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Abstract: Evolutionary Algorithms (EAs) based Unmanned Aerial Vehicle (UAV) path planners have
been extensively studied for their effectiveness and high concurrency. However, when there are
many obstacles, the path can easily violate constraints during the evolutionary process. Even if a
single waypoint causes a few constraint violations, the algorithm will discard these solutions. In this
paper, path planning is constructed as a multi-objective optimization problem with constraints in a
three-dimensional terrain scenario. To solve this problem in an effective way, this paper proposes an
evolutionary algorithm based on multi-level constraint processing (ANSGA-III-PPS) to plan the short-
est collision-free flight path of a gliding UAV. The proposed algorithm uses an adaptive constraint
processing mechanism to improve different path constraints in a three-dimensional environment and
uses an improved adaptive non-dominated sorting genetic algorithm (third edition—ANSGA-III) to
enhance the algorithm’s path planning ability in a complex environment. The experimental results
show that compared with the other four algorithms, ANSGA-III-PPS achieves the best solution
performance. This not only validates the effect of the proposed algorithm, but also enriches and
improves the research results of UAV path planning.

Keywords: unmanned aerial vehicle (UAV); constrained multi-objective optimization problems
(CMOPs); multi-objective optimization; evolutionary algorithm; constrained optimization

1. Introduction

In past decades, with the increasing maturity of UAV technology, the application
scenarios of UAVs have diversified, including logistics, communications, rescue, military,
and other fields. Autonomous path planning of UAVs has become a research hotspot [1–4].
The main goal of this problem is to find the optimal flight path between the source and
destination without colliding with any no-fly zone or obstacle in the environment [5].

A significant difference between UAV path planning and general path planning is
that the UAV path search space is a three-dimensional space, which makes the search
range larger and the solution more difficult. In research, the UAV path planning problem
has attracted a large number of optimization applications. Recently reported by Qu
et al. [6], proposed a multi-strategy combination evolutionary algorithm. They analyzed
the characteristics of each main link in the UAV path planning process and proposed
optimization strategies such as length operation and smooth operation, which improved
the quality of the solution. The author of [7] proposed the rotation transformation of
the Cartesian coordinate system to enhance its local modification ability and divide the
entire search space into multiple subspaces to reduce the scope of the search space. At
the same time, they designed a path planner estimation method based on distributed
algorithm (EDA). The author of [8] studied the obstacle processing strategy in the UAV
path planning process, emphasizing the processing of the dimension of height. A multi-
objective integer programming model of UAV flight path was proposed by establishing a
mathematical model through three-dimensional grid cells. The author of [9] proposed an
algorithm based on the clustering idea, which divides the region of waypoints of different

Drones 2021, 5, 144. https://doi.org/10.3390/drones5040144 https://www.mdpi.com/journal/drones

https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-2430-8486
https://orcid.org/0000-0002-5466-7092
https://orcid.org/0000-0003-4404-901X
https://doi.org/10.3390/drones5040144
https://doi.org/10.3390/drones5040144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/drones5040144
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones5040144?type=check_update&version=2


Drones 2021, 5, 144 2 of 26

individuals through clustering and obtains the approximate optimal waypoint of UAV so
as to guide the generation of offspring. In [10,11], the authors studied the characteristics of
the evolutionary algorithm (EA), analyzed the main problems in evolutionary algorithm
path planning, and established an evaluation system for a single path point.

The UAV path planning problem is a typical constrained optimization problem. How-
ever, there has been relatively little research on constraint strategies in UAV path planning.
In the problem of UAV flight path planning, there are two situations that violate constraints.
One is caused by a single waypoint constraint violation, and the other is caused by a path
segment. Therefore, when the evolutionary algorithm is used to solve the path planning
problem, even if the fitness of a single waypoint is good and the constraint conditions
are met, the path segment composed of these waypoints may be an infeasible solution.
Reference [12] proposed an improved differential evolution algorithm (MOEAD) to re-
alize UAV path planning, where the feasible solution superiority mechanism similar to
that in [13] is adopted to solve the constraint problem of UAV. Reference [14], the author
proposed an algorithm combining simulated annealing and genetic algorithm(GA) to carry
out path planning. In reference [15], the author proposes a hybrid path planning (HPP)
algorithm to efficiently collect data by ensuring the shortest collision-free path for UAVs
in emergency situations. The HPP algorithm first uses the probabilistic roadmap method
to get the shortest collision-free route and then uses the improved artificial bee colony
algorithm to dynamically optimize the collision constraints.

When planning a route for a UAV, many important factors need to be considered,
such as the dynamics of the drone, the environment of the mission space, the safety
and cost of the route. These factors either exist as an objective function that needs to be
maximized/minimized, or as constraints that the path must comply with. In the past,
researchers are committed to establishing evaluation criteria based on single-path optimiza-
tion goals or constraint goals and emphasize the optimization of a single path in generation
strategies. However, in UAV path planning, neither the emphasis on the optimization of
the objective functions nor the optimization of the constraints can guarantee that the whole
path segment, composed of single favorable path points, will be advantageous. In this
paper, we present a multi-stage UAV path planning algorithm to solve the above problems.
We divide the path planning process into two stages. In the first stage, local optimal paths
with a few constraints are generated, and then in the second stage, these local optimal paths
are optimized to get a global optimal path that satisfies all constraints. Aiming at different
stages of the algorithm, an improved targeted mutation strategy enhances the algorithm’s
ability to jump out of constrained regions and search in narrow feasible regions.

The rest of this article is organized as follows. In Section 2, the UAV path planning
model and the details of the proposed ANSGA-III-PPS are described. Then, the proposed
algorithm’s performance is evaluated via computer simulation and compared with the
other four algorithms in Section 3. In Section 4, the experimental results and the differences
between the proposed algorithm and the comparison algorithm are analyzed. Finally,
Section 5 summarizes the article.

2. Multi-Stage Constrained Optimization Algorithm for UAV Path Planning

This section provides a multi-stage constrained optimization method for UAV path
planning. In the following subsections, we first formally state the problem of interest and
then introduce our method in detail.

2.1. Problem Statement

In recent years, UAVs have been widely applied in various disaster relief applications,
such as detecting disaster situations, placing supplies, assisting in rescue operations, and
so on. When performing rescue missions, these UAVs should be deployed to the disaster
site as soon as possible. This means that the shorter the flight path of the UAVs, the better.
On the other hand, when performing reconnaissance missions, these UAVs should keep
flying as low as possible to get more accurate information. However, there are many
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challenges in the mission environment, such as mountains and no-fly zones. They pose
an enormous threat to the safety and maneuverability of UAVs. Therefore, in the lock
of decision-makers’ preference information, the goal of path planning is to minimize
the flight distance and flight height while satisfying the UAV’s dynamic constraints and
mission environment constraints. It can be considered that this problem is a constrained
multi-objective optimization problem, which can be mathematically defined as

Minimize F(x∗) = ( f1(x), . . . , fm(x))
gi(x) ≤ 0, i = 1, . . . , p
hj(x) = 0, j = 1, . . . , q

x ∈ Ω.

(1)

In Formula (1), x = (x1, . . . , xD) is the solution consisting of D decision variables, Ω is
the decision space, x∗ is the pareto optimal set, F = ( f1, . . . , fm) is the objective function
and M is the number of objectives. gi(x) and hj(x) are inequality and equality constraints,
p and q represent the number of inequalities and equality constraints, respectively.

In the UAV path planning problem, obstacles can only be dealt with by going around
or flying over them, while gliding drones usually require a certain distance and time to
change direction, which makes it more difficult to solve the path optimization problem of
gliding drones. Therefore, this paper proposes a multi-objective optimization algorithm
to solve the path planning problem of gliding UAVs in a multi-obstacle environment.
Specifically, the resulting flight trajectory must satisfy the following constraints: (1) The
flight path is safe and feasible, one is to prohibit drones from colliding with terrain obstacles.
Second, it is not allowed to enter the no-fly zone. Finally, the drone maintains a minimum
flight distance from the ground. (2) The dynamic index of gliding drone must be met.
According to the characteristics of the gliding UAV, the dynamic indicators include the
maximum turning angle, the maximum climb angle and the shortest commutation distance.

Under the premise of satisfying the above constraints, the path must be optimized
as much as possible. The objective of optimization is to make the path shorter and the
height fluctuation smaller. We first introduce the basic terrain features of the mission space
environment and the representation method of the UAV flight path, to clearly describe the
mathematical model established for the proposed problem.

2.1.1. Representation of Terrain and Route

The terrain environment is constructed using the inertial reference system OXYZ,
which consists of two parts: the mountain topography and the no-fly zone. The no-fly
zone can be represented by a cylinder, and the mountain topography is generated by the
equivalent digital map proposed in [16], which can more truly reflect the threat range of
the terrain. First, the original digital terrain is generated by Formula (2).

h1(x, y) = sin(y÷ 180 + 1.5× π) + 0.1× sin(x÷ 16) + 0.9× cos(0.3×median) + 0.01× sin(0.01×median)+
0.3× cos(y÷ 36).

(2)

h1(x, y) represents the height of the terrain corresponding to the point (x, y), where

the median =
√
((x÷ 16)2 + (y÷ 36)2)÷ 5.

Then, in order to reflect the terrain slope of the mountain, the mountain topography is
generated by Formula (3).

h2(x, y) = ∑K
k=1 h(K)× exp(−(x− o1(K))

2 ÷ L1(K)−
(

y− o2(K))2 ÷ L2(K)
)

. (3)

In Formula (3), h2(x, y) represents the height of the peak corresponding to the point
(x, y), K represents the number of mountain peaks, h(K) is the highest height of the Kth
peak, (o1(K), o2(K)) is the horizontal coordinate of the center of the Kth peak, and L1(K)
and L2(K) control the contour of the Kth peak.
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Finally, the terrain threat equivalent map is fused with the original digital terrain to
generate an equivalent digital map by Formula (4).

Map(x, y) = max(h1(x, y), h2(x, y)). (4)

In this paper, a coding method similar to the traveling salesman problem is used
to represent the flight path. In a population of size N, the track of each individual is
represented by a sequence of waypoints, and the number of waypoints is set as Nw.

Xi =
(

xs, ys, zs, . . . , xj, yj, zj, . . . , xe, ye, ze
)
, xj ∈ [0, Xmax], yj ∈ [0, Ymax], zj ∈ [0, Zmax], i = 1 . . . N, j = 1 . . . Nw

where Xi is the path of the ith individual in the population; s and e represent the starting
point and end point of the track, respectively; j is the number of the waypoint in a single
flight path; and

(
xj, yj, zj

)
is the coordinate value of the jth waypoint.

It should be noted that the mission environment of the UAV path planning problem is
a continuous space. Therefore, in the solution process, Nm sampling points are uniformly
selected on the linear trajectory of the two waypoints to detect the position information.
As shown in Figure 1, when the position information of Nm points does not collide with
obstacles, the feasibility of the trajectory can be ensured [11].
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Figure 1. Examples of sampling points to detect no-fly zones (Nm = 5).

2.1.2. Objective Functions and Performance Constraints

According to the problem description in Section 2.1, we constructed 2 objective func-
tions and 5 constraint functions, and the design of each function is as follows:

• Objective Functions

1 Minimum length

min f1 =
∑Nw

j=2

√
(xj − xj−1)

2 + (yj − yj−1)
2 + (zj − zj−1)

2√
(xe − xs)

2 + (ye − ys)
2 + (ze − zs)

2
. (5)

The path of each individual in the population is represented by a sequence of waypoints
(Nw indicates the number of path points), so the objective function, f1 (distance function), is
the ratio of the Euclidean distance of all waypoints to the straight-line distance from the start
point to the end point. The smaller the ratio, the closer it is to the shortest distance.
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2. Minimum flying altitude

min f2 =
∑Nw

j=2 ∑Nm
m=1 max(pzj,m−hj,m ,0)

(Nw−1)×Nm

pxj,m = xj−1 +
m

Nm
×
(
xj − xj−1

)
, m = 2 . . . Nm − 1

pyj,m = yj−1 +
m

Nm
×
(
yj − yj−1

)
, m = 2 . . . Nm − 1

pzj,m = zj−1 +
m

Nm
×
(
zj − zj−1

)
, m = 2 . . . Nm − 1

hj,m = map
(

pxj,m, pyj,m
)
.

(6)

The objective function f2 is an altitude function, and pxj,m is the X-axis value of the
mth sampling point on the segment between (j−1)th and jth waypoint. Similarly, we can cal-
culate the Y-axis and Z-axis values of each sampling point. In particular,

(
pxj,1, pyj,1, pzj,1

)
and

(
pxj,Nm , pyj,Nm , pzj,Nm

)
are the values of (j−1)th and jth waypoint, respectively. hj,m is

the map height of the mth sampling point. The smaller the ratio of the objective function
f2, the lower the flight altitude of the entire flight path.

• Constraint Functions

1. Angle constraint

g1 =
Nw−1

∑
j=2

c1
j

c1
j =

{
0 , θj < θmax

cos(θmax)−cos(θj)

cos(θmax)−cos(180◦) , otherwise

θj = arccos (xj−xj−1,yj−yj−1)·(xj+1−xj ,yj+1−yj)
||(xj−xj−1,yj−yj−1) ||× ||(xj+1−xj ,yj+1−yj) ||

.

(7)

where θmax is the predetermined upper limit of the turning angle, θj is the turning angle at
the jth waypoint, and the ||x ||means the norm of vector x.

2. Climbing angle constraint

g2 =
Nw
∑

j=2
c2

j

c2
j =

{
0 , αj < αmax

1− tan(αmax)
tan(αj)

, otherwise

αj = arccos |zj−zj−1|
||(xj−xj−1,yj−yj−1) ||

.

(8)

Here, αj is the climb angle of the jth waypoint; when αj is greater than the predeter-
mined maximum climb angle αmax, the constraint is recorded as constraint c2

j .

3. Obstacle avoidance constraints

g3 =
Nw
∑

j=2
c3

j

c3
j =

∑Nm
m=1 c3

j,m
cn(j)

c3
j,m =

{
0 , pzj,m − hj,m < hmin

1− pzj,m
hj,m+hmin

, otherwise .

(9)

The calculation of pzj,m and hj,m is the same as shown in Formula (6); when the
vertical distance between pzj,m and the terrain height hj,m, is less than the safe flight height
hmin, the mth sampling point violates the obstacle avoidance constraint c3

j,m. Where cn(j) is

the number of sampling points that violate constraint c3
j,m.

4. Minimum flight distance constraint
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g4 =
Nw
∑

j=2
c4

j

c4
j =

{
0 , dj > Lmin

1− dj
Lmin

, otherwise

dj =
√
(xj − xj−1)

2 + (yj − yj−1)
2 + (zj − zj−1)

2.

(10)

The gliding drone needs the minimum distance Lmin to adjust height or angle. When
the distance between two adjacent waypoints is less than the shortest flight distance, the
violation value is denoted as c4

j .

5. No-fly zone restrictions

g5 =
Nw−1

∑
j=2

c5
j

c5
j =

∑Nm
m=1 c5

j,m
cn(j)

c5
j,m =

{
0 , ptj,m,i < ri, i = 1 . . . k

ptj,m,i
ri

; otherwise

ptj,m,i =
√
(pxj,m − txi)

2 + (pyj,m − tyi)
2.

(11)

(txk, tyk, hmax, rk) contains all the information of the no-fly zone, where (txk, tyk) rep-
resents the bottom center coordinates of the kth no-fly zone, hmax represents the maximum
altitude of the mission environment (the no-fly zone cannot be overflown), and rk is the
detection radius of the kth no-fly zone. In Formula (11), ptj,m,i is the Euclidean distance
between the sampling point

(
pxj,m, pyj,m

)
and the no-fly zone coordinate point (txk, tyk).

• Overall constraint violation

CV(x) =
G

∑
i=1

gi (12)

To deal with a set of constraints in CMOPs, the overall constraint violation is a widely
used approach, which summarizes the violations into a single scalar. The overall constraint
violation calculation method is given in Formula (12). Where CV(x) is the overall constraint
violation of individual x, gi is the violation value of the ith inequality constraint, and G is
the total number of all inequality constraints.

2.2. The Proposed Algorithm

Evolutionary algorithms (EAs) follow a similar framework. First, initialize the popula-
tion. When the termination condition is not met, the generation strategy is used to generate
new individuals according to the current population information in each iteration. Second,
the constraint processing strategy is used to combine the constraint violation value and
individual fitness to form individual advantage. Finally, the dominant individuals are
selected through the environmental selection mechanism to form the next generation popu-
lation. The generation operation and retention operation are repeated until the termination
condition is satisfied, and the last generation population is output as the optimal solution.
Therefore, identifying and producing excellent individuals in each generation is a decisive
factor in obtaining the optimal solution.

In this paper, the multi-stage constraint processing framework of push-pull search
(PPS) and adaptive reference point selection mechanism are used to enhance the ability
to identify dominant individuals. On the other hand, a generation strategy combining
crossover mechanisms with an improved targeted mutation method to enhances the ability
to produce offspring within a narrow feasible region. The pseudocode of ANSGA-III-PPS
is presented in Algorithm 1. To introduce the proposed algorithm in detail, each key
component is described one by one in this section.
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Algorithm 1 ANSGA-III-PPS

Input: N: the number of population; Tmax: the maximum generation; Tc: maximum relaxation
control generation; Nw: the max number of track points; Pl : the local mutation rate;
Output: PTmax: a set of feasible non-dominated solutions;
1 Initialization:
2 Set the parameters;
3 Initialize the population

P = (X1 , . . . , XN ), X = (w1 , w2 , . . . , wNw ), wi = (xi , yi , zi );
4 zs ← Initialize reference point;
5 ldistance ← The distance between two reference points;
6 Evaluation (p) according to the objective function and constraint function;
7 q3, q5 ← Create two two-dimensional arrays;
8 PushStage = True;
9 while T ≤ Tmax do
10 z(T) = Min( f (X)); // update ideal point at kth generation;
11 n(T) = Max( f (X)); // update nadir point at kth generation;
12 for X to P do
13 CV(X)← Calculate the total value of constraint violations according to Equation (12);
14 end
15 r f (PT)← Calculate the proportion of feasible solutions in population PT ;
16 ε(k), PushStage = Update constraint threshold(PT , CV, r f (PT), PushStage, z, n, Tc, T);
17 p = O f f spring generation (PT , Pl , PushStage);
18 Evaluation (p) according to the objective function and constraint function;
19 q3, q5 ← Update array members;
20 RT = [PT ; p];
21 Za ← update the desired points;
22 PT+1 = EnvironmentalSelection(RT , ε(k), PushStage, Zs , Za);
23 Zs = Updatepoints(PT+1, Zs , ldistance);
24 end

2.2.1. Multi-Stage Constraint Processing Strategy

The original PPS framework divides the solution process into two stages, namely the
push search stage and the pull search stage [17]. In the push search stage, the population
only retains those individuals with superior fitness, and the constrained optimization
problem is transformed into an unconstrained problem. In the pull search stage, a relaxation
constraint mechanism similar to progressive barrier (PB) approach is used to balance the
relationship between optimization goals and constraints [18]. However, there are two
differences involving the PB method. First, in terms of the initial setting of the relaxation
constraint, the PPS framework replaces the fixed threshold setting in PB with an adaptive
method. At the end of the push search stage, the largest overall constraint violation CV(x)
among all individuals who violated the constraints in the population is selected as the
initial relaxation constraint. Second, the PPS framework can be applied to any evolutionary
algorithm almost without any changes.

Since the obstacles in the no-fly zone can only be evaded via bypassing, this has caused
the no-fly zone constraints to seriously affect the path planning effect of the gliding UAV.
Therefore, this paper does not adopt the unconstrained optimization idea in the original
PPS framework in the push search stage, but comprehensively considers the individual’s
fitness and no-fly zone constraints to select the individual.

The constraint processing method of the push search stage used in this article is shown
in Figure 2, where the circle is the no-fly zone, the triangle is the terrain obstacle, and the
black cross is the path point position. At the end of the push search stage, the waypoints
that violate the no-fly zone restrictions are eliminated, but the waypoints (red squares)
that violate the terrain restrictions still exist. Since the influence of other constraints on the
flight path is not considered, the search space will be reduced to the local optimal area.
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(b) End of the push search phase.

The core of the PPS framework comprises two parts: the strategy of switching search
behavior and the updating method of relaxation constraint.

• Switch search behavior strategy

The main idea of switching the search behavior strategy is to calculate the max rate of
change between the ideal and nadir points during the last l generations.

rk ≡ max{zk, nk} ≤ δ. (13)

In Formula (13), rk represents the max rate of change, and δ is the parameter of the
maximum rate of change, which is a minimum value defined by the user.

zk = max
i=1,...,m

|zk
i−zk−l

i |
max{|zk−1

i |,∆ }
, zk

i = minj=1,...,N fi
(
xj)

nk = max
i=1,...,m

|nk
i−nk−l

i |
max{|nk−1

i |,∆}
, nk

i = maxj=1,...,N fi
(
xj). (14)

In Formula (14), the calculation method of change rate is given. where zk =
(

zk
1, . . . , zk

m

)
,

nk =
(

nk
1, . . . , nk

m

)
are the ideal and nadir points in the kth generation, N is population size,

and the ideal and nadir points in the (k− l)th generation are denoted as zk−l
i and nk−l

i . ∆ is
a very small positive number used to avoid dividing by zero. In each generation after the l
generation, rk is update according to Formula (14). If rk is less than or equal to the parameter
δ, the search behavior is switched to the pull search.

• Update method of relaxation constraint

ε(T) =

{
(1− τ)ε(T − 1), r fT < α

ε(0)(1− T
Tc
)

cp
, r fT ≥ α.

(15)

The update method of the relaxation constraint ε(T) is listed in Formula (15), r fT
represents the ratio of feasible and infeasible solutions in the Tth generation, and α is to
control the searching preference between the feasible and infeasible regions (α ∈ [0, 1]).
Different from other relaxation constraint mechanism design, two control parameters τ
and cp are introduced to control the speed of reducing the relaxation of constraints for
different feasible solution ratios in Formula (15), which can help to find feasible solutions
more quickly and efficiently. Tc is the preset maximum relaxation generation, which is
used to control the time when the relaxation constraint is reduced to zero.

In the push search stage, the relaxation constraint ε(T) is set to 0, and only when the
individual’s no-fly zone constraint is greater than ε(T), the individual will be identified as
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an infeasible solution. However, in the pull search stage, Formula (15) is used to update
the relaxation constraint ε(T), and given a solution x, if CV(x) ≤ ε(T), x is feasible. For all
infeasible solutions, additional operations are performed in the environmental selection
mechanism to determine whether they can enter the next generation.

The pseudocode of the switch search behavior strategy and the update method of
relaxation constraint is introduced in Algorithm 2.

Algorithm 2 Update constraint threshold

Input: PT : Population of the current generation; CV: The total value of constraint violations of
the Current iteration; r f (PT): The proportion of feasible solutions in population PT ; PushStage:
Phase transition flag; z: Minimum fitness set for each generation; n: Maximum fitness set for each
generation; TC: The maximum relaxation iteration; T: Current iteration number;
Output: ε(k): Constraint threshold for the Tth generation; PushStage: Phase transition flag;
1 Initialization:
2 Set the parameters;
3 if T > l then
4 rT ← Calculate the maximum rate of change according to Equation (13);
5 else
6 rT = 1;
7 end
8 if T < Tc then
9 if rT < and PushStage == True then
10 PushStage = False;
11 ε(k) = ε(0) = max(CV);
12 end
13 if PushStage == False then
14 ε(k)← Update the constraint threshold according to Equation (15);
15 end
16 else
17 ε(k) = 0;
18 end

In the line 2 of Algorithm 2, the relevant parameters (such as τ, etc.) required in
Formula (15) are configured, and these parameters do not change with the running of the
program. From lines 3 to 7, rk is updated only if the current generation is greater than l.

2.2.2. Offspring Generation Strategy

In terms of the generation strategy of the offspring, we retain the original idea of
the ANSGA-III algorithm, the crossover operation is the main method, and the mutation
operation is supplement. We directly adopted the single-point crossover method, focusing
on improving the mutation operation, which helps to transmit the characteristics of the
dominant path segment to the offspring to obtain a better solution.

In [19], the author proposed a targeted mutation (TM) strategy, and the global optimal
solution is used as the basis vector to enhance the search ability of the algorithm in the
direction of the global optimal solution. Based on the targeted mutation strategy, this paper
proposes a preference point mutation strategy to solve the UAV path planning problem.

x′ i,j = xp + F×
(
xr − xi,j

)
y′ i,j = yp + F×

(
yr − yi,j

)
z′ i,j = map

(
x′i,j, y′i,j

)
+ hmin

(16)

In Formula (16),
(

x′ i,j, y′ i,j, z′ i,j
)

is the new coordinate information after the jth path

point mutation of the ith individual in the population, where
(

xp, yp
)

is the coordinate
information of the preference point, (xr, yr) is the information of the jth waypoint in an-
other individual randomly selected from the population, and F is the variation factor. In
particular, the value of z′ i,j is determined by the terrain height at coordinates

(
x′ i,j, y′ i,j

)
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plus the minimum safe flight altitude. This means that in the subsequent stage of envi-
ronmental selection, individuals with good performance on the X-axis and Y-axis will be
preferentially retained, thereby reducing the complexity of the problem.

Regarding the generation of preference points, we propose three methods: preference
points based on straight lines, preference points based on no-fly zones, and preference
points based on mountain terrain.

1. Preference points based on lines

The point of view based on the lines reference point is to find a new point as a
preference point on the straight line connecting two adjacent path points. Based on the
characteristics of targeted mutation, the newly generated offspring will be located near
this preference point. In an ideal situation, the newly generated path points will form a
straight line with the adjacent path points, which not only helps to optimize f1 and f2, but
also effectively solves the dynamic constraints of the UAV. Because the gliding UAV has
the limitation of the minimum steering distance, we chose the middle point of the straight
line as the preference point, which is easier to implement. As shown in Figure 3, when the
mutation operation is performed on point B, B′ will be selected as a preference point. The
calculation method is given in Formula (17).

xp =
xi,j−1+xi,j+1

2
yp =

yi,j−1+yi,j+1
2

(17)
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2. Preference points based on no-fly zones

When waypoint
(
xi,j, yi,j, zi,j

)
violates the Kth no-fly zone restriction, there will be three

situations: (1) There is only one individual l1 in the population whose jth waypoint point
satisfies the kth no-fly zone constraint, then

(
xl1,j, yl1,j, zl1,j

)
is selected as the preference

point. (2) There are multiple individuals in the population whose jth waypoint satisfies the
kth no-fly zone constraint, then randomly select an individual l2 from these individuals, and(

xl2,j, yl2,j, zl2,j

)
is selected as the preference point. (3) If all individuals in the population

violate the kth no-fly zone constraint, Formula (18) is used to generate the preference point.
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i f rand > 0.5
xp = xk + rk × cos(N(0, 1)× θi,j,k)
yp = yk + rk × sin(N(0, 1)× θi,j,k)
else
xp = xk + rk × cos(π + N(0, 1)× θi,j,k)

yp = yk + rk × sin(π + N(0, 1)× θi,j,k).

(18)

where θi,j,k is the angle between point
(
xi,j, yi,j, zi,j

)
and the diameter of the kth no-fly zone.

N(0, 1) is the standard normal distribution. As shown in Figure 4, the preference point will
be distributed in the alternative region.
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3. Preference points based on terrain

The method of selecting preference points based on terrain restrictions is similar to that
of no-fly zone preference points. When the jth waypoint of all individuals in the population
violates the terrain constraint, we use Gaussian mutation for waypoint

(
xi,j, yi,j, zi,j

)
to

generate a reference point (as shown in Formula (19)).

xp = xi,j + σi,j × N(0, 1)
yp = yi,j + σi,j × N(0, 1).

(19)

In this section, we propose three reference point selection methods. Obviously, if three
preference point mutations are used at the same time in a targeted mutation operation, the
mutation effects of different preference points will cancel each other out. In the multi-stage
constraint processing framework of this article, a single mutation operation uses only one
method of selecting preference points, and the preference points are selected according to
the following rules:

• In the push search stage, only Formula (17) is used to generate preference points.
• In the pull search stage, if and only if the waypoint

(
xi,j, yi,j, zi,j

)
violates the terrain

constraint or no-fly zone constraint, a preference point is generated according to
Formula (18) or Formula (19). When two constraints are violated, the preference point
based on the no-fly zone is preferred. In other cases, Formula (17) is used to select
preference points.

The pseudocode for the generation strategy is listed in Algorithm 3.
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Algorithm 3 Offspring generation

Input: PT : Population of the current generation; Pl : the Local mutation rate; PushStage: Phase
transition flag;
Output: The offspring p;
1 p← Generate a new offspring population by a Single point crossover operator;
2 q5 ← Update array members;
3 q3 ← Update array members;
4 q′5 = q5; // The backup array of q5
5 q′3 = q3; // The backup array of q3
6 n = Nw × Pl ; // The number of mutations
7 for X to p do
8 for i ← 1 to n do
9 j = randi(2, Nw , 1); // Randomly select a waypoint
10 if PushStage == False and X not in q′5(j) then
11 // Waypoint j violates no-fly zone constraints
12 f lag = 1;
13 xp = Generate preference points

(
q5 , q′5, f lag, j, N

)
;

14 X′(j)← Generate a new solution according to Equation (16);
15 q′5(j) = q′5(j) ∪ X′; // Update array members
16 else
17 if PushStage == False and X not in q′3(j) then
18 // Waypoint j violates terrain constraints
19 f lag = 0;
20 xp = Generate preference points

(
q3 , q′3, f lag, j, N

)
;

21 X′(j)← Generate a new solution according to Equation (16);

22 if z′j > map
(

x′j, y′j
)
+ hmin then

23 q′3(j) = q′3(j) ∪ X′; // Update array members
24 end
25 else
26 xp ← Calculate the preference point according to Equation (17);
27 X′(j)← Generate a new solution according to Equation (16);
28 end
29 end
30 end
31 end

In line 7 of Algorithm 1, when calculating the objective function and constraint
function of the population, we create two two-dimensional arrays q3 and q5. In array q3,
the waypoints that meet the no-fly zone constraint are used as indexes, and individual
serial numbers are used as array members. In the array q5, the waypoints satisfying the
terrain constraint are used as indexes. In line 10 of Algorithm 3, the selection method of the
reference point can be quickly determined according to the created array. Assuming that the
5th, 7th and 10th individuals in the population, the 10th waypoint and the 15th waypoint
of these individuals satisfy the constraint functions c3

10 = 0 and c5
16 = 0 respectively, then

the two arrays of q3 and q5 are represented as q3(15) = {5, 7, 10} and q5(16) = {5, 7, 10}.
In line 1 of Algorithm 3, a single-point crossover method is used to generate the offspring
population. Since the crossover operation does not change the value of the waypoint, it is
unnecessary to recalculate the constraint function of the new individual when updating
q3 and q5. At lines 4–5, we created two backup arrays for q3 and q5. In the subsequent
mutation operation, individuals in the two arrays q3 and q5 will be preferentially selected
as reference points. In line 15 of Algorithm 4, we add new individuals that satisfy the
constraints to the backup array instead of the original array. The reason for this is that
the new waypoint meets the constraints, but there is no guarantee that the path segment
containing the new waypoint meets the constraints. In the line 4 of Algorithm 4, as the
number of individuals in the backup array increases, the newly generated individuals will
also be selected as reference points to avoid the loss of selection pressure in the population.
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Algorithm 4 Generate preference points

Input: q: A array of individuals satisfying constraints; q′: Backup array of q; j: The sequence
number of the waypoint for the mutation operation; N: The size of population; f lag: The flag of
Constraint;
Output: xp:Generated reference point;
1 if f lag == 1 then
2 // Choose preference points based on no-fly zones
3 if size(q(j)) == 0 then
4 if rand < exp(−3× size(q′(j))÷ N)) then
5 xp ← Randomly select an individual from q′(j) as a reference point;
6 else
7 xp ← Calculate the preference point according to Equation (18);
8 end
9 else
10 xp—Randomly select an individual from q(j) as a reference point;
11 end
12 else
13 if size(q(j)) == 0 then
14 // Choose preference points based on terrain
15 if rand < exp(−3× size(q′(j))÷ N)) then
16 xp ← Randomly select an individual from q′(j);
17 else
18 xp ← Calculate the preference point according to Equation (19);
19 end
20 else
21 xp ← Randomly select an individual from q′(j) as a reference point;
22 end
23 end

2.2.3. Environmental Selection

The proposed algorithm adopts the same environment selection strategy based on
adaptive reference point as the ANSGA-III algorithm [13]. Algorithm 5 shows the pseu-
docode of environment selection.

At lines 1 to 14 of Algorithm 5, the principle of feasibility advantage is embedded in
Pareto advantage. Specifically, a solution x1 is said to constraint-dominate x2, if: (1) x1 is
feasible but x2 is not; (2) x1 and x2 are both infeasible and CV(x1) < CV(x2); (3) or both of
them are feasible and x1 ≺Pareto x2.

The detailed technology of ANSGA-III based on the adaptive reference point selection
mechanism can be found in the corresponding references, namely [13,20]. In this section,
this paper briefly describes the principles of environmental selection operations.

In line 14 of Algorithm 5, after the non-dominated solution sorting of the combined
population Rt (having 2N individuals), all individuals will be assigned to different non-
dominated levels (F1, F2, and so on). Next, all individuals in level 1 to l are added to St.
If St = N; no other actions are required and the next generation is started with Pt+1 = St.

For St > N, the individuals in level 1 to l − 1 have been chosen, Pt+1 =
l−1⋃
i=1

Fi, and the

rest (K = N − |Pt+1|) individuals are selected from the last front Fl . After that, normalize
the fitness of all individuals in St to construct a hyperplane. The reference points whose
reference line is nearest to an individual will be associated with the individual. Since
the reference points are evenly distributed, when individuals in the new population can
be associated with as many reference points as possible, the new population Pt+1 has
better diversity.
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Algorithm 5 Environmental Selection

Input: RT : New population composed of offspring population and parent population; ε(k):
Population of the current generation; Zs: Reference points; Za: Desired points; PushStage: Phase
transition flag;
Output: PT+1;
1 fmax ←Maximum fitness of all individuals in Rt;
2 for X to RT do
3 CV(X)← Calculate the total value of constraint violations according to Equation (12);
4 if PushStage == True then
5 // Judgment of no-fly zone restrictions
6 if g5(X) > ε(k) then
7 f (X) = CV(X) + fmax; // X is an infeasible solution
8 end
9 else
10 if CV (X) > ε(k) then
11 f (X) = CV(X) + fmax; // X is an infeasible solution
12 end
13 end
14 end
15 (F1 , F2, . . .) = non-dominated-sort (Rt);
16 St = ∅, i = 1;
17 while St < N do
18 St = St ∪ Fi and i = i + 1;
19 end
20 if |St| = N then
21 Pt+1 = St;
22 else

23 Pt+1 =
l−1⋃
j=1

Fj;

24 Points to be selected from Fl : K = N − |Pt+1|;
25 Zr ← Normalize objectives and generate reference set;
26 Associate each individual s of St with a reference point;
27 ρ(j)← Calculate niche count of reference point j ∈ Zr;
28 PT+1 ← Select K individuals one at a time from Fl to generate Pt+1;
29 end

NSGA-III requires a set of reference points to be supplied before the algorithm can
be applied. A reference line for each reference point can be defined as a line joining the
origin and the reference point.in many constrained or even unconstrained problems, not
every extended reference line may intersect with the Pareto-optimal front. Thus, there will
be some reference points with no Pareto-optimal point associated with them, while others
will have more than one point associated with them; hence, NSGA-III may not end up
distributing all population members uniformly over the entire Pareto-optimal front. This
paper uses the adaptive update reference point mechanism of the ANSGA-III algorithm,
and the pseudocode of this mechanism is listed in Algorithm 6. For an M-dimensional
constraint problem, at line 1 of Algorithm 6, after creating new population Pt+1, associate
the individuals in the Pt+1 with the reference point again. In line 5 of Algorithm 1, the
distance L between two reference points is calculated. At line 4 of Algorithm 6, find out the
reference points associated with over two individuals, and then in the line 9, take these
reference points as the center and use a fixed distance L/2 to generate M new reference
points. After that, delete new reference points that are not in the first quadrant or that are
repeated (line 9 and line 14 in Algorithm 6). Finally, delete the new reference point that is
not associated with any individual (line 20 in Algorithm 6).
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Algorithm 6 Update points

Input: PT+1; Zs: Structured points; ldistance : The distance between two reference points;
Output: Zs: New reference points;
1 ρ← Associate each individual s of PT+1 with a reference point;
2 Ztemp = ∅;
3 P′ ← The set of reference points where ρ > 2 in the set zs;
4 while size(P′) 6= 0 and Ztemp 6= Zs do
5 Ztemp = Zs;
6 for i to P′ do
7 for j to M do
8 p(j)← Generate a new reference point with reference point j as the center;
9 if p(j) > 0 then
10 Zs = [Zs; p(j)];
11 end
12 end
13 end
14 Zs ← Delete the repeated reference points in Zs;
15 ρ ← Update the association of the new reference points Zs;
16 P′ ← Update set P′;
17 end
18 for i = N + 1 to Size(Zs) do
19 if ρ(i) == 0 then
20 Remove reference point i from set Zs;
21 end
22 end

2.2.4. Computational Complexity of One Generation of ANSGA-III-PPS

We are given that the population size of the algorithm is N, the number of objectives is
M, the number of constraints is considered to be G, and the number of reference points is H.
The computational complexity of the objective function and constraint evaluation (line 6 in
Algorithm 1) is O((M + G)× N). Calculate the total value of constraint violations in line
12 of Algorithm 1 requires a total of O(N) computations. Identification of the ideal point
and nadir point from lines 10 to 11 of Algorithm 1 requires a total of O(MN) computations.
The computational complexity of update relaxation constraint is O(1), while the offspring
generation is O(N). Identification of the infeasible solutions in Algorithm 5 requires a total
of O(N) computations. The overall worst-case complexity of one generation of NSGA-III is
O
(

N2logM−2N
)

or O
(

N2M
)
, whichever is larger [20]. Line 4 of Algorithm 6 in the worst

case requires O
(

H2M
)

computations. In all of our simulations, we have used N ≈ H,
N > G and N > M. As a result, the overall computational complexity of ANSGA-III-PPS
can be further simplified to O

(
N2logM−2N

)
.

3. Results

In this section, in order to verify the actual capabilities of the proposed algorithm,
the proposed algorithm (ANSGA-III-PPS) needs to deal with different obstacle scenarios.
We set up three increasingly difficult simulation scenarios. The crucial difference is that
the number and range of no-fly zones in each scene were increasing. In each scenario,
ANSGA-III-PPS was compared with comparison algorithms with unique characteristics to
prove the effectiveness of the three improvement mechanisms proposed in this article. In
our performance study, all the path planning algorithms under evaluation are simulated
using the MATLAB R2020b simulator. All the results are obtained by repeating thirty
times on a windows-10 personal computer with Intel(R) Core I7-9750H 2.6 GHZ CPU and
16 GB memory.
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3.1. Scenario Parameters

In the simulation experiment, a simulation scene with an area of 300 km× 300 km× 1.5 km
was designed, and the UAV flight mission was a one-way flight. Formulas (2)–(4) are used to
generate the terrain threat equivalent map. The original digital terrain parameter settings
are shown in Table 1. In scenario 1, there is no no-fly zone threat, and the search space is
large. The optimization ability of the algorithm on the objective function and the processing
ability to constraints (flight dynamics constraints and terrain obstacles constraints) were
investigated. Scenario 2 and Scenario 3 use the same terrain threat equivalent map as
Scenario 1, except that the number of no-fly zones is changed (see Table 2).

Table 1. Topographic obstacle parameter.

Number h O1 O2 L1 L2

1 0.7 50 60 140 20
2 1.75 160 100 170 230
3 1.8 70 30 170 150
4 2.34 130 20 160 190
5 2.5 100 160 280 220
6 3.2 100 100 150 280
7 2.5 175 170 280 220

Table 2. No-fly zone parameters.

No Fly Zone Serial
Number

Center Point
Coordinates

Radius of
Influence

Scenario 1
N/A N/A N/A

Scenario 2
1 [100,255,0] 50
2 [240,150,0] 50
3 [100,100,0] 25
4 [225,250,0] 25

Scenario 3
1 [120,240,0] 50
2 [175,75,0] 50
3 [225,250,0] 45
4 [50,175,0] 35
5 [240,150,0] 35
6 [75,60,0] 25
7 [170,170,0] 25
8 [100,100,0] 25

In scenario 2, four no-fly zones were set to limit the search space; in particular, the
search space in the area near the straight path, from the start point to the end point, was
much smaller than that in the other areas. In scenario 3, eight no-fly zone constraints were
set, which further reduced the search space in each area.

3.2. Comparison Algorithms

In order to verify the performance of the proposed algorithm, four representative
algorithms were selected: the original algorithm of PPS framework [17]; the MS algo-
rithm [21,22], based on the idea of multi-stage constrained optimization; the ANSGA-
III [13] algorithm; and the NSGA-II [23] algorithm, based on crowding distance. The
parameters of the comparison algorithm were all set in the original text. The proposed
algorithm parameters and public parameters are shown in Table 3.
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Table 3. Algorithm parameters and Public parameters.

Category

Public parameters

N = 100 Tmax = 500 Nw = 20
Starting point: [1,1,0.5] Destination point: [300,300,1] HV reference point: [3.5,3.5]

Nm = 5 θmax = 60◦ αmax = 30◦

hmin = 0.5 Lmin = 1.5

ANSGA-III-PPS parameters
Tc = 0.6× Tmax δ = 1× 10−1 cp = 2

α = 0.95 τ = 0.1 l = 20
F = 0.5 Pm = 0.5

In order to verify the effectiveness of the multi-stage processing strategy proposed in
this article in UAV problems with many obstacles, we adopted the generation strategy based
on preference points proposed in this article and proposed three varieties of comparison
algorithms according to Formulas (16)–(19), MS-PM, ANSGA-III-PM, and NSGA-II-PM.

3.3. Results

There are various performance indicators, such as generational distance (GD), inverted
generational distance (IGD), and hypervolume (HV), to measure a given multi-objective
evolutionary algorithm (MOEA) [24]. In the UAV path planning problem, the true Pareto
front is unknown, so we use the HV as the performance indicator to evaluate the results of
the simulation experiment. HV measures the volume of the area in the target space enclosed
by the reference point and the non-dominated solution set obtained by the algorithm. The
larger the HV value, the better the diversity and convergence of the algorithm.

HV = δ
(

U|S|i=1vi

)
. (20)

In Formula (20), δ represents the Lebesgue measure, which is used to measure volume.
|S| represents the number of non-dominated solution sets, vi represents the super volume
formed by the reference point and the ith solution in the solution set.

In the problem description in Section 2.1 of this article, we propose to provide a set
of Pareto optimal solutions to meet the diverse needs of decision makers. This means
that it is difficult to determine which solution is the best before obtaining the preference
information of the decision-makers. In this section, in order to objectively reflect the effect
of path planning, we use the knee point method to select representative solutions in the
non-dominated solution set for display [25]. As shown in Figure 5, these knee solutions
are generally characterized as the optimal solutions within the respective regions which
can benefit from significant improvement in some objectives at the cost of insignificant
degradations in the other objectives from a theoretical perspective. Compared with ap-
proaches aggregating weighted objectives into a single fitness function, the knee solutions
reflect the optimal solution more accurately without considering multiple preferences of
decision-makers [26]. The calculation method of knee point is listed in Formula (21).

f′m(xi) =
fm(xi)−

→
Z
∗
m

→
Z

nad

m −
→
Z
∗
m

V(xi) = f′1(xi) + f′2(xi) + . . . + f′M(xi).
(21)
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Suppose that there is a non-dominated solution set with M dimensions and N so-

lutions x1, x2, . . . , x N . The nadir point
→
Z

nad
=
(

Znad
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)
is the maximal

objective value among the non-dominated solution set in the M dimensions. Similarly,
→
Z
∗

is the minimal objective value among the non-dominated solution set in the M dimensions.

Here,
→
Z
∗
m and

→
Z

nad

m are the best and the worst fitness values found among the whole set of
non-dominated solutions in the mth objective space, respectively. For the solution xi in the
non-dominated solution set, when V(xi) is the smallest, the solution xi is selected as the
knee point.

3.3.1. Experimental Results in Scenario 1

In scenario 1, all five comparison algorithms have got feasible solutions, and the
results of the HV indicator are shown in Table 4. The ANSGA-III-PPS algorithm has the
best performance, followed by ANSGA-III-PM, and MS algorithm has the worst results.
The proposed algorithm and the ANSGA-III-PM algorithm have similar optimal values
in scenario 1, but the proposed algorithm has better robustness. In Figure 6, we plot the
path of the knee solution when each algorithm obtains the mean HV value, so that the path
planning results are most intuitively expressed.

Table 4. Algorithm Comparison Results (scenario 1).

Algorithm Best Mean Worst Std

ANSGA-III-PPS 0.7308 0.7273 0.7169 0.0035
PPS 0.6817 0.6625 0.5092 0.0303

ANSGA-III-PM 0.7260 0.6736 0.5910 0.0454
NSGA-II-PM 0.6983 0.6681 0.5948 0.0347

MS-PM 0.6589 0.5749 0.4664 0.0547

In Figure 6, owing to the larger feasible area, ANSGA-III-PPS and ANSGA-III adopt
the same basic framework, and the planned path maintains similar characteristics, but it
can be observed that the main difference lies in the ability to continuously optimize the
path. Several other algorithms use the way of bypassing obstacles to avoid the influence
of terrain constraints. The path height planned by the PPS algorithm varies. In contrast,
NSGA-II-PM is smoother, which is consistent so of the HV value.
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3.3.2. Experimental Results in Scenario 2

For scenario 2, the results are shown in Table 5. In scenario 2 increases the number of
no-fly zones, which makes the constraints more complicated. Obviously, the advantages
of the PPS framework have been reflected. ANSGA-III-PPS has the best performance,
followed by the PPS algorithm. Since the constraints of MS-PM and NSGA-II-PM have
never been satisfied in all 30 runs, the corresponding HV indicators are recorded as N/A.
To the best of our knowledge, the PPS algorithm is the only algorithm that can get feasible
solutions without modification.



Drones 2021, 5, 144 20 of 26

Table 5. Algorithm Comparison Results (scenario 2).

Algorithm Best Mean Worst Std

ANSGA-III-PPS 0.7230 0.7144 0.6518 0.0214
PPS 0.6961 0.6639 0.5892 0.0423

ANSGA-III-PM 0.6502 0.6394 0.6130 0.01
NSGA-II-PM N/A N/A N/A N/A

MS-PM N/A N/A N/A N/A

Figure 7 shows the path planning of the three algorithms.
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3.3.3. Experimental Results in Scenario 3

In scenario 3, only two of the five comparison algorithms have successfully completed
the path planning task. We showed the results in Table 6.

Table 6. Algorithm Comparison Results (scenario 3).

Algorithm Best Mean Worst Std

ANSGA-III-PPS 0.7132 0.7031 0.7011 0.0027
PPS N/A N/A N/A N/A

ANSGA-III-PM 0.6977 0.6650 0.6511 0.0125
NSGA-II-PM N/A N/A N/A N/A

MS-PM N/A N/A N/A N/A

The proposed algorithm is still better than the comparison algorithm in scenario 3. As
shown in Figure 8, even if there is a large no-fly zone near the destination, the proposed
algorithm can effectively avoid it with a smooth path. Comparing the standard deviation
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of the HV value of the ANSGA-III-PPS algorithm in the three scenarios, in scenario 3,
although the obstacles increase, the stability of the ANSGA-III-PPS algorithm is better.
For the ANSGA-III-PM algorithm using the same mutation strategy, the performance of
scenario 3 is also better than scenario 2.
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4. Discussion

In order to further discuss the influence of the various components of the proposed
algorithm, in this section we will analyze the various simulation data obtained in the
previous section, which will help enrich the research results on this issue.

4.1. The Influence of the Multi-Stage Constraint Processing Framework

In terms of constraint processing, we can divide the five comparison algorithms into
two categories. The first category is the synchronization optimization thought represented
by MS-PM. MS-PM is also a multi-stage optimization algorithm, but in the first stage of
the search process, the method of converting constraints into objective functions is used to
achieve the effect of synchronization optimization in the search process.

Other comparison algorithms belong to the second category. They all follow the
principle that feasible solutions dominate infeasible solutions [13]. In the scenario of this
article, this method has a better path optimization effect.

In scenario 2, the PPS framework showed satisfactory results. The PPS framework
represents a method of relaxing constraints, which makes it very different from the ANSGA-
III-PM algorithm for identifying feasible solutions.

ANSGA-III uses a similar extreme barrier (EB) method to determine viable solutions.
This method helps the algorithm to search in the direction of constraint reduction, but
when a feasible solution is found in the population, the individual’s selection pressure
will be reduced, which is not conducive to solving complex constraint problems. This
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strict identification method improves the stability of ANSGA-III in scenarios 2 and 3, but
inevitably loses the ability to further optimize. The strict identification method of feasible
solutions improves the stability of ANSGA-III in scenario 2 and scenario 3, but inevitably,
it also loses the ability to further optimize. In order to better show the difference between
the two recognition methods, Figure 9 shows the path of each stage of ANSGA-III-PPS. For
the convenience of observation, only the paths of the first 10 individuals in each search
behavior stage of the proposed algorithm are drawn.
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In Figure 9a, the path points of the population are randomly distributed in the entire
search space after initialization. As shown in Figure 9b, at the end of the push search
stage, since the preference points based on line (Formula (17)) are selected to guide the
search direction of the algorithm, all path points are distributed near the intermediate
point. In Section 2.2, we proposed strictly limiting the no-fly zone constraints and using
only straight-line-based preference points in the push search stage. The reason is to help
quickly construct a line connecting the start and end points and improve the algorithm’s
search ability in a narrow area. In addition, the no-fly zones were not all in the preferred
point area. As shown in Figure 9b, relying only on the preference points based on lines,
the path has successfully avoided most of the no-fly zones. Even at the end of the push
search stage, there are some waypoints that violate the no-fly zone restrictions, but owing
to the diversity maintenance mechanism, not all waypoints are in the no-fly zone, which
also helps to improve the quality of the final solution.

Compare the paths planned by the ANSGA-III-PPS algorithm and the ANSGA-III-
PM algorithm in Figures 7b and 9c, respectively. They are similar in the first half. In
ANSGA-III-PPS, the relaxation constraint ε(T) > 0. Therefore, even if the path collides
with the mountain centered at [175,170], the constraint violation of this path is small, and
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the objective function has good fitness, so the algorithm kept it as a feasible solution. In
scenario 2, the result of the original PPS algorithm also proved this point.

4.2. The Influence of the Generation Strategy

It is necessary to compare the proposed mutation operator with DE/rand/1 and
DE/rand/best, which are widely used in conventional DE algorithms. The calculation
methods of DE/rand/1 and DE/rand/best are listed in Formulas (22) and (23), respectively.

→
v i =

→
x r1 + F×→x r2 −

→
x r3. (22)

→
v i =

→
x best + F×→x r1 −

→
x r2. (23)

where
→
x r1,

→
x r2,

→
x r3 are three distinct individuals that are randomly selected from the

current population, F is a scale factor, and
→
x best is the best individual in the current

population. In DE/rand/1, the viewpoint of random search is adopted, which helps to
jump out of the local optimum. In DE/rand/best, the search for the best solution direction
is emphasized, which helps to speed up the convergence speed.

To investigate the mechanism behind the proposed mutation operator, a series of
experiments have been performed. The proposed mutation operator is replaced by the
DE/rand/1 and DE/rand/best. The algorithm with DE/rand/1 is named the ANSGA-
III -PPS-DE. In the multi-objective optimization algorithm, we cannot find a true global
optimal solution as the basis vector of the DE/rand/best operator. In the literature [25], a
DE/rand/best operator with knee points instead of the global optimal solution is proposed.
Therefore, the algorithm with DE/rand/best is named the ANSGA-III -PPS-KNEE. The
statistical results of HV values obtained by the proposed mutation strategy and the other
two mutation strategies are shown in Table 7.

Table 7. Statistical results of mutation operator in terms of performance indicators HV.

Algorithm Best Mean Worst Std

Scenario 2

ANSGA-III-PPS 0.7230 0.7144 0.6518 0.0214
ANSGA-III -PPS-DE 0.6914 0.6555 0.6072 0.0351

ANSGA-III -PPS-KNEE 0.6367 0.6288 0.6136 0.0131

Scenario 3

ANSGA-III-PPS 0.7132 0.7031 0.7011 0.0027
ANSGA-III -PPS-DE 0.6680 0.6386 0.5228 0.0450

ANSGA-III -PPS-KNEE 0.6498 0.6498 0.6498 0

In Table 7, the HV value of the proposed mutation strategy is better than the other
two comparison strategies. From the Pareto-optimal front of the three mutation strategies
in Figure 10, we can see that the convergence of the proposed mutation strategy is better
than the other two comparative mutation strategies. In Figure 11, the proposed mutation
strategy significantly improves the success rate of the algorithm solution. At the end of
the push search stage, there are many waypoints in the population that violate terrain
constraints and no-fly zone constraints. The mutation operator DE/rand/1 provides no
search direction to optimize these constraints, and the optimal solution selected by the
mutation operator DE/rand/best is the knee point obtained under the premise of only the
no-fly zone constraints. The original PPS algorithm uses the DE/rand/1, but in Scenario 3,
no feasible solution is got. However, after using the same DE/rand/1 in ANSGA-III-PPS,
the effect is second only to the proposed strategy. We believe one reasons for this difference
is that the crossover operation can better preserve the advantages of the path segment [27].



Drones 2021, 5, 144 24 of 26Drones 2021, 5, x FOR PEER REVIEW 25 of 28 
 

  

(a) (b) 

Figure 10. (a,b) are the Pareto-optimal frontiers of ANSGA-III-PPS, ANSGA-III-PPS-DE and ANSGA-III-PPS-KNEE in 
scenario 2 and scenario 3, respectively 

 
Figure 11. The number of successful runs of ANSGA-III-PPS, ANSGA-III-PPS-DE and ANSGA-III-
PPS-KNEE (30 runs). 

In the past, researchers have focused on generating strategies to find helpful feasible 
waypoints that do not violate constraints to guide the generation of offspring. However, 
the generation strategy proposed in this paper is the opposite. We first adopted the greedy 
idea to construct low-altitude linear paths as much as possible during the push search 
stage. These paths would largely violate terrain constraints and no-fly zone constraints. 
Therefore, in the pull search stage, the generation strategy focuses on optimizing these 
two types of constraints. As shown in Figure 12, by relaxing the constraint mechanism 
and using the mutation strategy based on preference points to construct a straight line 
that intersects with obstacles, we can continuously adjust the position of waypoints to get 
better solutions. 

Figure 10. (a,b) are the Pareto-optimal frontiers of ANSGA-III-PPS, ANSGA-III-PPS-DE and ANSGA-III-PPS-KNEE in
scenario 2 and scenario 3, respectively.

Drones 2021, 5, x FOR PEER REVIEW 25 of 28 
 

  

(a) (b) 

Figure 10. (a,b) are the Pareto-optimal frontiers of ANSGA-III-PPS, ANSGA-III-PPS-DE and ANSGA-III-PPS-KNEE in 
scenario 2 and scenario 3, respectively 

 
Figure 11. The number of successful runs of ANSGA-III-PPS, ANSGA-III-PPS-DE and ANSGA-III-
PPS-KNEE (30 runs). 

In the past, researchers have focused on generating strategies to find helpful feasible 
waypoints that do not violate constraints to guide the generation of offspring. However, 
the generation strategy proposed in this paper is the opposite. We first adopted the greedy 
idea to construct low-altitude linear paths as much as possible during the push search 
stage. These paths would largely violate terrain constraints and no-fly zone constraints. 
Therefore, in the pull search stage, the generation strategy focuses on optimizing these 
two types of constraints. As shown in Figure 12, by relaxing the constraint mechanism 
and using the mutation strategy based on preference points to construct a straight line 
that intersects with obstacles, we can continuously adjust the position of waypoints to get 
better solutions. 

Figure 11. The number of successful runs of ANSGA-III-PPS, ANSGA-III-PPS-DE and ANSGA-III-
PPS-KNEE (30 runs).

In the past, researchers have focused on generating strategies to find helpful feasible
waypoints that do not violate constraints to guide the generation of offspring. However,
the generation strategy proposed in this paper is the opposite. We first adopted the greedy
idea to construct low-altitude linear paths as much as possible during the push search
stage. These paths would largely violate terrain constraints and no-fly zone constraints.
Therefore, in the pull search stage, the generation strategy focuses on optimizing these
two types of constraints. As shown in Figure 12, by relaxing the constraint mechanism
and using the mutation strategy based on preference points to construct a straight line
that intersects with obstacles, we can continuously adjust the position of waypoints to get
better solutions.
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Figure 12. (a) Generate strategy to bypass the no-fly zone schematic diagram (top view). (b) Bypass
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5. Conclusions

This paper proposes an improved algorithm ANSGA-III-PPS based on a multi-stage
constraint processing strategy to solve the problem of UAV trajectory planning in a 3D
environment. Aiming at the characteristics of evolutionary algorithms for handling UAV
obstacle avoidance constraints, we introduced the PPS constraint processing framework
combined with mutation strategies to effectively improve the algorithm’s ability to solve
problems and prevent the algorithm from falling into a local optimal situation prematurely.
The experimental results show that the ANSGA-III-PPS algorithm has advantages in the
ability and robustness to solve the UAV path planning problem with many obstacles.

This research provides some ideas for the problems of large search space and diffi-
culty in handling constraints in UAV trajectory planning. With advancements in drone
technology, the application scenarios of drones have become more diversified, and the
research on heterogeneous drone swarms has also become a hot spot. In the follow-up
research, we will also strengthen the research of heterogeneous fleet scheduling, and build
a complete solution from UAV scheduling to route optimization. On the other hand, the
performance study of different generation strategies in UAV path planning will also be our
focus in the future.
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