario is simplified to focus on the collision avoidance. Each agent was given
a specific destination point, so that several conflicts would occur in different or in the same
position for multiple agents.

Figures 8 and 9 show the results of a collision avoidance simulation test using four
agents. The agents are spawned simultaneously at the vertices of a rhombus and are
assigned to go to the opposite vertex. All four of the agents detect the collision and
deconflict. Figure 8 presents the trajectories of the four agents, while they conduct their
individual mission and avoid collision with the other three agents. The trajectory of each
agent is slightly altered to ensure a collision-free path, but the added cost of the path is not
significant, considering that the agents replanned in real-time.

Drones 2022, 6, x FOR PEER REVIEW 16 of 29

4. Results

In this section, the results from all the experiments conducted are presented.

4.1. Collision Avoidance

A separate scenario was designed for testing the collision avoidance algorithm de-

veloped. The scenario is simplified to focus on the collision avoidance. Each agent was

given a specific destination point, so that several conflicts would occur in different or in

the same position for multiple agents.

Figures 8 and 9 show the results of a collision avoidance simulation test using four

agents. The agents are spawned simultaneously at the vertices of a rhombus and are as-

signed to go to the opposite vertex. All four of the agents detect the collision and decon-

flict. Figure 8 presents the trajectories of the four agents, while they conduct their individ-

ual mission and avoid collision with the other three agents. The trajectory of each agent is

slightly altered to ensure a collision-free path, but the added cost of the path is not signif-

icant, considering that the agents replanned in real-time.

Figure 8. The agents’ paths during the collision avoidance experiment. For this experiment, four

agents were used and spawned simultaneously at the vertices of a rhombus. The agents were tasked

to travel to the opposite vertex while using collision avoidance to ensure a safe flight. As expected,

their paths intersected at the center and they adjusted their velocities to avoid collision.

Figure 9 is a diagram of the minimum inter-agent distance for every time step. The

minimum measured inter-agent distance decreases significantly around the time value of

20 s, since the agents were in the center area deconflicting at that time, but it remains

higher than the minimum allowed inter-agent distance, which for safety precautions was

set to 2 m in our experiments.

Figure 8. The agents’ paths during the collision avoidance experiment. For this experiment, four
agents were used and spawned simultaneously at the vertices of a rhombus. The agents were tasked
to travel to the opposite vertex while using collision avoidance to ensure a safe flight. As expected,
their paths intersected at the center and they adjusted their velocities to avoid collision.

Drones 2022, 6, 357 16 of 27

Drones 2022, 6, x FOR PEER REVIEW 17 of 29

Figure 9. Minimum inter-agent distance in every moment where the red horizontal line is the 2 m

distance boundary, the minimum allowed inter-agent distance. The graph is based on the same ex-

periment that is presented in Figure 8.

4.2. Metrics

We propose a set of metrics that can be used to quantify the efficiency of our pro-

posed algorithm regarding the detection of intruders and the area coverage to assess the

decision-making process.

• Intruder-related metrics:

• Number of intruders caught: The sum of the intruders that the agents caught during

the simulation run.

• Number of intruders reached the target: The sum of the intruders that reached the

target during the simulation run.

• Average time of intruder’s life: The average alive time of all the intruders during the

simulation independently if the intruder was alive or not at the end of the simulation,

measured in seconds.

• Average time of intruder’s life for caught intruders: The average alive time of the

intruders which were caught during the experiment, measured in seconds.

• Average time of intruder’s life for reached intruders: The average alive time of the

intruders that successfully reached the target, measured in seconds.

• Decision metric: The decision metric is the average time interval between two suc-

cessive decisions of one agent. It is measured in seconds.

• Coverage metric: The coverage metric is defined as the percentage of the world that

has been covered by the swarm. That metric is initialized every tcoverage seconds,

where tcoverage was set to tcoverage = 180secondsfor our simulations. That metric is

an indication of how effectively the area of interest is covered, but it is of less im-

portance than the intruder’s metrics in our case. We can easily understand that this

metric ensures us about the correct functionality of the decision-making process. Fig-

ure 10 shows an example of the coverage metric.

Figure 9. Minimum inter-agent distance in every moment where the red horizontal line is the 2 m
distance boundary, the minimum allowed inter-agent distance. The graph is based on the same
experiment that is presented in Figure 8.

Figure 9 is a diagram of the minimum inter-agent distance for every time step. The
minimum measured inter-agent distance decreases significantly around the time value of
20 s, since the agents were in the center area deconflicting at that time, but it remains higher
than the minimum allowed inter-agent distance, which for safety precautions was set to
2 m in our experiments.

4.2. Metrics

We propose a set of metrics that can be used to quantify the efficiency of our proposed
algorithm regarding the detection of intruders and the area coverage to assess the decision-
making process.

• Intruder-related metrics:
• Number of intruders caught: The sum of the intruders that the agents caught during

the simulation run.
• Number of intruders reached the target: The sum of the intruders that reached the

target during the simulation run.
• Average time of intruder’s life: The average alive time of all the intruders during the

simulation independently if the intruder was alive or not at the end of the simulation,
measured in seconds.

• Average time of intruder’s life for caught intruders: The average alive time of the
intruders which were caught during the experiment, measured in seconds.

• Average time of intruder’s life for reached intruders: The average alive time of the
intruders that successfully reached the target, measured in seconds.

• Decision metric: The decision metric is the average time interval between two succes-
sive decisions of one agent. It is measured in seconds.

• Coverage metric: The coverage metric is defined as the percentage of the world that
has been covered by the swarm. That metric is initialized every tcoverage seconds,
where tcoverage was set to tcoverage = 180 s for our simulations. That metric is an
indication of how effectively the area of interest is covered, but it is of less importance
than the intruder’s metrics in our case. We can easily understand that this metric

Drones 2022, 6, 357 17 of 27

ensures us about the correct functionality of the decision-making process. Figure 10
shows an example of the coverage metric.

Drones 2022, 6, x FOR PEER REVIEW 18 of 29

Figure 10. Coverage example with 10 agents, 78.02% coverage. The grey area depicts the coverage

that the agents succeeded as a group in 180 s.

4.3. Competing Algorithms

Three competing surveillance methods were developed and implemented to com-

pare their results with our method.

• Map division: The area of interest is divided into n rectangles, where n is the number

of the agents of the swarm. Each agent undertakes the surveillance of one of the rec-

tangles. The first action of each agent is to compute their rectangle and to move to it.

After that, each agent changes to mode “Scan” and starts scanning the rectangle using

zig-zag-like coverage. If the agent detects an intruder, it changes to “follow intruder”

mode. When the intruder is caught, the agent carries on with scanning if the agent is

in the boundaries of its rectangle. Otherwise, the agent changes to the “Go to” mode

until it is in the boundaries of its rectangle and then changes to “scan” mode. Colli-

sion detection and avoidance is only activated if the agent is out of the boundaries of

its rectangle since the rectangles do not overlap and there is no risk of collision when

all the agents are the boundaries of their own rectangle. Algorithm 2 is used to divide

the map into squares by setting the number of columns, nc, and rows, nr.

Algorithm 2. Map division

1: Set n the number of drones in the swarm

2: If the square root of n is an integer

3: root = nc = nr =√𝑛

4: Else

5: nc = round(√𝑛)

6: nr = 1

7: While nc > 0 and n% round(root) ! = 0

8: nc = round(𝑟𝑜𝑜𝑡)

9: nr =
𝑛

𝑛𝑐

10: root = root -−1

After the number of rows and columns is computed, each drone calculates the verti-

ces of its square based on its ID, the world size, the coordinates of the center of the world

and the computed number of rows and columns.

• Random decision: In this scenario, the agent’s modes are the same as in our proposed

algorithm, but the swarm intelligence has been removed. The agents do not make

decisions based on the world information and the central entity does not exist. The

agents select the next square-target at random each time.

• Static cameras: In this scenario, the agents take off and hover statically over a specific

predefined position, different for each agent acting as static cameras. They are not

Figure 10. Coverage example with 10 agents, 78.02% coverage. The grey area depicts the coverage
that the agents succeeded as a group in 180 s.

4.3. Competing Algorithms

Three competing surveillance methods were developed and implemented to compare
their results with our method.

• Map division: The area of interest is divided into n rectangles, where n is the number
of the agents of the swarm. Each agent undertakes the surveillance of one of the
rectangles. The first action of each agent is to compute their rectangle and to move to it.
After that, each agent changes to mode “Scan” and starts scanning the rectangle using
zig-zag-like coverage. If the agent detects an intruder, it changes to “follow intruder”
mode. When the intruder is caught, the agent carries on with scanning if the agent is
in the boundaries of its rectangle. Otherwise, the agent changes to the “Go to” mode
until it is in the boundaries of its rectangle and then changes to “scan” mode. Collision
detection and avoidance is only activated if the agent is out of the boundaries of its
rectangle since the rectangles do not overlap and there is no risk of collision when all
the agents are the boundaries of their own rectangle. Algorithm 2 is used to divide the
map into squares by setting the number of columns, nc, and rows, nr.

Algorithm 2. Map division

1: Set n the number of drones in the swarm
2: If the square root of n is an integer
3: root = nc = nr =

√
n

4: Else
5: nc = round (

√
n)

6: nr = 1
7: While nc > 0 and n% round(root) ! = 0
8: nc = round (root)
9: nr = n

nc
10: root = root -−1

After the number of rows and columns is computed, each drone calculates the vertices
of its square based on its ID, the world size, the coordinates of the center of the world and
the computed number of rows and columns.

Drones 2022, 6, 357 18 of 27

• Random decision: In this scenario, the agent’s modes are the same as in our proposed
algorithm, but the swarm intelligence has been removed. The agents do not make
decisions based on the world information and the central entity does not exist. The
agents select the next square-target at random each time.

• Static cameras: In this scenario, the agents take off and hover statically over a specific
predefined position, different for each agent acting as static cameras. They are not
allowed to follow intruders. Figure 11 presents the configuration of the static cameras
for each scenario.

Drones 2022, 6, x FOR PEER REVIEW 19 of 29

allowed to follow intruders. Figure 11 presents the configuration of the static cameras

for each scenario.

(a)

(b)

(c)

Figure 11. Positioning of the static cameras for scenarios 1, 2 and 3 accordingly at (a–c). The gray

rectangles represent the field of view of the agents.

4.4. Experiment Results

This section includes the experimental results of the simulations conducted to assess

the efficiency of our proposed algorithm and to compare the results with the competing

algorithms. Each experiment was run five times and the results were averaged to be pre-

sented here. The number of intruders reached the target and the number of intruder-

caught metrics are the most indicative of all the metrics used to assess the algorithms,

since preventing the intruders from reaching the target is the main objective of the system.

In Figure 12, the results are presented for our first group of tests, where we maintain

a UAV density of 25 square-targets per UAV. To keep the density constant, the area is

increased linearly with the number of UAV agents. On the first graph of Figure 12, the

results for 4 UAVs indicate that our decision-making algorithm outperforms all other al-

gorithms, by letting just 10 intruders to reach their target. The random decision algorithm

and map division algorithm perform closely to each other with 35 and 40 intruders reach-

ing the target, respectively, and lastly, the static camera approach failed to catch most of

the intruders, as 328 reached their target. We can observe that the proposed algorithm

performs almost 350% better for the number of intruders reaching the target metric than

the second best, which is the random decision.

Our decision-making algorithm was able to catch 364 intruders, 22 more than the

random decision algorithm and 26 more than the map division approach, by allocating

resources in intruders’ clusters, mostly close to the map center, where intruders converge.

This in return increased the average alive time of caught intruders to 124 s, 22 more versus

both the random decision and map division approaches. In this scenario, the system is

stressed due to the low number of UAVs in comparison to the number of intruders, which

results to most of the time being spent following intruders instead of actively searching.

When 8 and 16 UAVs are used as shown in the second and third graphs of Figure 12, we

see that the decision-making algorithm performs similarly to the random decision one,

with the map division approach performing a bit worse. The similar performance of the

first two algorithms is explained by the low density of 25 square-targets per UAV, which

in return minimizes the benefits of decision-making since a random approach still has a

high chance of finding intruders. In all tests, static cameras proved inefficient and map

division fell behind likely due to the inability of the system to migrate resources to

hotspots.

Figure 11. Positioning of the static cameras for scenarios 1, 2 and 3 accordingly at (a–c). The gray
rectangles represent the field of view of the agents.

4.4. Experiment Results

This section includes the experimental results of the simulations conducted to assess
the efficiency of our proposed algorithm and to compare the results with the competing
algorithms. Each experiment was run five times and the results were averaged to be
presented here. The number of intruders reached the target and the number of intruder-
caught metrics are the most indicative of all the metrics used to assess the algorithms, since
preventing the intruders from reaching the target is the main objective of the system.

In Figure 12, the results are presented for our first group of tests, where we maintain
a UAV density of 25 square-targets per UAV. To keep the density constant, the area is
increased linearly with the number of UAV agents. On the first graph of Figure 12, the
results for 4 UAVs indicate that our decision-making algorithm outperforms all other
algorithms, by letting just 10 intruders to reach their target. The random decision algorithm
and map division algorithm perform closely to each other with 35 and 40 intruders reaching
the target, respectively, and lastly, the static camera approach failed to catch most of the
intruders, as 328 reached their target. We can observe that the proposed algorithm performs
almost 350% better for the number of intruders reaching the target metric than the second
best, which is the random decision.

Drones 2022, 6, 357 19 of 27Drones 2022, 6, x FOR PEER REVIEW 20 of 29

(a)

(b)

(c)

Figure 12. Intruder metrics for the first set of experiments. The three scenarios of set 1 correspond

to (a–c) accordingly. (a) Scenario 1 of Set 1. A total of 4 UAVs for a world of 100 m × 100 m. (b)

Scenario 2 of Set 1. A total of 8 UAVs for a world of 140 m × 140 m. (c) Scenario 3 of Set 1. A total of

16 UAVs for a world of 200 m × 200 m.

In Figure 13, results are presented for the second experimental set, while we maintain

a UAV density of 56 square-targets per UAV, more than twice higher than in set 1. In the

first graph of Figure 13, the results for scenario 1 of set 2 are presented for four UAVs. The

decision-making algorithm outperforms the three competing algorithms, but the perfor-

mance is still rather poor, letting 33 intruders reach their target. The random decision al-

gorithm and map division algorithm perform closely with 90 and 84 intruders reaching

the target, respectively, and lastly, the static camera approach failed to catch most of the

intruders, as 319 reached their target. The decision-making algorithm was able to catch

Figure 12. Intruder metrics for the first set of experiments. The three scenarios of set 1 correspond to
(a–c) accordingly. (a) Scenario 1 of Set 1. A total of 4 UAVs for a world of 100 m × 100 m. (b) Scenario
2 of Set 1. A total of 8 UAVs for a world of 140 m × 140 m. (c) Scenario 3 of Set 1. A total of 16 UAVs
for a world of 200 m × 200 m.

Our decision-making algorithm was able to catch 364 intruders, 22 more than the
random decision algorithm and 26 more than the map division approach, by allocating
resources in intruders’ clusters, mostly close to the map center, where intruders converge.
This in return increased the average alive time of caught intruders to 124 s, 22 more versus
both the random decision and map division approaches. In this scenario, the system is
stressed due to the low number of UAVs in comparison to the number of intruders, which
results to most of the time being spent following intruders instead of actively searching.

Drones 2022, 6, 357 20 of 27

When 8 and 16 UAVs are used as shown in the second and third graphs of Figure 12, we
see that the decision-making algorithm performs similarly to the random decision one,
with the map division approach performing a bit worse. The similar performance of the
first two algorithms is explained by the low density of 25 square-targets per UAV, which in
return minimizes the benefits of decision-making since a random approach still has a high
chance of finding intruders. In all tests, static cameras proved inefficient and map division
fell behind likely due to the inability of the system to migrate resources to hotspots.

In Figure 13, results are presented for the second experimental set, while we maintain
a UAV density of 56 square-targets per UAV, more than twice higher than in set 1. In
the first graph of Figure 13, the results for scenario 1 of set 2 are presented for four
UAVs. The decision-making algorithm outperforms the three competing algorithms, but
the performance is still rather poor, letting 33 intruders reach their target. The random
decision algorithm and map division algorithm perform closely with 90 and 84 intruders
reaching the target, respectively, and lastly, the static camera approach failed to catch most
of the intruders, as 319 reached their target. The decision-making algorithm was able
to catch 337 intruders, 48 more than the random decision and map division algorithm,
which performed equally in this metric, while static cameras caught only 36 intruders. The
problem described in the previous set of scenarios when four UAV agents are involved, is
furtherly amplified by the increase in map size to achieve 56 square-targets per UAV. The
average alive time of the caught intruders is 155 s, 42 more versus the random decision
and 23 more versus the map division approach. These critical metrics show the worst
performance than the first group of tests, attributed to the increased map size while still
using four UAV agents.

When 8 and 16 UAV agents are used, as shown in the second and third graphs of
Figure 13, the benefits of decision making are clearer when compared to other approaches
as the higher amount of squares per UAV agent allows for a significant chance of a random
decision being wrong. When 8 UAVs are involved, 20 intruders reached their target using
the decision-making algorithm, 46 for random decision, and 43 for map division, which
performed once again roughly equally. Static cameras once more proved to be significantly
worst in these tests, as 302 intruders reached their targets. The decision-making system
caught 355 intruders, 26 more when compared to random decision and 28 more when
compared to map division. The trend continues for 16 UAVs with decision making having
a large lead, catching 350 intruders, and missing just 24 intruders. In this case, the random
decision proved better than map division, as 40 intruders reached their goal and 337 were
caught, while the results were 58 and 321, respectively, for map division. Map division
underperforms, likely due to the inability of the system to migrate resources to hotspots.

In all of the experiments presented above, the intruder speed was increased propor-
tionally to the world’s dimensions in an attempt to keep the difficulty equal in that regard.
In Figure 15, the performance results of an extra scenario are presented for the case when
16 UAVs are deployed and 56 square-targets are assigned to each UAV, such as in the case
of the scenario 3 of set 2. In this experiment, the speed of intruders was not adjusted to the
world’s dimensions, and it had the value of 0.28 m.s−1. Intruders were not able to reach
their target for the decision-making, random decision and map division approaches, and
the average duration of their life is comparable for the three approaches. The excellent
performance of the three approaches was probably caused by the long life-time required
for an intruder to reach the target in this scenario. It seems that the increase in the world
size would create a severe advantage for all approaches, and the results would not give a
clear comparison between the approaches. Based on those results, an adjustable intruders’
speed has been selected for all the experiments presented above.

Drones 2022, 6, 357 21 of 27
Drones 2022, 6, x FOR PEER REVIEW 22 of 29

(a)

(b)

(c)

Figure 13. Intruder metrics for the second set of experiments. The three scenarios of set 2 corre-

spond to (a–c), accordingly. (a) Scenario 1 of Set 2. A total of 4 UAVs for a world of 150 m × 150 m.

(b) Scenario 2 of Set 2. A total of 8 UAVs for a world of 210 m × 210 m. (c) Scenario 3 of Set 2. A

total of 16 UAVs for a world of 300 m × 300 m.

Figure 14 focuses on the number of intruders that reached the target for the different

scenarios of each set. Plot (a) shows that the number of intruders to reach the target is

relatively stable across the scenarios of set 1 and maintained in low values for the decision-

making approach. That indicates that the system’s performance fits the specific density

used in set 1 of one UAV agent per 25 square-targets. The random decision and map di-

vision approaches demonstrate similar results to the decision-making approach as the size

of the swarm increases, indicating that the number of UAVs is enough for monitoring the

Figure 13. Intruder metrics for the second set of experiments. The three scenarios of set 2 correspond
to (a–c), accordingly. (a) Scenario 1 of Set 2. A total of 4 UAVs for a world of 150 m × 150 m.
(b) Scenario 2 of Set 2. A total of 8 UAVs for a world of 210 m × 210 m. (c) Scenario 3 of Set 2. A total
of 16 UAVs for a world of 300 m × 300 m.

Figure 14 focuses on the number of intruders that reached the target for the different
scenarios of each set. Plot (a) shows that the number of intruders to reach the target is
relatively stable across the scenarios of set 1 and maintained in low values for the decision-
making approach. That indicates that the system’s performance fits the specific density
used in set 1 of one UAV agent per 25 square-targets. The random decision and map
division approaches demonstrate similar results to the decision-making approach as the
size of the swarm increases, indicating that the number of UAVs is enough for monitoring

Drones 2022, 6, 357 22 of 27

the given area, even for systems with no decision-making capabilities. Plot (b) presents the
same metric for the second experimental set. In this case, the density of UAVs per square-
target is lower and the advantage of using agents capable of decision-making is clearer, as
the proposed decision-making approach outperforms the three competing approaches.

Drones 2022, 6, x FOR PEER REVIEW 23 of 29

given area, even for systems with no decision-making capabilities. Plot (b) presents the

same metric for the second experimental set. In this case, the density of UAVs per square-

target is lower and the advantage of using agents capable of decision-making is clearer,

as the proposed decision-making approach outperforms the three competing approaches.

(a)

(b)

Figure 14. The intruders reached target metric depending on the number of UAVs for the four ap-

proaches. Graphs (a,b) correspond to the experimental sets 1 and 2 accordingly. (a) Number of in-

truders to reach target for scenarios of set 1. (b) Number of intruders to reach target for scenarios of

set 2.

In all of the experiments presented above, the intruder speed was increased propor-

tionally to the world’s dimensions in an attempt to keep the difficulty equal in that regard.

Figure 14. The intruders reached target metric depending on the number of UAVs for the four
approaches. Graphs (a,b) correspond to the experimental sets 1 and 2 accordingly. (a) Number of
intruders to reach target for scenarios of set 1. (b) Number of intruders to reach target for scenarios of
set 2.

Drones 2022, 6, 357 23 of 27

Drones 2022, 6, x FOR PEER REVIEW 24 of 29

In Figure 15, the performance results of an extra scenario are presented for the case when

16 UAVs are deployed and 56 square-targets are assigned to each UAV, such as in the case

of the scenario 3 of set 2. In this experiment, the speed of intruders was not adjusted to the

world’s dimensions, and it had the value of 0.28 m.s−1. Intruders were not able to reach

their target for the decision-making, random decision and map division approaches, and

the average duration of their life is comparable for the three approaches. The excellent

performance of the three approaches was probably caused by the long life-time required

for an intruder to reach the target in this scenario. It seems that the increase in the world

size would create a severe advantage for all approaches, and the results would not give a

clear comparison between the approaches. Based on those results, an adjustable intruders’

speed has been selected for all the experiments presented above.

Figure 15. Intruders’ metrics for a scenario of 16 UAVs in a 300m x 300m world, with the intruder

speed at 0.28 m.s−1.

Table 2 sums up the decision-making metric average results for the six scenarios. The

time interval between two subsequent square-target selection is shorter for the decision-

making algorithm than for the random decision that is explained because the random de-

cision allows the agents to travel across the map in each decision, while the decision-mak-

ing algorithm urges agents to stay in their neighborhoods with a large probability. By

maintaining the decision-making metric small, the system will have a quicker reaction to

new intruder data.

Table 2. The average of the decision metric in seconds for all the experiments and scenarios for the

decision making and the random decision algorithms.

Set 1 Scenario 1 Scenario 2 Scenario 3

Decision making 40.9 s 33.8 s 38.7 s

Random decision 71.2 s 63.4 s 66.7 s

Set2 Scenario 1 Scenario 2 Scenario 3

Figure 15. Intruders’ metrics for a scenario of 16 UAVs in a 300 m × 300 m world, with the intruder
speed at 0.28 m.s−1.

Table 2 sums up the decision-making metric average results for the six scenarios. The
time interval between two subsequent square-target selection is shorter for the decision-
making algorithm than for the random decision that is explained because the random
decision allows the agents to travel across the map in each decision, while the decision-
making algorithm urges agents to stay in their neighborhoods with a large probability. By
maintaining the decision-making metric small, the system will have a quicker reaction to
new intruder data.

Table 2. The average of the decision metric in seconds for all the experiments and scenarios for the
decision making and the random decision algorithms.

Set 1 Scenario 1 Scenario 2 Scenario 3

Decision making 40.9 s 33.8 s 38.7 s
Random decision 71.2 s 63.4 s 66.7 s

Set2 Scenario 1 Scenario 2 Scenario 3

Decision making 46.7 s 44.4 s 53.8 s
Random decision 75.4 s 75.8 s 93.6 s

Table 3 presents the average of the coverage metric for each scenario and implementa-
tion. It is noticeable that the random decision implementation offers a larger area coverage
for each scenario. Before extracting any conclusions concerning the efficiency of the algo-
rithms based on that metric, it should be noted that larger area coverage does not result
to more efficient area coverage. The reason behind the lower area coverage provided by
the decision-making algorithm is that agents tend to cluster over areas with high intruder
density, which enables the detection of a larger amount of intruders.

Drones 2022, 6, 357 24 of 27

Table 3. The average of the coverage metric for all the experiments and scenarios for the four
competing algorithms.

Set 1 Decision Making Random Decision Map Division Static Cameras

Scenario 1 68.41% 83.14% 73.89% 15.29%
Scenario 2 76.02% 87.2% 80.1% 15.59%
Scenario 3 82.64% 89.82% 87.23% 15.28%

Set 2 Decision making Random decision Map division Static Cameras

Scenario 1 42.7% 62.32% 38.78% 6.8%
Scenario 2 53.87% 68.95% 40.79% 6.9%
Scenario 3 59.34% 67.41% 53.1% 6.8%

We can see in Figure 16 that the swarm manages to cover a big size of the area to be
surveilled and is not biased in the selection of the next grid by selecting only certain areas
of the world, resulting in the even distribution of the selection across the map based on
the collected information. It is clear that of the two sequential coverage measurements
in Figure 16a,b, that the swarm covers all the map and does not show preference to
specific areas.

Drones 2022, 6, x FOR PEER REVIEW 25 of 29

Decision making 46.7 s 44.4 s 53.8 s

Random decision 75.4 s 75.8 s 93.6 s

Table 3 presents the average of the coverage metric for each scenario and implemen-

tation. It is noticeable that the random decision implementation offers a larger area cover-

age for each scenario. Before extracting any conclusions concerning the efficiency of the

algorithms based on that metric, it should be noted that larger area coverage does not

result to more efficient area coverage. The reason behind the lower area coverage pro-

vided by the decision-making algorithm is that agents tend to cluster over areas with high

intruder density, which enables the detection of a larger amount of intruders.

Table 3. The average of the coverage metric for all the experiments and scenarios for the four com-

peting algorithms.

Set 1 Decision making Random decision Map division Static Cameras

Scenario 1 68.41% 83.14% 73.89% 15.29%

Scenario 2 76.02% 87.2% 80.1% 15.59%

Scenario 3 82.64% 89.82% 87.23% 15.28%

Set 2 Decision making Random decision Map division Static Cameras

Scenario 1 42.7% 62.32% 38.78% 6.8%

Scenario 2 53.87% 68.95% 40.79% 6.9%

Scenario 3 59.34% 67.41% 53.1% 6.8%

We can see in Figure 16 that the swarm manages to cover a big size of the area to be

surveilled and is not biased in the selection of the next grid by selecting only certain areas

of the world, resulting in the even distribution of the selection across the map based on

the collected information. It is clear that of the two sequential coverage measurements in

Figure 16a,b, that the swarm covers all the map and does not show preference to specific

areas.

(a)

(b)

Figure 16. The coverage metric results for the decision-making algorithm in scenario 1 of set 1. (a,b)

are two sequential measurements of the coverage figure.

Even though mostly two of the proposed metrics (the Number of intruders caught,

and the Number of intruders reached the target) are used for the efficiency assessment of

the algorithms, the rest of the metrics are of importance as well. All the proposed metrics

are good indicators of how well tuned the decision-making algorithm is. It is a subject of

further research to determine the exact equations to compute all the algorithm’s parame-

ters based on those metrics.

5. Discussion

Figure 16. The coverage metric results for the decision-making algorithm in scenario 1 of set 1.
(a,b) are two sequential measurements of the coverage figure.

Even though mostly two of the proposed metrics (the Number of intruders caught,
and the Number of intruders reached the target) are used for the efficiency assessment of
the algorithms, the rest of the metrics are of importance as well. All the proposed metrics
are good indicators of how well tuned the decision-making algorithm is. It is a subject of
further research to determine the exact equations to compute all the algorithm’s parameters
based on those metrics.

5. Discussion

Decision making is a crucial ability for autonomous systems and especially UAV
swarms. It is an open-research area with most researchers in the field focusing on devel-
oping the theoretical background of the decision-making algorithms, while we propose
a new optimization based, stochastic algorithm for real time decision making, and we
describe the whole system implementation after testing it in SITL simulations. The literate
review presented in Section 2 shows that there are multiple methods to approach the task
allocation problem, offering a variety of solutions that provide different architectures and
benefits. The proposed UAV swarm shows great scalability results, is considerate regarding
the communication bandwidth, and reacts quickly to dynamic changes and uncertainties.
Our system’s nature is adaptable to information gathered from the environment and it

Drones 2022, 6, 357 25 of 27

dynamically reacts, facilitating global optimization. The decision-making algorithm has
been designed to be decentralized and scalable ensuring fault tolerance through the opera-
tion of the system if UAV agents of the system suffer failures. Moreover, it is designed as
a surveillance system for defense purposes of a friendly area, but it can be adapted to be
used in multiple fields such as research missions in the research and rescue field, wildlife
tracking missions, and wildfire monitoring missions. The algorithm can easily be modified
to be optimized depending on the specific behavior of each intruder, or any other type of
agent/object that the system is interested in observing and monitoring.

6. Conclusions

We present a system consisting of multiple UAV agents, designed for area surveillance
and intruder monitoring. In addition to the state-of-the-art decentralized decision-making
algorithm that is proposed, the supportive algorithms were also designed and implemented.
The system was originally fine-tuned for a scenario with a swarm of four agents and a world
size of 100 m × 100 m (scenario 1 of set 1). The results for this scenario are 363.6 intruders
caught over the 401 intruders introduced in the world for our decision-making algorithm
and 342.2, 337.6 and 24.4 accordingly for the random decision, map division and static
cameras implementations. The average value of the intruders reaching the target for this
scenario is 9.8 for our decision-making algorithm and 35.4, 39.4 and 328 accordingly for
the random decision, map division and static cameras implementations. Overall, the
system was tested in two experimental sets, maintaining a constant density of UAV agents
per monitored area across the set. Each set included three scenarios, varying in the size
of the swarm, the size of the world, and the intruders’ speed. In all six scenarios, the
proposed algorithm demonstrates superior results to the three competing systems. The
proposed approach demonstrated comparable results across the three experiments of each
set indicating that the UAV density is a stronger factor in the system’s performance than
the size of the monitoring area. That shows the scalability characteristic of the system. One
exception to the stable performance of the system was identified for the first scenario of
the second set, in which the system seems to have reached its limits, as the number of the
intruders and their relatively high speed caused agents to chase intruders for most of their
operational time, and the decision-making algorithm demonstrated a lower performance.
As a result, we conclude that the existence of cognitive intelligence in a swarm is crucial
and produces much higher situational awareness as opposed to the cases where the swarm
is selfish and each agent act on his own without utilizing any shared information. The
overall system was tested in real time simulations and demonstrated an improvement up to
350% when compared with similar systems that lacked the decision-making ability. Though
the proposed decision-making algorithm was designed to be decentralized, the presented
communication scheme of this work requires communication with a central agent, as the
necessary processing power of the described central agent is very low, and that processing
load may be allocated to the agents. Future work shall include the implementation of a
decentralized communication layer for the world map data.

The key contribution of the present paper is the description of a decentralized decision-
making algorithm designed for area monitoring and intruder tracking by a swarm of UAVs.
The overall system was implemented to support the testing of the algorithm, including
collision avoidance and area coverage algorithms. The system was developed in ROS and
simulated in GAZEBO with swarms of up to 16 quadcopters. Experiments of this study
included intruders incapable of planning to avoid UAV agents. Future research shall focus
on adding strategy to the intruders’ behavior and more elaborate models of estimating
the intruders’ near-future locations. It is of interest to investigate how the system will
perform when faced with smarter intruders upgraded with self and group strategies to
achieve their goal of reaching the target. We believe that the system’s performance can be
enhanced by the addition of alternative stochastic models describing the probability of an
intruder’s presence, especially in the case of intruders capable of strategic planning and
collaboration. Finally, future research will also include the development of object detection,

Drones 2022, 6, 357 26 of 27

target tracking and localization techniques for detecting and following the intruders. This
will allow us to study the uncertainties added during intruder detection and localization
and may demonstrate some of the limitations of the system.

Author Contributions: Conceptualization, N.P., I.D., V.L. and V.K.; methodology, N.P. and I.D.;
software, N.P., I.D. and D.M.; validation, N.P., I.D. and V.L.; formal analysis, N.P. and I.D.; investi-
gation, N.P. and I.D.; resources, I.D. and V.L.; data curation, N.P. and D.M.; writing—original draft
preparation, N.P.; writing—review and editing, N.P., I.D. and V.L.; visualization, D.M.; supervision,
V.L. and V.K.; project administration, V.L. and V.K.; funding acquisition, V.L. and V.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is based upon work supported by the Air Force Office of Scientific Research
under award number FA9550-19-1-7032 (Real-time Decision Making for Autonomous Systems using
AI Methods).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot Task Allocation: A Review of the State-of-the-Art. In Cooperative Robots and

Sensor Networks 2015; Koubaa, A., Dios, J., Eds.; Springer International Publishing: Midtown Manhattan, NY, USA, 2015; pp.
31–51. [CrossRef]

2. Dias, M.B.; Zlot, R.; Kalra, N.; Stentz, A. Market-Based Multirobot Coordination: A Survey and Analysis. Proc. IEEE 2006, 94,
1257–1270. [CrossRef]

3. Turner, J.; Meng, Q.; Schaefer, G.; Whitbrook, A.; Soltoggio, A. Distributed Task Rescheduling With Time Constraints for the
Optimization of Total Task Allocations in a Multirobot System. IEEE Trans. Cybern. 2017, 48, 2583–2597. [CrossRef] [PubMed]

4. Choi, H.-L.; Brunet, L.; How, J.P. Consensus-Based Decentralized Auctions for Robust Task Allocation. IEEE Trans. Robot. 2009, 25,
912–926. [CrossRef]

5. Smith, R.G. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Trans.
Comput. 1980, C-29, 1104–1113. [CrossRef]

6. Liekna, A.; Lavendelis, E.; Grabovskis, A. Experimental Analysis of Contract NET Protocol in Multi-Robot Task Allocation. Appl.
Comput. Syst. 2012, 13, 6–14. [CrossRef]

7. Mkiramweni, M.; Yang, C.; Li, J.; Han, Z. Game-Theoretic Approaches for Wireless Communications with Unmanned Aerial
Vehicles. IEEE Wirel. Commun. 2018, 25, 104–112. [CrossRef]

8. Bardhan, R.; Bera, T.; Sundaram, S. A decentralized game theoretic approach for team formation and task assignment by
autonomous unmanned aerial vehicles. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), Miami, FL, USA, 13–16 June 2017. [CrossRef]

9. Kuhn, H.W. The Hungarian Method for the Assignment Problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
10. Yoon, S.; Kim, J. Efficient multi-agent task allocation for collaborative route planning with multiple unmanned vehicles. IFAC-

PapersOnLine 2017, 50, 3580–3585. [CrossRef]
11. Tkach, I.; Jevtić, A.; Nof, S.Y.; Edan, Y. A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation. Sensors 2018,

18, 759. [CrossRef] [PubMed]
12. Schwarzrock, J.; Zacarias, I.; Bazzan, A.L.; Fernandes, R.Q.D.A.; Moreira, L.H.; de Freitas, E.P. Solving task allocation problem in

multi Unmanned Aerial Vehicles. Eng. Appl. Artif. Intell. 2018, 72, 10–20. [CrossRef]
13. Hyun-Jin, C.; You-Dan, K.; Hyoun-Jin, K. Genetic Algorithm Based Decentralized Task Assignment for Multiple Unmanned

Aerial Vehicles in Dynamic Environments. Int. J. Aeronaut. Space Sci. 2011, 12, 163–174. [CrossRef]
14. Noureddine, D.B.; Gharbi, A.; Ahmed, S.B. Multi-agent Deep Reinforcement Learning for Task Allocation in Dynamic Environ-

ment. In Proceedings of the 12th International Conference on Software Technologies (ICSOFT), Madrid, Spain, 24–26 July 2017.
[CrossRef]

15. Tian, Y.-T.T.; Yang, M.; Qi, X.-Y.; Yang, Y.-M. Multi-robot task allocation for fire-disaster response based on reinforcement learning.
In Proceedings of the International Conference on Machine Learning and Cybernetics, Baoding, China, 12–15 July 2009. [CrossRef]

16. Bays, M.J.; Wettergren, T.A. Partially-Decoupled Service Agent—Transport Agent Task Allocation and Scheduling. J. Intell. Robot.
Syst. 2018, 94, 423–437. [CrossRef]

17. Zhang, J.; Wang, G.; Song, Y. Task Assignment of the Improved Contract Net Protocol under a Multi-Agent System. Algorithms
2019, 12, 70. [CrossRef]

18. Zitouni, F.; Harous, S.; Maamri, R. A Distributed Approach to the Multi-Robot Task Allocation Problem Using the Consensus-
Based Bundle Algorithm and Ant Colony System. IEEE Access 2020, 8, 27479–27494. [CrossRef]

http://doi.org/10.1007/978-3-319-18299-5_2
http://doi.org/10.1109/JPROC.2006.876939
http://doi.org/10.1109/TCYB.2017.2743164
http://www.ncbi.nlm.nih.gov/pubmed/28976326
http://doi.org/10.1109/TRO.2009.2022423
http://doi.org/10.1109/TC.1980.1675516
http://doi.org/10.2478/v10312-012-0001-7
http://doi.org/10.1109/MWC.2017.1700250
http://doi.org/10.1109/ICUAS.2017.7991504
http://doi.org/10.1002/nav.3800020109
http://doi.org/10.1016/j.ifacol.2017.08.686
http://doi.org/10.3390/s18030759
http://www.ncbi.nlm.nih.gov/pubmed/29498683
http://doi.org/10.1016/j.engappai.2018.03.008
http://doi.org/10.5139/IJASS.2011.12.2.163
http://doi.org/10.5220/0006393400170026
http://doi.org/10.1109/ICMLC.2009.5212216
http://doi.org/10.1007/s10846-018-0825-5
http://doi.org/10.3390/a12040070
http://doi.org/10.1109/ACCESS.2020.2971585

Drones 2022, 6, 357 27 of 27

19. Gan, S.K.; Sukkarieh, S. Multi-UAV Target Search using Explicit Decentralized Gradient-Based Negotiation. In Proceedings of the
2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [CrossRef]

20. Lanillos, P.; Gan, S.K.; Besada-Portas, E.; Pajares, G.; Sukkarieh, S. Multi-UAV target search using decentralized gradient-based
negotiation with expected observation. Inf. Sci. 2014, 282, 92–110. [CrossRef]

21. Adamey, E.; Ozguner, U. A decentralized approach for multi-UAV multitarget tracking and surveillance. In Proceedings of the
SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 23–27 April 2012.

22. De Freitas, E.P.; Heimfarth, T.; Ferreira, A.M.; Pereira, C.E.; Wagner, F.R.; Larsson, T. Decentralized Task Distribution among
Cooperative UAVs in Surveillance Systems Applications. In Proceedings of the 2010 Seventh International Conference on Wireless
On-demand Network Systems and Services (WONS), Kranjska Gora, Slovenia, 3–5 February 2010. [CrossRef]

23. Capitan, J.; Merino, L.; Ollero, A. Decentralized Cooperation of Multiple UAS for Multi-target Surveillance under Uncertainties.
In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014.
[CrossRef]

24. Zhu, X.; Vanegas, F.; Gonzalez, F. Decentralised Multi-UAV Cooperative Searching Multi-Target in Cluttered and GPS-Denied
Environments. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022. [CrossRef]

25. Zhang, Y.-Z.; Li, J.-W.; Hu, B.; Zhang, J.-D. An improved PSO algorithm for solving multi-UAV cooperative reconnaissance task
decision-making problem. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing,
China, 10–12 October 2016. [CrossRef]

26. Venugopalan, T.; Subramanian, K.; Sundaram, S. Multi-UAV Task Allocation: A Team-Based Approach. In Proceedings of the
2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015. [CrossRef]

27. Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [CrossRef]
28. Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed Optimization by Ant Colonies. In Proceedings of the ECAL91—European

Conference on Artificial Life, Paris, France, 11–13 December 1991.
29. Goldberg, D. Genetic Algorithms in Search Optimization and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989.
30. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the 1985 IEEE International

Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985. [CrossRef]
31. Park, M.G.; Jeon, J.H.; Lee, M.C. Obstacle avoidance for mobile robots using artificial potential field approach with simu-

lated annealing. In Proceedings of the ISIE 2001 IEEE International Symposium on Industrial Electronics Proceedings, Pusan,
Republic of Korea, 12–16 June 2001. [CrossRef]

32. Doria, N.S.F.; Freire, E.O.; Basilio, J.C. An algorithm inspired by the deterministic annealing approach to avoid local minima in
artificial potential fields. In Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo,
Uruguay, 25–29 November 2013. [CrossRef]

33. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System.
In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009.

34. Koenig, N.; Howard, A. Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In Proceedings of
the Proceedings 01 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2
October 2004. [CrossRef]

35. PX4, PX4 Project. Available online: http://px4.io (accessed on 14 November 2022).
36. Meier, L.; Honegger, D.; Pollefeys, M. PX4: A Node-Based Multithreaded Open Source Robotics Framework. In Proceedings of

the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 25–30 May 2015. [CrossRef]
37. Introduction—PX4 User Guide. Available online: https://docs.px4.io/master/en/ros/mavros_installation.html (accessed on 14

November 2022).
38. Mavros—ROS Wiki. Available online: http://wiki.ros.org/mavros (accessed on 14 November 2022).
39. Mavlink—ROS Wiki. Available online: http://wiki.ros.org/mavlink (accessed on 14 November 2022).

http://doi.org/10.1109/ICRA.2011.5979704
http://doi.org/10.1016/j.ins.2014.05.054
http://doi.org/10.1109/WONS.2010.5437123
http://doi.org/10.1109/ICUAS.2014.6842375
http://doi.org/10.1109/AERO53065.2022.9843665
http://doi.org/10.1109/AUS.2016.7748089
http://doi.org/10.1109/SSCI.2015.17
http://doi.org/10.1016/j.robot.2013.09.004
http://doi.org/10.1109/ROBOT.1985.1087247
http://doi.org/10.1109/ISIE.2001.931933
http://doi.org/10.1109/ICAR.2013.6766480
http://doi.org/10.1109/IROS.2004.1389727
http://px4.io
http://doi.org/10.1109/ICRA.2015.7140074
https://docs.px4.io/master/en/ros/mavros_installation.html
http://wiki.ros.org/mavros
http://wiki.ros.org/mavlink

	Introduction
	Related Work
	Materials and Methods
	Drone Characteristics
	Drone Kinematic Model
	Sensors

	System Overview
	World Representation
	Coverage Algorithm
	Swarm Intelligence—Decision Making
	Collision Avoidance
	Implementation—Simulation
	Intruders’ Behavior
	Scenario

	Results
	Collision Avoidance
	Metrics
	Competing Algorithms
	Experiment Results

	Discussion
	Conclusions
	References

