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Abstract: Recent technological developments in the primary sector and machine learning algorithms
allow the combined application of many promising solutions in precision agriculture. For example,
the YOLOv5 (You Only Look Once) and ResNet Deep Learning architecture provide high-precision
real-time identifications of objects. The advent of datasets from different perspectives provides
multiple benefits, such as spheric view of objects, increased information, and inference results from
multiple objects detection per image. However, it also raises crucial obstacles such as total identifica-
tions (ground truths) and processing concerns that can lead to devastating consequences, including
false-positive detections with other erroneous conclusions or even the inability to extract results.
This paper introduces experimental results from the machine learning algorithm (Yolov5) on a novel
dataset based on perennial fruit crops, such as sweet cherries, aiming to enhance precision agricul-
ture resiliency. Detection is oriented on two points of interest: (a) Infected leaves and (b) Infected
branches. It is noteworthy that infected leaves or branches indicate stress, which may be due to
either a stress/disease (e.g., Armillaria for sweet cherries trees, etc.) or other factors (e.g., water
shortage, etc). Correspondingly, the foliage of a tree shows symptoms, while this indicates the stages
of the disease.

Keywords: sweet cherries trees; diseases detection; Yolov5; MACHINE LEARning; precision agricul-
ture; ResNet; smart farming; stress detection

1. Introduction

In the modern industrial era, the primary production sectors have made a tremendous
leap in automating and optimizing their subsequent production and processing methods.
In particular, with the ever ending infiltration of smart technologies [1], such as Unmanned
Aerial Vehicles (UAVs) [2], Robots [3], smart supply chains, the continuous evolution of
Computer Vision (CV) and the continuous amelioration of Artificial Intelligence (AI) in
most industrial technologies, the production methods in the primary sector [4,5] have un-
dergone a serious upgrade to new quality standards [6]. This phenomenon has increasingly
been seen in the Agricultural sector, as new methods to procure the quality of the product
and establish its sustainability are needed [7]. On the subject of product quality assur-
ance, the agricultural sector has been influenced by many novel AI-enabled technologies,
and specifically, implementations based on the Machine Learning (ML) and Deep Learning
(DL) paradigm. Modern implementations utilizing the power of these technologies and
complemented by the recent surge in the utilization of AI-oriented hardware, like Graphical
Processor Units (GPUs), on the edge, have revolutionized the way the quality of the prod-
ucts is maintained to a specific standard, while at the same time significantly accelerating
the process resulting in higher-quality higher-amount performance. It is significant to
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implement these modern technologies in the confrontation of tree diseases. This work will
be analyzing a dangerous and invisible sickness on the foliage of a tree. This disease has the
ability until this moment to be detected only on decayed roots. More specifically, for Sweet
Cherry trees this disease is identified after the completely wilting of the tree foliage. In other
words, the identification can be executed after the death of the tree. The examination of the
tree requires two conditions. Firstly, the whole tree must uproot. Secondly, the tree should
dismantle into parts. Every part will be analyzed by experts.This procedure has three
main drawbacks. Specifically, this method is very costly, is time-consuming, and does not
predict the infected trees early enough to save them. The name of this dangerous disease is
Armillaria. Notably, in the U.S. loses every year approximately 8 million dollars every year
from Armillaria [8].

Every single advancement comes with its respective shortcomings, so does the im-
plementation of AI methods in the agricultural sector. Even though the progress in
some technological fields has been monumental, such as quality assurance in Precision
Agriculture [9], in others the adaption of AI has staggered behind leaving a big gap in its
holistic utilization. Specifically, the use of ML and DL for detecting possible diseases in
trees, which can have a severe impact both on the quality and amount of the product but
also in future crops, have blatantly been left behind. This can be traced back to two signif-
icant factors. The first stems from the fact that the complexity of the problem-to-solve is
naturally high. A perennial tree can have hundreds of leaves and branches that may or may
not be infected, something that exponentially increases the amount of data to be processed.
Moreover, the way of obtaining the data plays a major role in the process. One of the most
common methods for obtaining data about the subjects is by means of photographing the
leaves, branches, or the trees themselves. Since most deceases are appear as perturbations,
degradation, or degeneration on small portions of the tree body, higher resolution, deeper
networks, and data optimization are needed, making the production of a standardized
methodology for tree stress/disease detection a hard task. The second factor is, as always
in ML, data availability. Since datasets are the pillars on which Supervised Learning is
based, the lack thereof, including low-quality datasets and the big morphological gap in the
variety of tree species, makes the construction of AI-enabled solutions for disease detection
on trees a practical impossibility.

Notably, some noteworthy work has been performed to solve these setbacks. On the
subject of disease detection and recognition, the authors in [10] develop an algorithm to
automatically detect and subsequently classify insect-infected fir trees (Abies mariesii)
and deciduous trees. Their methodology is based on treetop (aerial) photos from UAVs.
The authors utilize a Dense point cloud and normalized Digital Surface Models (nDSM)
approach to detect the treetops and an orthomosaic approach to differentiate between the
tree categories. The annotated data are aggregated and then fed to a Convolutional Neural
Network (CNN) [11] to categorize the trees to their health status and respective category.
Their study produced significant results in recognizing infested trees. A certain drawback of
this method is that only treetops images can be obtained resulting in information loss about
the trees like the disease progression. Moreover, the performance of the algorithm can be
affected based on the density of the tree population and their different categories. Likewise,
the authors in [12] utilize the Faster-RCNN [13] DL architecture based on ResNet101 [14],
trained on UAV-obtained treetop images to detect pine wild diseased pine trees. They
compare the performance of the utilized model with the known VGG16 [15] and present
comparable results, about 90% detection. This method suffers from the aforementioned
setbacks as well.

Another significant contribution on the subject of disease detection and identification
was made by [16]. In this work, the authors utilized an open-source dataset that includes
54,306 images from infected leaves, 26 different diseases, and 38 classes. Each image con-
tains a single leaf, which has been infected by one particular disease. All leaves present
obvious and advanced symptoms of the disease, from which they are infected. They use
three different versions of the PlantVillage dataset [17] to train their machine learning
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models: (a) original color of images, (b) converted all images to gray-scale, and (c) only
leaves without background. Furthermore, they utilize the AlexNet [18] and GoogLeNet [19]
architectures and combined them with two training mechanisms. The most high-accuracy
combination was GoogLeNet-TransferLearning-Color, which had 99.34% accuracy. How-
ever, machine learning models constantly need more images to be added. As a result,
the authors implemented various computer vision techniques, which eventually failed to
procure better results than the models.

Notably, some noteworthy work has been performed to compare machine
algorithms [20]. In this work, the authors compared several machine learning algorithms
such as YOLOv5 + ResNet50, YOLOv5, Fast RCNN, and EfficientDet. The purpose of this
study is to identify chest abnormalities in X-Ray images. The dataset was collected via
VinBigData’s web-based platform. This dataset includes 14 critical radiographic findings
and 18,000 scans in total. During the evaluation process of the trained models, one model
has distinguished it from others. The combination of Yolov5 and Resnet-50 has the best
metric values, which are Map@0.6 and Precision equals 0.254 and 0.512 respectively.

As in most life forms, diseases in trees come in all shapes and sizes. Specifically,
though, for sweet cherry trees that are the main focus of this study, the symptoms of the
infected trees can become apparent by closely examining the leaves and branches [21].
A diseased or stressed leaf is characterized by four optical factors: (a) the symptoms of
the disease, (b) its deformation from its original shape, (c) its color shade, and (d) wilting
of the foliage. These factors are better depicted in Figure 1. A common disease that
usually plagues the cherries trees is Armillaria [22], which is one of the most severe root rot
pathogens. Armillaria sp. mainly affects the plant’s root tissue and has a notable impact on
tree foliage tissues. Identification of 101 diseases [23]. Unfortunately, the task of examining
and further studying the roots of cherries trees can be a challenging task but also extremely
harmful to the tree, most of the time undermining its subsequent production performance.
For this reason, this study focuses on symptoms of foliage such as leaf twists and wilting
leaves (yellowish leaves), which are at an advanced stage.

Figure 1. Leaf Categories—(a) the symptoms of the disease, (b) deformation from its original shape,
(c) color shade and (d) wilting of the foliage.

Armillaria has also a severe impact on branches. This disease infects healthy branches
and eventually makes them a mass of wilting leaves, which after some time each leaf will
change color and fall to the ground. These infected areas are located outer circumference of
the tree or even the main body of the tree. These infections are quite devastating for the
cherries in the growing season. Some examples are presented in Figure 2.

The primary goal and the purpose of this work are not just to detect individually
infected foliage in sweet cherry trees. On the contrary, to provide all environmental
variables from the entire field. Having a complete picture of the crop is possible or even
actuality to understand the state of the crop is healthy or not. In the scenario that the crop
has individually infected areas (trees or plants), possibly an algorithm can observe the
pattern created by them. Evaluating these patterns, an algorithm can determine the cause
behind these infected areas. For example, if a water pipe breaks, the water will leak and
create stress near trees or plants by extreme irrigation.
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Figure 2. Samples of Infected branches.

Considering the above problem formulation, this work strives to produce a methodol-
ogy for tree disease detection on variable family sweet cherry trees. Specifically, this study
undertakes the creation of an analytical sweet cherry tree dataset aimed at multivariate
disease detection from the perspective of individually sampled tree images, annotated
to differentiate infected leaves and branches. Consequently, a Deep Learning algorithm,
leveraging the ResNet50 architecture is trained on the produced dataset, the results of
which are compared with other known implementations.

This work has two primary contributions to the scientific community, which can assist
future researches on both infected or stressed sweet cherry trees and the identification of
the stress induce parameters. These contributions are:

• The production of chErry tRee dIsease deteCtion dAtaset (ERICA).
• A methodology leveraging Deep Learning and specifically the ResNet architecture.

The first contribution refers to the production of ERICA, an annotated sweet cherry
tree dataset for multivariate stress/disease detection. The ERICA dataset can be analyzed in
multiple points of interest. Every image consists of hundreds or even thousands of objects,
which can take part in another dataset or process with computer vision techniques. This
flexibility that offers the ERICA can assist researchers to develop methods and evaluate
them for a revised understanding of disease identification. The second contribution relates
to Deep Learning and the ResNet architecture, to detect diseased sweet cherry trees using
the produced (ERICA) dataset. This methodology can be useful for the identification of
multivariate objects. In the evaluation of models in this paper, researchers can utilize the
most trustworthy model configuration and algorithm, which can use it in their dataset.
Furthermore, the machine learning models developed and presented in this work can be
applied to images or videos acquired by UAVs for the detection of Armillaria symptoms in
perennial fruit trees. On the one hand, a UAV can be utilized only for scanning the crop
field and reporting the collected images back to the server for further processing via the
trained models. On the other hand, promoting the employment of Next Generation Internet
of Things applications in Agriculture as well as edge computing applications, the analysis
of the infection status of crop fields could occur upon the UAV itself by using an advanced
microcontroller. Finally, the outcome of this paper can be applied to any photographic or
video footage.

2. Materials and Methods
2.1. Data Acquisition

The ERICA, containing a plethora of sweet cherry trees’ specimens in various stages
of the disease. The aim of this dataset is to facilitate the training cycle of ML and DL
methods on recognizing these various stages. Purposefully, this dataset includes possible
points of interest such as healthy leaves, infected or stressed leaves, healthy branches,
infected or stressed branches, and symptoms of the disease on tree trunks. The main feature
of the ERICA Dataset is to capture and organize samples of benign and infected sweet
cherry trees.

To obtain the samples from the trees there is the need to follow a strict process.
Firstly, the experts evaluate the weather condition for the day on which the data will be
obtained. Consequently, each sweet cherry tree in the field is classified by row and column.
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Furthermore, a team of experts and researchers utilize various types of equipment to
photograph the perennial fruit trees in ascending order. The equipment consists of cameras
with high resolution, such as mobile devices and mirrorless cameras. The ERICA dataset
has images with the total view (body) of the tree plus its individual infected/stressed
leaves. Each object inside an image must be classified. The objects can be classified into
two classes (infected leaf or infected branches). This process is generally known as an
annotation. The labeling of objects can be implemented in online platforms or softwares.
The outcome of annotation is exported in various types of files. This work used txt files
with Yolov5 format. Yolov5 uses four coordinates (corners of the box), which include the
object and the identification number of the class, which belongs. The data were normalized
with GaussianBlur, to alleviate possible noise and outlets in the samples. Since the images
containing the holistic tree body view contain high-resolution pictures and for the sake of
computational reserve, the images were further resized to 640 × 640 pixels and inputted to
the network.This process is repeated for each field every month as shown in the pipeline,
Figure 3. Inside this dataset can be found one primary disease, which is called Armillaria.

Weather 
Conditions

Data  
Annotation

ML Model  
Training Evaluation Max 

Accuracy

Data Gathering

RGB Photos Tree body
Photos

Time 
Constraints

Qualitative 
Results

Figure 3. Methodology Pipeline.

It is noteworthy that the geographic location of data collection in the ERICA dataset
is in Greece and more specifically in Western Macedonia. The location of the study has
a latitude “40.81007636843986” and longitude “21.800632900335405”. These coordinates
were acquired from google maps which use World Geodetic System (WGS) 84 format.
The Figure 4 shows the Keyhole Markup Language (KML) file, which presents the test area.

Figure 4. Study area in Western Macedonia of Greece.

Figure 5 presents the distribution of labels in the ERICA dataset. The labels are
separated into two classes, which are infected leaves and Infected branches. The infected
leaves in training are approximately two times more than branches. This ratio is logical
because these include infected leaves. Although this ratio is unbalanced, it is beneficial
for the training, because infected leaves are more challenging to be detected. In summary,
the ERICA dataset consists of:

• 1086 images of 1872 × 4160 and mixed image pixel resolutions (regular cameras).
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• Two classes of points interest on cherries trees.
• Infected leaves class has 11,676 labels and infected branches 6369.
• The images were captured at a specific time during the day (midday).
• Manually annotation until reaching high accuracy and then contributing as assistance

to the rest of the annotation.
• Ideal weather conditions (cloudless).

Figure 5. The distribution of the dataset consists of the training, validation and test dataset.

2.2. ResNet 50

This works relies heavily on the ResNet-50 [24,25] architecture, which defines a deep
residual network. The number after dash indicates how many layers the model consists of.
Thus the ResNet-50 has 50 layers. A model constructed under the ResNet-50 architecture
incorporates four stages each containing a convolution and an Identity block. For the sake
of explanation, we will consider the input size as 640 × 640 × 3. Each convolution block
and identity block have three convolution layers. The size of kernels used to perform
the convolution operation in all three layers of the block of stage 1 are 64, 64, and 256.
Afterward, Stage 1 of the network starts and it has 3 more stages containing 3 layers each.
As we progress from one stage to another, the channel width becomes double, and the size
of the input has shrunk to half. Finally, the network has an Average Pooling layer followed
by a fully connected layer having 1000 neurons. The 3 × 3 layer is left as a bottleneck with
smaller input/output dimensions.

Every ResNet architecture performs the initial convolution and max-pooling using 7
× 7 and 3 × 3 kernel sizes. It is noteworthy that, ResNet-50 has a large number of trainable
parameters, which are over 23 million. Furthermore, this model is often utilized for image
classification. The novelty which makes ResNet a robust and highly usable architecture is its
innate skip connection property, which without adjustments, assists the deep networks to
overcome the vanishing gradient problem. The Figure 6 shows the Resnet-50 architecture.
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2.3. Infected Leaf and Infected Branch Recognition

The first step for detecting infected leaves and infected branches is to leverage the
Region Proposal Network (RPN). The algorithm runs a lightweight binary classifier on
boxes (anchors) over the image and returns object/no-object scores. It is noteworthy that,
anchors with a high object detection score (positive anchors) are passed to stage two to be
classified. It is usual, that positive anchors don’t cover the point of interest sufficiently. So
the RPN also regresses a refinement to be applied to the anchors to shift it and resize it a
bit to the correct boundaries of the object, which is challenging and is not very successful.
For the generation of the detection targets, first, a grid must be created containing anchors
that cover the full image. Subsequently, the Intersection over Union (IoU) [26] is used
which is a crucial metric used in object detection evaluations. The term IoU defines the
overlap between the ground truth and prediction box as shown in Equation (1).

IoU =
area of overlap

are of unit
=

area(gt ∩ pd)
area(gt ∪ pd)

(1)

here gt denotes the ground truth annotation and pd describes the prediction box in the
image. The next step includes the computation of the IoU for each anchor compared
with the ground truth points of interest. Each anchor has IoU over 0.7 with any ground
truth point of interest, and negative anchors are those that don’t cover any object by more
than 0.3 IoU. Anchors in between are considered neutral and excluded from detection.
The following step is to filter all the predictions before the visualization. Each prediction
box has a lower IoU than the IoU threshold and confidence than the confidence Threshold,
in that case, the predicted box is considered unqualified. For better results, it was used the
algorithm Non-maximum Suppression [27]. This algorithm contributes to filtering each
predicted box for the same point of interest into a single box. The algorithms achieve that
by knowing only the box located inside the image and its score. The final step of the process
is the generation of masks for each predicted box. Then, the trained models were evaluated
by detecting leaves in the test dataset and extracting metrics. Finally, in order to gain better
results, the process is repeated until the extracted metrics show saturation. As a result,
the final model has an optimal accuracy, which could be reached with the ERICA dataset.

This paper utilized six of yolov5 models, which are (i) yolov5s, (ii) yolov5m,
(iii) yolov5l, (iv) yolov5s6, (v) yolov5m6, and (vi) yolov5l6. The evaluation for the trained
models uses three different qualitative metrics to find the optimal configuration of the
network. The metrics are (a) Precision, (b) Recall, and (c) mAP (Mean Average Precision).
Precision refers to the ability of the model to distinguish between all detection, which point
of interest is classified in each class. The recall is slightly different from the precision and
the only change that distinguishes between all ground truths. AP (Average Precision) is
calculated individually for each class and then aggregates them. These AP values are aggre-
gated into one value to obtain the metric mAP (mean Average Precision). In other words,
mean Average Precision (mAP) is the average from AP values over all classes. To accurately
train the CNN to be able to classify objects inside in images, numerous hyperparameters
demand to be modified. These hyperparameters will influence the performance of the
trained model and the time to convergence. One of the primary hyperparameters that
this paper focuses on is batch size [28,29]. The batch size is the number of images utilized
in each epoch during the training of the model. It is noteworthy that different values of
batch sizes bring severe changes to metrics values. Furthermore, a high value of batch size
is increasing the time of training and the results are not always better than lower values
of batch size. Testing our models in batch size limits, would not have centrally better
results [30]. For this reason, this paper used small batch sizes values, which are between
two and sixteen (2, 4, 8, and 16). This paper, in order to evaluate the Resnet decently,
decided to be trained, 24 models.
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3. Results and Discussion
3.1. Data Preparation

To successfully train a high accuracy model, the data need preparation. Every image
can contain hardened objects, which must be annotated into classes. In this work, the data
is separated into two classes, which are infected leaves and branches. This annotation
was implemented in an online platform (https://www.makesense.ai/, accessed on 12
December 2021). After the annotation, the labels are exported in txt files with Yolov5
format. The data were normalized with GaussianBlur, in order to alleviate possible noise
and outlets in the samples. Since the images containing the holistic tree body view contain
high-resolution pictures and for the sake of computational reserve, the images were further
resized to 640 × 640 pixels and inputted to the network. The data disunite into Training,
Validation, and Test set and divided into batches. The batches have then participated in the
training procedure of the model. The purpose of the previous separation aims to succeed
the best performance and evaluation of the trained model. More specifically, the data for
training utilize for the fed of the model. The validation assists the model during training to
execute a self-evaluation and implement self-adjusting. Moreover, the test dataset consists
of unrevealed data to the trained model, the primary reason for this is to perform an
objective evaluation.

3.2. Infected Tree Detection Evaluation

In order to train the detection model, a mid-to-high end testbed was employed. Specif-
ically, the testbed consisted of a Linux Workstation running Ubuntu 20.04, and consisting
of an Intel Core i7, 64 Gb of memory, and an NVIDIA RTX 3080 GPU/10Gb GPU memory.
To comparatively produce the best detection model, different instances of the Resnet archi-
tecture were utilized. To this end, the Yolov5 framework was deployed and used for the
purpose of the model training. In particular, 24 experiments were performed evaluating
the different Resnet instances as can be seen in Table 1.

The network can readily predict the infected or stressed leaves. An example of the
predicted infected leaves can be seen in Figure 7. The Yolov5 platform, which contains a set
of ResNet models, was utilized to realize the experiments [31]. In Table 1 all models trained
at 25 epochs and with the full dataset, which is 1086 images. The results of Table 1 show
that the best-trained model is yolov5m. In general, all models with batch size value 16
have the lowest recall values, which can be justified by the fact that during the training a
large number of images are processed in every epoch. The low recall values mean that the
algorithm has identified a small number of ground truths. For this reason, the algorithm
can identify and classify more easily the object between classes. Thus, these models have
high values at mean Average Precision and Precision metrics. It is noteworthy that, is
equally significant that the model’s ability to identify every ground truth and to classify
it correctly. However, if precision has a high value, it will assist with the creation of a
threshold to identify the symptoms of a disease. Moreover, in Table 1 are two primary
categories of models, which are yolov5x (x = s, m, and l) and yolov5x6 . The first category
during the evaluation procedure is detecting images of 640 × 640 and the second with
1280 × 1280 pixels. Also, in the training state, these categories follow the exact dimension
of images. At the 25 epoch of training, it is logical that the second category of the model
does not reach convergence yet. During the training, the model needs to process and learn
more information about the details of each object. For this exact reason, this category needs
more epochs to reach saturation of her metrics.

The yolov5m, a pre-trained instance of a ResNet50 model, which was found to have
the optimal configuration, showed a declining recall score. The low value of this metric
means that the algorithm can not find all ground truths in each image, or in other words,
all infected leaves and branches. However, this model has 86.1% efficiency in selecting the
correct class of each object. A proper solution to this is to raise dataset size and include
more variety in images. For example, several images contain only infected leaves or even
infected branches in different light exposures.

https://www.makesense.ai/
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Table 1. Detection Model Experiments.

Model Batch Precision Pixels Recall mAP

2 0.7 640 × 640 0.089 0.394
4 0.696 640 × 640 0.11 0.4
8 0.675 640 × 640 0.108 0.388yolov5s

16 0.681 640 × 640 0.094 0.385

2 0.646 640 × 640 0.094 0.367
4 0.653 640 × 640 0.075 0.363
8 0.617 640 × 640 0.093 0.352yolov5m

16 0.861 640 × 640 0.053 0.456

2 0.653 640 × 640 0.075 0.363
4 0.617 640 × 640 0.093 0.352
8 0.79 640 × 640 0.051 0.42yolov5l

16 0.695 640 × 640 0.082 0.317

2 0.512 1280 × 1280 0.079 0.286
4 0.494 1280 × 1280 0.05 0.263
8 0.486 1280 × 1280 0.037 0.258yolov5s6

16 0.56 1280 × 1280 0.028 0.292

2 0.409 1280 × 1280 0.045 0.222
4 0.497 1280 × 1280 0.043 0.269
8 0.445 1280 × 1280 0.056 0.247yolov5m6

16 0.462 1280 × 1280 0.075 0.262

2 0.402 1280 × 1280 0.056 0.221
4 0.402 1280 × 1280 0.073 0.227
8 0.452 1280 × 1280 0.046 0.241yolov5l6

16 0.435 1280 × 1280 0.032 0.263

Figure 7. Predicted Infected Sweet Cherry Tree Leaves.

3.3. Ablation

This Section presents the ablation of hyperparameter k, denoting the number of epochs,
on which the yolov5m Resnet model is seen as the training iterations are increased. The best
model based on metrics was yolov5m with batch size 16, which tested in a different number
of epochs as shown in the following table. Table 2 presents the qualitative results of the
model as the k parameter cascades.

Table 2. Ablation of parameter k.

yolov5m k = 25 50 70 90

Precision 0.861 0.625 0.695 0.426
Recall 0.053 0.068 0.082 0.064
mAP 0.456 0.328 0.387 0.240
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Notably, as can be seen from the results, the network saturates over larger iteration
using this dataset. Of course, this is expected since ResNet is a very Deep Network, meaning
that it converges faster using a small amount of data. A possible solution is either collecting
or augmenting more samples and feeding them to the Network. Furthermore, a reliable
solution to increase the metrics of the model is during the detection phase to use computer
vision techniques. Such as, crop each image into a grid and then detecting objects in every
cell of the grid. However, this technique has many disadvantages. The most negative is the
separation of an object at half or even other percentages between two or more cells.

Furthermore, this study utilizes the default hyperparameters of the Yolov5 algorithm.
In order to justify the selection of default parameters, two more schemes (combinations
of hyperparameters) were trained and evaluated on yolov5m with batch size 16, which
held the highest scores compared to the other models. These various schemes with their
hyperparameters values are shown in Table 3. First of all, the “lr0” hyperparameter refers
to the initial learning rate of training, and the “lrf” hyperparameter is the final learning
rate during the training process. “Momentum” is the size of the step in each epoch of the
algorithm to learn the problem. Notably, in complex problems momentum should have
a small value, in order not to lose the direction of learning the problem. Furthermore,
the “weight decay” hyperparameter is utilized as a penalty strategy. Finally, “warmup
epochs” and “warmup momentum” hyperparameters are used with a low learning rate,
in order to achieve low errors at the beginning of the training.

Table 3. Various schemes of hyperparameters values.

Hyperparameters Scheme One Scheme Two Scheme Three

lr0 0.01 0.00258 0.0032
lrf 0.2 0.17 0.12
momentum 0.937 0.779 0.843
weight_decay 0.0005 0.00058 0.00036
warmup_epochs 3.0 1.33 2.0
warmup_momentum 0.8 0.86 0.5

Notably, as can be seen from the outcome in Table 4 the “Scheme one” has the best
metrics in comparison to the other two, as result, this study recommends default hyperpa-
rameters of Yolov5.

Table 4. Outcome of various schemes with different value hyperparameters.

yolov5m Scheme One Scheme Two Scheme Three

Precision 0.861 0.631 0.827
Recall 0.053 0.062 0.004
mAP 0.456 0.346 0.416

4. Conclusions

In the modern applications of the primary sector and significantly in precision agricul-
ture, DL-oriented solutions have become significant pillars in product quality assurance.
In particular, in health reservation and subsequently disease detection of crops, DL pro-
duces robust solutions. The ERICA dataset includes images of entire sweet cherries trees
and single leaves, which will give better recognition results on the unbalanced data set.
Eventually, 29 machine learning models have trained, which have produced enlightenment
results. More specifically, 24 models have trained with various parameters, and the best
model has trained again with a different number of epochs. Based on the experimental re-
sults, the model with the highest accuracy was the yolov5m with batch size 16 at 25 epochs
and 86.1% precision. Regarding future work, the classes of this paper could be increased
referring to other points of interest or even different plant diseases and stress responses.
It is noteworthy that, the ERICA dataset can be utilized for the identification of healthy



Drones 2022, 6, 3 11 of 12

leaves, healthy branches, and healthy trunks not only in sweet cherry trees but in other
perennial species as well.
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