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Abstract: Communication is the cornerstone of UAV swarms to transmit information and achieve
cooperation. However, artificially designed communication protocols usually rely on prior expert
knowledge and lack flexibility and adaptability, which may limit the communication ability between
UAVs and is not conducive to swarm cooperation. This paper adopts a new data-driven approach
to study how reinforcement learning can be utilized to jointly learn the cooperative communication
and action policies for UAV swarms. Firstly, the communication policy of a UAV is defined, so that
the UAV can autonomously decide the content of the message sent out according to its real-time
status. Secondly, neural networks are designed to approximate the communication and action
policies of the UAV, and their policy gradient optimization procedures are deduced, respectively.
Then, a reinforcement learning algorithm is proposed to jointly learn the communication and
action policies of UAV swarms. Numerical simulation results verify that the policies learned by
the proposed algorithm are superior to the existing benchmark algorithms in terms of multi-target
tracking performance, scalability in different scenarios, and robustness under communication failures.

Keywords: UAV swarms; reinforcement learning; cooperation; communication; policy gradient

1. Introduction

Multi-target tracking (MTT) is an important application of unmanned aerial vehicle
(UAV) swarms, which is widely applied to environmental monitoring, border patrol, anti-
terrorism, emergency response, etc. [1–3]. However, due to constraints, such as flight
distance, endurance, sensor coverage, etc., the individual abilities are usually insufficient
to meet the task requirements, so UAVs need to communicate to achieve information
sharing and better cooperation [4,5], then improve the MTT capability.

Currently, the communication between UAVs mainly follows the manually designed
communication protocol, and UAVs transmit specific messages in accordance with spe-
cific formats and prescriptions [6–8]. However, the design of the communication protocol
requires prior knowledge and is highly task-relevant [9], and manually customized pro-
tocols may bring side effects, such as insufficient flexibility and versatility, which may
affect the communication capabilities of UAVs and are not conducive to their efficient
cooperation in highly dynamic environments.

With the development of multi-agent deep reinforcement learning (MADRL), many
works using MADRL to learn the complex cooperative action policies of UAVs have
appeared. This also provides a new idea for learning cooperative communication, that
is, applying this advanced artificial intelligence technique to learn the effective commu-
nication between UAVs to achieve efficient cooperation. Different from those methods
using manually customized communication protocols, such as value function decomposi-
tion [10,11] and reward shaping [8,12,13], communication learning is a more general and
exploratory cooperation enhancement method. It empowers UAVs to learn how to actively
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share knowledge to achieve cooperation without requiring expert domain knowledge
and experience [14,15]. In addition, the learned communication policy enables the UAV
to independently decide the content according to its real-time status, so as to improve
the autonomy and adaptability of the UAVs. Therefore, this method can easily be extended
to different multi-agent systems, such as unmanned transportation networks, logistics
robots, etc., but is not limited to the MTT scenarios in this paper.

This paper no longer follows the traditional idea of manually designing the commu-
nication protocol, but adopts a new data-driven idea to model the communication protocol
as the communication policy, then uses a deep neural network (DNN) to approximate and fit
the policy. On that basis, this paper proposes an MADRL algorithm to learn the communication
and action policies of a UAV simultaneously; thus, the UAV learns how to communicate with
others for better cooperation, thereby improving the overall MTT capability of UAV swarms.
Then, the effectiveness of the proposed algorithm is verified through numerical simulation
experiments, and the performance of the learned policies is further tested.

The major contributions and innovations of this paper include:

(1) Different from the manually designed communication protocol, the communication
learning in this paper enables the UAV to independently decide the message content
to be published according to its current state and endows the UAV with the ability
of active communication and autonomous cooperation.

(2) The communication policy of a UAV is parameterized as a function from its input variable
to the published message. Then, two neural networks based on an attention mechanism
are designed to approximate the communication and action policies, respectively, which
can not only automatically distinguish the important messages received but also scale
to the dynamic changes of the local communication topology.

(3) To maximize the rewards of neighboring UAVs, a gradient optimization procedure
for deterministic communication policy over continuous space is derived. Then, a
MADRL algorithm for UAV swarms is proposed to jointly learn the continuous
communication and discrete action policies of the UAVs.

The paper is organized as follows. Section 2 summarizes the related works. In
Section 3, the background and some definitions about reinforcement learning are intro-
duced. Section 4 analyzes the MTT problem and establishes the mathematician models.
Then, the communication settings of UAV swarms are configured. Next, the specific meth-
ods are proposed in Section 5, including the models of communication and action policies,
the derivations of policy gradient , and the corresponding algorithm. Then, numerical simu-
lation experiments are implemented in Section 6 to verify the effectiveness of the proposed
algorithm. A discussion of the proposed algorithm and numerical simulation experiments
is presented in Section 7. Finally, Section 8 gives the summary and outlook of the paper.

2. Related Works

As an emerging research hotspot, the MADRL-based communication learning research
in recent years can be classified into several categories, including communication protocol,
communication structure, communication object, and communication timing, etc.

2.1. Communication Protocol

The communication protocol specifies the textual content that agents communicate
with each other. Foerster et al. [16] firstly proposed two communication learning methods:
reinforced inter-agent learning (RIAL) and differentiable ning (DIAL) to learn the com-
munication protocol between two agents. Although they can only learn the simple low-
dimensional communication protocols between two agents, their findings inspired a lot
of follow-up works. Similarly, grounded semantic network (GSN) [15] was proposed to en-
code high-dimensional observation information and transmit it to other agents to realize
information sharing. Experiments verified that GSN can reduce the limitations caused by
the individual partial observability and improve the cooperation between agents. Pesce
and Emanuele [17] proposed a memory-shared communication mechanism in which each



Drones 2022, 6, 339 3 of 23

agent can generate a belief state about its local observation and store it in a shared memory,
and all agents can access and update the memory to achieve message passing between
agents. However, in complex and drastically dynamic scenarios, the belief states generated
by different agents may be all kinds of strange, which is not conducive to establishing
a stable cooperative relationship between agents.

2.2. Communication Structure

Communication structure focuses on how the communication messages flow between
agents. Peng et al. [18] modeled the communication link between agents as the bidirectionally-
coordinated nets (BiCNet), which can not only transfer information between agents but also store
local memory. However, the chain relationship in BiCNet is not necessarily suitable and accurate
to capture the interactions between agents. In addition, BiCNet can be extremely complex and
fragile when the scale of the agents is large. Therefore, BiCNet cannot be scaled well to the large-
scale and highly dynamic UAV swarms. CommNet [14] assumed that each agent can globally
receive and average the messages from the hidden layers of all other agents’ neural networks.
It can scale well to the population changes of agents but cannot distinguish the importance
of the messages from different agents, which may overwhelm some important ones. Moreover,
global communication is usually impractical for swarms. With the introduction of graph neural
networks (GNNs), communication learning methods based on graph attention network (GAT)
have been proposed, such as ATOC [19], GA-Comm and GA-AC [20]. The graph attention
network can adaptively assign the weight of neighbor nodes, which improves the flexibility
and adaptability of the communication of agents.

2.3. Communication Object

In the study of communicating object, an agent learns to choose which adjacent
agent(s) to communicate with peer-to-peer rather than broadcast. Ding et al. [21] proposed
the individually inferred communication (I2C) algorithm to train a neural network that
maps an agent’s local observation to others’ index codes to determine who to communicate
with. Similarly, targeted multi-agent communication (TARMAC) [22] was proposed to learn
the communication objects of each agent and the message to be sent. The simulation
verified that TARMAC can learn effective communication in a simple discrete environment,
enabling effective cooperation among agents.

2.4. Communication Timing

In some competition and confrontation scenarios, an agent may only need to commu-
nicate with neighbors at certain important moments, thereby reducing the communication
frequency and bandwidth requirements. To learn when to communicate, the individual-
ized controlled continuous communication model (IC3Net) [23] assumed that each agent’s
action variable set includes a physical movement and a discrete communication switch
signal. The later one is modeled as a gating unit that controls whether the agent publishes
its communication message to the outside.

Although there are many related studies on communication learning, there are few
works applicable to UAV swarms. Aiming at the MTT problem of UAV swarms, how
to learn the efficient, scalable and robust communication between UAVs to achieve active
cooperation and improve the MTT capability of UAVs is the focus of this paper.

3. Preliminary
3.1. Decentralized Partially Observable Markov Decision Process (Dec-POMDP)

Dec-POMDP [24] is a model of a Markov decision process (MDP) for multi-agents in
which each one can only partially observe the environment and make its action decision
accordingly. For n agents, each one is indexed by i ∈ [1, n]; the Dec-POMDP at every step
(the subscript t is omitted for convenience) can be described as:

(N, S,A, O, Z, T, R, γ), (1)
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where N is the collective set of all agents, S is the global state space denoting all agents’
and the environment’s configurations, and s ∈ S denotes the current and specific state. The
joint action space of all agents is denoted asA : A1 × · · · ×An in which ai ∈ Ai is agent i’s
specific action; O : (O1, · · · , On) denotes all agents’ joint observation space; Z : oi = Z(s, i)
denotes the individual observation model of agent i given the global state s, and oi ∈ Oi is
agent i’s local observation. T : P(s′ | s, a) → [0, 1] denotes the probability of s transiting
to new state s′ executing joint action a : (a1, · · · , an); R is the reward function; γ ∈ [0, 1] is
the constant discount factor.

In Dec-POMDP, each agent makes its action decision following individual policy
πi : Oi 7→ Ai, and the joint policy is denoted as π : (π(1), · · · , π(n)). Then, all agents
execute the joint action to refresh the environment. Given a specific joint observation o
and all agents’ joint policy π, if each agent can access its private reward ri

t at every time

step t, Vπ(o) = Eπ [
∞
∑

t=0

N
∑

i=1
γtri

t | ot=0 = o] denotes the state-value function of all agents.

Furthermoremore, executing the joint action a, their action-value function is denoted

as Qπ(o, a) = Eπ [
∞
∑

t=0

N
∑

i=1
γtri

t | (o, a)t=0 = (o, a)].

3.2. Actor–Critic (AC)

AC combines the policy gradient and value function approximation methods in which
each actor is a policy function to predict the agent’s action, and each critic is a value function
to evaluate the performance of the policy function [25]. Thus, the policy function πθ , which
is parameterized with θ, can be optimized via maximizing the value function, and the policy
gradient with respect to θ is:

∇θ J(θ) = Es,a∼πθ(s)[∇θ log πθ(a | s)Qπ(s, a)], (2)

where the value function can be optimized via minimizing the square of the temporal-
difference (TD) error [25].

3.3. Deep Deterministic Policy Gradient (DDPG)

DDPG is an extended version of AC in which the policy function directly outputs
a deterministic action value (a = πθ(s)) instead of a probability distribution over the action
space (a ∼ πθ(a | s)). Then the gradient of the policy function is:

∇θ J(θ) = Es

[
∇θπθ(s)∇aQπ(s, a) |a=πθ(s)

]
. (3)

The value function in DDPG is updated with the frozen network trick, and in addition
to the two networks appearing in AC, the target-policy function and the target-value
function are used to improve training stability [26].

4. Problem Formulation
4.1. Problem Description

The research focus of this paper is to explore a communication and action policies
joint learning method to achieve swarm cooperation. To reduce the learning difficulty,
we make reasonable assumptions and simplifications of the models of both the UAV
and the target. As shown in Figure 1, a large number of homogeneous small fixed-
wing UAVs track an unknown number of moving targets on the ground. Each UAV
can only perceive the targets below it but cannot distinguish the specific identities or in-
dices of the tracked targets. It is assumed that the UAVs move at a uniform constant speed
in a two-dimensional plane and rotate their headings according to the local communication
messages and observation information. However, since the targets are non-cooperative
and there is no explicit target assignment, a single UAV may track multiple aggregated
targets, or multiple UAVs may cooperatively track one or multiple targets simultaneously.
Therefore, the UAVs should cooperate in a decentralized manner to keep targets within
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their field of view and track as many targets as possible. In addition, the UAVs should also
satisfy the safety constraints, such as avoiding collisions, crossing boundaries, etc.

Figure 1. MTT scenario for UAV swarms.

4.1.1. Kinematic Model

There are n UAVs and m targets in the two-dimensional mission area. The motions
of these UAVs and targets can be modeled with two-dimensional plane motion models. For
any UAV i, i ∈ [1, n], its speed is denoted as vU, the heading angular is denoted as θU, and
the control variable is its heading angular rate θ̇U. Then, the kinematic model is described
by its position and heading, that is:

xi
U,t+1 = xi

U,t + vi
U cos θi

U,t∆t, 0 ≤ xi
U,t ≤ xmax

yi
U,t+1 = yi

U,t + vi
U sin θi

U,t∆t, 0 ≤ yi
U,t ≤ ymax

θi
U,t+1 = θi

U,t + θ̇i
U,t∆t, −θ̇max ≤ θ̇i

U,t ≤ θ̇max

(4)

where the subscription t is denoted as the current time, ∆t is the discrete time step, θ̇max is
the UAV’s maximum heading angular rate, and xmax and ymax are the maximum boundaries.

Similarly, for any target k, k ∈ [1, m], its kinematic model can also be described with
the position [xk

T, yk
T] and heading angular θk

T, and the difference is that the target’s heading
angular rate θ̇k

T is assumed to be a bounded random variable.

4.1.2. Target Observation Model

Shown in Figure 2, each UAV can only observe these targets in a circle with radius do
below it and can resolve the position, speed and other information of the tracked targets
from the raw observation but cannot identify their specific indexes. The ground projection
distance between UAV i and target k is denoted as di,k, and target k is tracked by UAV
i when di,k ≤ do. The observation is denoted as ok

T = [xk
T, yk

T, vk
xT

, vk
yT
]. Furthermore,

the observation information ok
T should be transformed from a global coordinate to UAV i’s

local coordinate considering partial observability, denoted as oi,k
T .

Suppose UAV i can obtain the relative location information oi
B between itself and

the boundaries of the task area through its GEO-fencing system and its partial observation
of the targets. Then, the environment is denoted as oi = { oi

B, {oi,k
T } | ∀k ∈ [1, m], di,k 6 do}.
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Figure 2. Target observation diagram.

4.1.3. Action Space

The purpose of this paper is to learn the cooperative policy of UAV swarms rather
than the precise control of each individual. To facilitate the learning process, the action
space of each UAV can be discretized into a limited number of action primitives as follows:

θ̇U,t =
2na − Na − 1

Na − 1
θ̇max, na ∈ [1, Na], (5)

where Na is the cardinality of the discrete action set.

4.1.4. Reward Shaping

In MTT, UAVs are expected to track as many targets as possible. Therefore, each UAV
should keep the tracked targets within its field of view as much as possible, while maximizing
observation benefits by avoiding observation outside the boundaries and repeated tracking.
Thus, the reward of each UAV i is shaped as the sum of multiple items, including:

(1) Target Tracking Reward: Since the observation range of a UAV is limited, a naive
idea is that the target should be as close as possible to the UAV’s observation center.
Accordingly, the target tracking reward of UAV i to target k is defined as:

ri,k
tar =

{
1 +

(
ro − di,k

)
/ro di,k ≤ ro,

0 else .
(6)

When UAV i tracks multiple targets, its target tracking reward is ri
tar = ∑m

k=1 ri,k
tar.

Specifically, the constant bias 1 in Equation (6) can encourage the UAV to track more
targets rather than just obsessing over a single target. For example, when tracking
two targets, ri

tar > 2, but when tracking a single target, ri
tar < 2.

(2) Repeated Observation Penalty: Repeated observation of a target by multiple UAVs
may not increase the number of tracked targets but may increase the risk of collision
due to the proximity of the UAVs. Therefore, to improve the observation efficiency
and track more targets, a penalty item is defined to guide the UAV i and j, j 6= i
to avoid repeated observations, that is:

ri,j
rt =

{
−0.5× exp

((
2× ro − di,j)/(2× ro)

)
di,j ≤ 2× ro,

0 else ,
(7)

and ri,j
rt = rj,i

rt . In Equation (7), if di,j > 2 × ro, there is no observational overlap
between UAV i and j, and UAV i’s repeated observation penalty is ri

rt = ∑n
j=1,j 6=i ri,j

rt .
(3) Boundary Penalty: To effectively capture and track targets, UAV i’s observation area

should always be within the boundaries. When the observation range is outside



Drones 2022, 6, 339 7 of 23

the boundaries, the outside part is invalid. To this end, the minimum distance
from UAV i to all boundaries is di

bound, and the boundary penalty item is defined as:

ri
bound =

{
−0.5×

(
ro − di

bound

)
/ro di

bound < do

0 else .
(8)

To sum up, the individual reward of UAV i is shaped as:

ri = ri
tar + ri

rt + ri
bound. (9)

4.2. Communication Settings

To cooperate among UAVs, they need to follow certain communication protocols
to exchange information, and communication within a UAV swarm should meet the
following requirements:

(1) Local communication: In a large-scale UAV swarm, each one is both the communi-
cation receiving and output nodes, and all the nodes constitute a complex network.
Considering the limitation of communication power, each one only communicates
with the neighbors within its maximum communication range, which can effectively
reduce the complexity of the communication network;

(2) Direct communication: The MTT problem requires high timeliness of communication
between UAVs. Therefore, to reduce the communication delay, it is assumed that each
UAV only communicates with adjacent ones in a single-hop, and multi-hop bridge
communication with ones outside the communication range is not considered;

(3) Broadcast communication: To reduce bandwidth requirements and avoid commu-
nication congestion, each UAV broadcasts the same message to its neighbors once,
instead of sending one-to-one multiple times;

(4) Dynamic communication: The rapid movement of UAVs leads to dramatic changes
in communication network and asymmetry between uplink and downlink. To this
end, it is assumed that all neighbors within the communication range can receive
the messages sent by a UAV to improve the dynamics and reliability of the communi-
cation network;

(5) Autonomous communication: In complex scenarios, UAVs should be able to au-
tonomously decide the content of messages to be sent based on their local observations,
so as to promote efficient cooperation between them;

(6) Safe communication: To improve the survivability of UAVs in the confrontation sce-
narios, the anti-jamming and anti-interception capabilities of communication should
be improved to protect communication messages from being deciphered by non-
receivers and improve communication security, etc.

5. Methods
5.1. Communication and Action Policies Modeling

Based on the above settings, the set of UAV i’s neighbors that can communicate locally
with it at time t is denoted as N i

t . Its communication and action decision-making processes
is shown in Figure 3. Specifically, j ∈ N i

t , ai
t is its heading angular rate θ̇i

U,t; mi
t indicates

the continuous and deterministic message that is about to be published to the neighbors.
Here, UAV i can receive the messages from itself and all neighbors in the last moment; ci

t

is denoted as ci
t =

{
mi

t−1, mj
t−1 | ∀j ∈ N i

t

}
. UAV i makes its action and communication

decisions based on its local observation and the messages received. Then, the action policy
is defined as:

ai
t ∼ πa

(
a | oi

t, ci
t

)
, (10)

and the communication policy is defined as:

mi
t = πc

(
oi

t, ci
t

)
. (11)
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Figure 3. Communication and action decision-making processes.

The communication and action decision process of UAV i is as follows:

(1) At each time t, UAV i accesses its local observation oi
t and receives message set ci

t;
(2) Input oi

t and ci
t into both Equations (10) and (11) to output its action ai

t and message mi
t;

(3) Execute joint action (a1
t , · · · , ai

t, · · · , an
t ) to refresh the environment and publish mes-

sage mi
t to the neighboring UAVs, then receive the reward ri

t from the environment;
(4) t = t + 1, and continue to step (1).

The input variables of both UAV i’s action and communication policies are the local
observation and the received messages. As the UAVs and targets move continually, both
the number of objects observed and the number of messages received by UAV i are dynam-
ically changing accordingly. However, the input dimension of a neural network is usually
fixed at initialization, and input variables with uncertain cardinality cannot be directly
input into the neural network.

In MTT, each UAV can interpret the precise physical features of the tracked targets, such
as their speeds, positions, etc. These explicit feature sets can be encoded as a dimension-
determined input variable using feature embedding methods in [27]. Unfortunately, the mes-
sage received from a neighbor is usually high-dimensional and often cryptic, i.e., its content
composition may be time-varying, depending on the context of the sender, and has no definite
physical properties. Therefore, the received messages cannot be easily encoded as a fixed-
dimensional feature embedding. To this end, we adopt the graph attention mechanism [28]
(GAT) to aggregate the received messages for each UAV, and its ability to extract and aggregate
variable-length messages has been verified by [29,30].
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Thus, the communication and action policies of UAV i can be approximated with
neural networks. Take communication policy as an example, the overview of its neural
network is shown in Figure 4, and the aggregation process of its communication messages
in the dashed box on the right is as follows:

(1) At time t, transform the communication messages with function F whose parameters
can be learned to obtain the high-level feature [28], and denote F(mi

t−1) as query ,

which represents the prior knowledge of UAV i, while {F(mj
t−1) | ∀j ∈ N i

t } are the set
of sources, and each one indicates the received message to be aggregated;

(2) The correlation coefficient from any adjacent UAV j, j ∈ N i
t to the central UAV i is

defined as:
eij = 〈F(mi

t−1), F(mj
t−1)〉, j ∈ N i

t (12)

the inner product represents a parameter-free calculation, which outputs a scalar that
measures the correlation;

(3) Use the softmax function to normalize the similarity set {eij | ∀j ∈ N i
t } to obtain

the weight set {wij | ∀j ∈ N i
t } in which

wij =
exp(eij)

∑j∈N i
t

exp(eij)
(13)

(4) Weighted summation over the source set yields the aggregated message ĉi
t:

ĉi
t = ∑

j∈N i
t

wijF
(

mj
t−1

)
(14)

Then, oi
t and ĉi

t are concatenated and input into the following hidden layers to calculate
the output message mi

t, and Equation (11) is redefined as:

mi
t = πc

(
oi

t, GAT
({

mi
t−1, mj

t−1 | ∀j ∈ N i
t

})
; θc

)
(15)

where θc is the parameter of the communication neural network, and the GAT component
is a part of the network.

Similarly, the action policy could also be approximated by a neural network, only
the output layer should be modified accordingly. Then, the discrete actions of each UAV i
obey the distribution:

ai
t ∼ πa

(
a | oi

t, GAT
({

mi
t−1, mj

t−1 | ∀j ∈ N i
t

})
; θa

)
(16)

where θa is the parameter of the action neural network.
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Figure 4. The overview of communication policy neural network.

5.2. Policy Gradient Optimization

Assuming that the action and communication policies of a UAV are independent of
each other, the latter is frozen when training the action neural network and vice versa.

5.2.1. Action Policy Gradient

To learn the action policy πa, the action-value function is defined as Qi(oi, ci, ai; φQ), and
φQ is its parameter, which is updated by minimizing the following loss function:

Li
Q(φQ) = Eπa [

1
2
(yi −Q(oi, ci, ai; φQ))

2] (17)

where yi = ri + γQ(oi ′, ci ′, ai ′; φ−Q) |ai ′∼πa(a|oi ′ ,ci ′ ;θa)
, φ−Q is the parameter of the correspond-

ing target network, ai ′ is the next action, oi ′ and ci ′ are the local observations and the set
of received messages at the next moment, respectively. The time-difference(TD) error
is denoted as δi = ri + γQ(oi ′, ci ′, ai ′; φ−Q)− Q(oi, ci, ai; φQ), and the gradient of this loss
function with respect to φQ performing gradient descent is:

∇φQL
i
Q(φQ) = −δ∇φQ Q(oi, ci, ai; φQ) (18)

Then, the action policy is updated via maximizing the action-value function:

Ji
a(θa) = Eπa [Q(oi, ci, ai; φQ)|ai∼πa(a|oi ,ci ;θa)

] (19)

and the policy gradient is:

∇θa Ji
a(θa) = ∇θa log π(ai | oi, ci; θa)δ

i (20)

5.2.2. Communication Policy Gradient

In local communication topography, all the adjacent UAVs receive the message mi
t that

is an input variable of their next action and communication decisions. Given the action
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policy πa, the parameter of the action-value function φQ, and UAV i’s current input variables
(oi

t, ci
t), the communication objective is denoted as:

Ji
c(θc) =

1
| N i | ∑

j∈N i

Eπc [Q(oj
t+1, (cj/i

t+1, mi
t), aj

t+1; φQ)

|
mi

t=πc(oi
t ,c

i
t ;θc),a

j
t+1∼π(a|oj

t+1,(cj/i
t+1,mi

t);θa)
],

(21)

where cj/i
t+1 is the set of UAV j’s received messages except mi

t.
Then, the communication policy gradient is derived according to the policy gradient

theorem and the chain derivation rule as:

∇θc Ji
c(θc) =

1
| N i | ∑

j∈N i

Eπc [∇θc πc(oi
t, ci

t; θc)

· ∇mi
t
log πa(a | oj

t+1, (cj/i
t+1, mi

t); θa)Q(oj
t+1, (cj/i

t+1, mi
t), aj

t+1; φQ)

+∇θc πc(oi
t, ci

t; θc)∇mi
t
Q(oj

t+1, (cj/i
t+1, mi

t), aj
t+1; φQ)].

(22)

For simplicity, the conditional term in Equation (21) is omitted. Thus, given the input
variables of UAV i at the current moment t and that of all adjacent UAVs N i at the next
moment t + 1, the communication policy gradient can be calculated via Equation (22).
Then, the policy can be updated accordingly.

Note that the objective functions, Equations (17), (19) and (21), are non-convex when
using neural networks to approximate them, respectively. The common optimizers, such
as MBSGD (mini-batch stochastic gradient descent) or Adam (adaptive moment estimation)
in PyTorch, are usually adopted to solve these optimization problems.

5.2.3. Joint Communication and Action Policies Learning

As mentioned above, when calculating UAV i’s action policy gradient, its observation
and messages received are required. However, for the communication policy gradient,
in addition to these variables, it is necessary to further obtain the relevant variables of each
adjacent UAV at the next moment. Employing the experience-sharing training mecha-
nism [27] to train the communication and action policy neural networks, the action experi-
ence is denoted as ei

a = (oi, ci, ai, ri, oi ′, ci ′), and the communication experience is denoted
as ei

c = (oi, ci, {oj′ , cj′ , aj′ | ∀j ∈ N i}). Utilizing the centralized-training decentralized-
execution (CTDE) framework, an algorithm for jointly learning the communication and
action policies for UAV swarms is proposed, and its pseudo-code is as follows.

In Algorithm 1, the two policy networks are not coupled with each other. During
centralized training, they both have private experience buffers, and when one network is
updated, the other one is frozen. However, communication policy gradient can backprop-
agate across UAVs, which enables closed-loop feedback updates of the communication
policy. In decentralized execution, each UAV can decide its action and what to publish to
its adjacent UAVs based on its own observation and received messages.
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Algorithm 1 Joint communication-action multi-agent deep reinforcement learning

Initialize: Neural network parameter: action policy, θa; communication policy, θc; action-
value function and its target function, φQ and φ−Q . Action experience buffer: D1.
Communication experience buffer: D2

//Centralized-Training:
1: for epi = 1: episodes do
2: Environment Reset
3: for t = 1 : T do
4: for i = 1: n do
5: Access observation oi and message set ci, and execute policy πa and policy

πc to output action ai and message mi, respectively
6: end for
7: Execute joint action {a1, a2, · · · , an} to update immediate rewards {r1, r2, · · · rn}

and joint observation at next moment {o1′, o2′, · · · , on ′}
8: for i = 1: n do
9: Publish message mi, receive the neighbors’ messages to form ci ′

10: Push action experience (oi, ci, ai, ri, oi ′, ci ′) into buffer D1

11: Push communication experience (oi, ci, {oj ′, cj ′, aj ′ | ∀j ∈N i}) into buffer D2
12: end for
13: Randomly sample B1 experiences from D1
14: Minimize loss function LQ to update the action-value function:

LQ(φQ) =
1

2B1

B1

∑
k=1

[(yk −Q(ok, ck, ak; φQ))
2
];

15: if Update target network then

φ−Q ← lr−φQ + (1− lr−)φ−Q ;

16: end if
17: Update parameter θa with gradient:

∇θa Ja(θa) ≈
1
B1

B1

∑
k=1
∇θa log π(ak | ok, ck; θa)δ

k

18: Randomly sample B2 experiences from D2
19: Perform Equation (22), and update communication policy network parameter

with gradient:

∇θc Jc(θc) ≈
1
B2

B2

∑
k=1
∇θc Jk

c (o
k, ck; θc)

20: end for
21: end for

//Decentralized-Execution:
22: Environment Reset
23: Load shared action policy πa and communication policy πc for each UAV
24: for t = 1 : T do
25: For each UAV i, access oi and ci, and execute πa and πc to output its action ai and

message mi, respectively
26: Execute joint action {a1, a2, · · · , an} to update environment, and each UAV i pub-

lishes message mi

27: end for
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6. Experiments
6.1. Benchmark Algorithms

In this paper, the proposed Algorithm 1 is named Att-Message for simplification, and
we hardly see from the existing literature that techniques other than MADRL can achieve
the similar goal of solving communication and action policies for large-scale UAV swarms
to cooperate. Thus, we select and adopt several benchmark algorithms that are commonly
used by researchers from [14,19], and the non-communication one , including:

(1) No-Comm. Literally, in No-Comm, each UAV can only receive local observation
and selfishly maximize its individual rewards. There is no clear communication
channel between UAVs and naturally no explicit cooperation or competition. Thus,
the communication policy is πc = Null, and the action policy is:

ai ∼ πa(a | oi; θa). (23)

(2) Local-CommNet. In CommNet [14], it is assumed that each agent can receive all
agents’ communication messages. It should be adapted to the local communication
configuration of UAV swarms in this paper, named Local-CommNet.
Specifically, each UAV publishes the hidden layer information h of its action policy
network to its adjacent UAVs, i.e., mj

t−1 = hj
t−1, Then, the messages received by UAV

i are denoted as:
ci

t
.
= {hj

t−1 | ∀j ∈ N i
t }. (24)

Next, ci
t is aggregated using the average pooling method to obtain:

ĉi
t =

1
| N i

t |
∑

j∈N i
t

hj
t−1. (25)

(3) Att-Hidden. In addition to the average pooling method, the GAT can also be used
to aggregate ci

t [12,19]. Then:

ĉi
t = GAT({hi

t−1, hj
t−1 | ∀j ∈ N i

t }). (26)

The message of each UAV is its hidden layer information of the action policy network,
and there is no separate communication policy network. So GAT, as an encoder, could
be a component of the action policy network. The network can be updated according
to the input variable (oi

t, {hi
t−1, hj

t−1 | ∀j ∈ N i
t }) following Equation (20).

6.2. Settings

In this section, the effectiveness of the proposed algorithm is verified by numerical
simulation experiments. According to the problem description (Section 4.1), the training
environmental parameters are set in Table 1. These parameters have been used in our
previous work [8,27], and the rationality has been verified. During testing, the environment
size and the numbers of UAVs and targets may change. The hyper-parameters of those
algorithms are configured in Table 2.
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Table 1. Environmental parameters.

Object Parameter Value

Environment Shape Square
Size 2 km × 2 km

UAV

Quantity (n) 10
Communication Range (dc) 500 m

Observation Range (do) 200 m
Flight Speed (vU) 20 m/s

Max Heading Angular Rate (θ̇max) 30◦/s
Cardinality of Action Set (Na) 7

Target

Quantity(m) 10
Moving Speed (vT) 5 m/s

Max Steering Angular Rate 30◦/s

Table 2. Hyper-parameters configuration.

Hyper-Parameter Value

Iteration Episode 2× 103

Replay Buffer 5× 105

Max Step 200
Batch Size 64

Target Network Update Interval 100
Action Policy Learning Rate 1× 10−4

Communication Policy Learning Rate 5× 10−5

Communication Policy Output Dimension 100
Discount Factor 0.95

To evaluate the tracking performance of UAV swarms, the following metrics are defined:

(1) Average Reward:
1

Tn

T

∑
t=1

n

∑
i=1

ri
t, (27)

where ri
t has been defined in Equation (9), which comprehensively evaluates the per-

formance of UAV swarms from the aspects of target tracking, repeated observation,
safe flight, etc.

(2) Average Target:

1
Tn

T

∑
t=1

n

∑
i=1

m

∑
k=1

1(i, k),1(i, k) =

{
1, d(i,k) 6 do;
0, else.

(28)

which evaluates the number of targets tracked from the perspective of each UAV.
(3) Collective Target:

1
T

T

∑
t=1

m

∑
k=1

1(k), 1(k) =

{
1, ∃i ∈ [1, n], s.t. d(i,k) 6 do;
0, else.

(29)

which evaluates the number of targets tracked by all the UAVs.
(4) Coverage:

1
Tm

T

∑
t=1

m

∑
k=1

1(k), 1(k) =

{
1, ∃i ∈ [1, n], s.t. d(i,k) 6 do;
0, else.

(30)

which is denoted as the proportion of the tracked targets to all targets.
Furthermore, the coverage rate, as a normalized indicator, can evaluate the tracking
capability of UAV swarms in different scenarios from the perspective of targets.
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6.3. Validity Verification

The neural networks in the four algorithms are randomly initialized and trained, and
the curves of the defined metrics are plotted in Figure 5. Overall, the MTT performance
of the Att-Message is the best, followed by Att-Hidden and Local-CommNet; the last one is
No-Comm. Again, there is no explicit communication and cooperation between the UAVs
in No-Comm, and each UAV greedily maximizes its private interest.
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(a) Average reward curves.
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(c) Collective target curves.

Figure 5. The metric curves during the training process of the four algorithms.
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Looking at specifics, (1) the three algorithms using explicit communication outperform
No-Comm without communication, which indicates that communication can effectively
promote the cooperation between UAVs, thereby improving the tracking performance
of UAV swarms; (2) the comprehensive performance of Att-Hidden using GAT is better
than that of Local-CommNet, but the UAV in both algorithms transmits the hidden layer
of the action policy network. The reason may be that GAT can better aggregate the received
messages, then effectively improve the action policy of UAVs and the cooperation between
them; (3) furthermore, the comprehensive performance of the Att-Message is superior to
that of Att-Hidden, indicating that compared with the hidden layer of the action policy
neural network, the communication message can better capture the information that is
helpful for cooperation. It is also proved that the communication policy in Att-Message can
be optimized based on feedback from other UAVs to facilitate cooperation between UAVs.

Furthermore, Figure 6 intuitively visualizes the tracking process of the UAVs using
the four algorithms, respectively, and the snapshots verify the previous conclusions again.
In addition, it can be seen that executing the policies learned by Att-Message, the UAVs
emerge with obvious cooperative behaviors. For example, when a target escapes the obser-
vation range of a UAV, the adjacent UAVs can quickly track and recapture the target again.
Alternatively, there is a tendency to avoid getting too close between the UAVs to avoid
repeated tracking as much as possible and to improve the observation coverage to capture
more targets.

X(m)

Y
(m
)

(a) No-Comm

X(m)

Y
(m
)

(b) Local-CommNet

X(m)

Y
(m
)

(c) Att-Hidden

X(m)

Y
(m
)

(d) Att-Message

Figure 6. Visualization of MTT executing different algorithms.
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6.4. Scalability Test

To test whether the policies learned by the above four algorithms can be scaled to other
scenarios beyond the training one, these policies were executed for 100 rounds in different
scenarios, and the metrics of single-step are counted in Table 3.

Table 3. Result statistics of scalability test.

Map Size n
m Metrics

Algorithm

No-Comm Local-
CommNet Att-Hidden Att-

Message

1000 5
5

Average
Reward –1.3108 –0.8653 –0.2912 –0.3554

Average
Target 1.0626 1.1393 1.0513 1.2109

Coverage 0.6555 0.7370 0.7626 0.7915

1000 10
10

Average
Reward –4.1760 –2.5640 –1.6756 –1.4816

Average
Target 1.9919 1.9792 1.4915 1.6382

Coverage 0.7692 0.8278 0.8508 0.8722

2000 10
10

Average
Reward –0.8157 –0.0425 0.0645 0.0776

Average
Target 0.7190 0.8166 0.7589 0.8777

Coverage 0.5357 0.6207 0.6275 0.6714

2000 20
20

Average
Reward –2.5680 –1.1612 –0.5765 –0.5166

Average
Target 1.2339 1.3396 1.0992 1.2432

Coverage 0.6581 0.7523 0.7586 0.8026

2000 50
50

Average
Reward –6.9769 –6.1045 –3.3002 −3.0900

Average
Target 2.5686 2.5803 1.9871 2.1014

Coverage 0.8562 0.8475 0.9100 0.9183

5000 100
100

Average
Reward –2.2617 –1.1111 –0.9921 −0.5119

Average
Target 1.1118 1.1958 1.1712 1.0925

Coverage 0.6170 0.7174 0.7297 0.7542

5000 200
200

Average
Reward –4.5219 –3.7763 –2.2895 –2.0386

Average
Target 1.8413 1.9586 1.4805 1.6496

Coverage 0.7743 0.8177 0.8392 0.8705

10,000 1000
1000

Average
Reward –6.0707 –5.3054 –3.4510 –3.1223

Average
Target 2.2993 2.3369 1.7754 1.9648

Coverage 0.8242 0.8406 0.8814 0.9043

The statistical results generally indicate that the average reward and coverage of the three
algorithms that introduce explicit communication in different scenarios are significantly better
than No-Comm without communication, which once again verify the effectiveness of the com-
munication. Specifically, Att-Message performs better than other algorithms in terms of av-
erage reward and coverage, which directly reflects that the UAVs adopting the action
and communication policies learned with Att-Message can better cooperate to track more
targets in different scenarios. However, in the scenario with dense UAVs and targets, the
average targets of No-Comm and Local-CommNet are higher, indicating that the indi-
vidual performance of a single UAV is excellent, while the cooperation between UAVs
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is much lower. This also reveals the importance of cooperation for the emergence of
swarm intelligence.

Combined with the visualization in Figure 6, the numerical results verify that UAV
swarms can learn more efficient communication and action policies by using Att-Message
and can scale these policies to different scenarios and achieve better performance.

6.5. Communication Failure Assessment

The above experiments assume perfect communication between UAVs; that is,
the messages can always be received correctly by the adjacent UAVs. However, how
does the performance of the UAVs change if there is a communication failure, while
the UAVs still execute the policies learned while communicating perfectly? In this paper,
two communication failures are assumed here: message loss and message error. The former
refers to the message not being received due to communication disconnection or delay;
and the later refers to the received message being inconsistent with the sent one due
to electromagnetic interference or other reasons. Here, the error message is assumed to be
a random noise signal. Under different failure probabilities, such as {0, 0.1, · · · , 1.0}, the
UAVs execute the policies learned by the four algorithms, respectively.

The variation trends of the metrics with the failure probability under the two failures
are plotted in Figures 7 and 8, respectively. At first glance, the corresponding statistical
metric curves in both the two failure cases have similar trends; that is, when the probability
gradually increases, the average reward and collective target curves of the three explicit
communication-based algorithms gradually decrease, while the average target curve
gradually increases, and the metric curves of No-Comm (without communication) is
approximately flat. For the same failure probability, the descending order of comprehensive
performance of the four algorithms is: Att-Message > Att-Hidden > Local-CommNet >
No-Comm, which is consistent with the training results.
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(a) The trend of average reward.

Figure 7. Cont.
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Figure 7. The variation trends of the metrics with communication error probability.
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(b) The trend of average target.
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Figure 8. The variation trends of the metrics with communication loss probability.

It is conceivable that when the probability increases, the available messages gradually
dwindle, and the comprehensive performance of the former three algorithms with commu-
nication gradually deteriorates. The reason is that the reduction of useful messages leads
to increased conflicts between UAVs and a decrease in cooperation. Moreover, as the prob-
ability increases, the average targets of the former three algorithms gradually increase,
indicating that the UAVs shortsightedly maximize the number of targets tracked by indi-
viduals. In addition, when the communication is paralyzed, each UAV makes a completely
independent decision. It can be seen that the comprehensive performance of Att-Message
is the best, which reveals that while learning the communication policy, the UAVs can
also learn a better action policy for tracking targets. Therefore, even the communication
fails, and the improvement of the individual MTT capability can also feed back the overall
capability of the swarm to a certain extent.

In summary, when there is a communication failure, such as message loss or error,
the comprehensive performance of the communication and action policies learned by
the proposed algorithm would be affected to a certain extent, but it is also better than
the other three benchmark algorithms. The numerical results also demonstrate the robust-
ness of the learned policies.
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7. Discussion

As mentioned earlier, the research object of this paper is large-scale UAV swarms
in which each UAV can only communicate and interact locally with the adjacent ones
when making decisions. In local topology and ignoring other factors, the computational
complexity of the action and communication policies for processing (aggregating) a message
is assumed to be a unit, denoted as O(1), and the average cardinal number of the message
set is denoted as |c|.

Then, in the decentralized execution, the computational complexity of the action
and communication policies of each UAV is O(|c|) according to Equations (16) and (15),
respectively. In centralized training, the computational complexity of updating action
policy is also O(|c|) according to Equation (20), and that of the communication policy is
O(2|c|2) since a message can influence the communication and action decisions at the next
step of all adjacent UAVs according to Equation (22).

Therefore, similar to most MADRL algorithms adopting the CTDE framework, the
training of the proposed algorithm requires more computational resources than execu-
tion, which is suitable for offline implementation. The offline training in this paper was
deployed on the computer equipped with Intel (R) Xeon E5 CPU (Manufacturer: Intel
Corporation, Santa Clara, CA, USA) and GTX Titan X GPU (Manufacturer: ASUS,Taiwan)
, the operating system was Ubuntu 16.04 LTS, and the algorithm was implemented by
Pytorch. Then the learned policies can be performed online without retraining. The specific
requirement of computational resources should comprehensively take the constraints, such
as computing platform, neural network design and optimization, decision frequency and
so on, into consideration.

Moreover, in the observation of a target, we only consider the simple numerical
information, such as its location and speed, but not the real-time image, and the communi-
cation policy can also compress and encode the high-dimensional information to realize
lightweight embedding interaction. These can further improve the feasibility of the algo-
rithm in real-world scenarios.

8. Conclusions and Future Works

Communication is an important medium for transferring information and realizing
cooperation between UAVs. This paper adopts a data-driven approach to learn the co-
operative communication and action policies of UAV swarms and improve their com-
munication and MTT capabilities. Specifically: (1) The communication policy of a UAV is
mapped from the input variables to the message sent out, so that the UAV can autonomously
decide the content of the message according to its real-time status. (2) The neural networks
based on the attention mechanism are designed to approximate the communication and action
policies, where the attention mechanism can distinguish the importance of different messages
and aggregate the variable number of messages into a fixed-length code to adapt to the dy-
namic changes of the local communication topology. (3) To maximize the cumulative reward
of the adjacent UAVs, the gradient optimization process of the continuous communication
policy is derived. (4) Based on the CTDE framework, a reinforcement learning algorithm is
proposed to jointly learn the communication and action policies of UAV swarms. The numerical
simulation verifies that the proposed algorithm can learn effective cooperative communication
and action policies to conduct the cooperation of UAV swarms, thereby improving their MTT
ability, and the learned policies are robust to communication failures.

Although the communication policy in this paper can extract the message that is
beneficial to cooperation, the physical meaning of the message cannot be explicitly parsed.
Therefore, the interpretability of the message remains to be further explored. How to rea-
sonably set the output dimension of the communication policy neural network, that is,
the length of the message, also needs to be further solved. If the output dimension is too
small, it may limit the communication capability of the UAV; otherwise, it may increase
the difficulty of learning, which is not conducive to learning an effective communication
policy. In addition, it is necessary to take more complex scenarios into consideration and
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establish more accurate models to investigate how the physical aspects of both the UAVs
and targets would affect the MTT performance.
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