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Abstract: For safe UAV navigation and to avoid collision, it is essential to have accurate and real-time
perception of the environment surrounding the UAV, such as free area detection and recognition of
dynamic and static obstacles. The perception system of the UAV needs to recognize information such
as the position and velocity of all objects in the surrounding local area regardless of the type of object.
At the same time, a probability based representation taking into account the noise of the sensor is
also essential. In addition, a software design with efficient memory usage and operation time is
required in consideration of the hardware limitations of the UAVs. In this paper, we propose a 3D
Local Dynamic Map (LDM) generation algorithm for a perception system for UAVs. The proposed
LDM uses a circular buffer as a data structure to ensure low memory usage and fast operation speed.
A probability based occupancy map is created using sensor data and the position and velocity of
each object are calculated through clustering between grid voxels using the occupancy map and
velocity estimation based on a particle filter. The objects are predicted using the position and velocity
of each object and this is reflected in the occupancy map. This process is continuously repeated and
the flying environment of the UAV can be expressed in a three-dimensional grid map and the state of
each object. For the evaluation of the proposed LDM, we constructed simulation environments and
the UAV for outdoor flying. As an evaluation factor, the occupancy grid is accuracy evaluated and
the ground truth velocity and the estimated velocity are compared.

Keywords: Local Dynamic Map (LDM); UAV; clustering; probabilistic grid

1. Introduction

In recent years, the use of unmanned aerial vehicles (UAVs) has increased signifi-
cantly in various fields, including surveillance, agriculture, transportation, rescue and
military [1–5]. Accordingly, for safe UAV navigation that avoids collisions, research on
perception of flight environments such as object detection, tracking and mapping are
actively conducted [6–10]. For planning and control for safe UAV navigation and accurate
and real-time perception of the surrounding environment such as occupied and free areas,
dynamic and static obstacles are essential. We believe that the following three are essential
considerations for the perception system for safe navigation of UAVs.

• It is necessary to know the state such as the position and velocity of all objects existing
in a local area around the UAV regardless of the type of object. When the UAV is
flying, it is necessary to distinguish between places where collisions may occur and not.
Further, in the case of dynamic objects, we need to predict the motion of objects and
avoid them. Therefore, the current position and velocity of objects in the surrounding
3D local area of a UAV are essential factors that must be recognized.

• Probabilistic representation of the surrounding environment which, considering the
noise of the sensor, is needed. We can recognize the surrounding environment through
sensors such as LiDAR, camera and radar. However, since sensor data always has
noise, it must be expressed as a probabilistic expression that considers sensor noise
like sensor noise models. This can further be useful for integrating different sensors.
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• The limit of hardware systems of UAVs should be considered when configuring
a UAV’s perception system. Compared to other mobility platforms, UAVs have a
relatively limited payload weight. Due to this, the usable sensors and computing
boards are limited. Therefore, we need to build a software with efficient memory and
execution time within the limited hardware situation.

As a perception system, Occupancy Grid Map (OGM) represents an environment by
using probabilistic grid cells. OGMs discretize the space into grid cell space to improve
memory efficiency and represent the occupancy probability of each cell by using a sensor
noise model. Reference [9] extended this to 3D space and made it possible to apply OGM for
UAVs. However, since most OGMs are used as a prior map of wide areas for the purpose of
global mapping or SLAM, it could not be guaranteed that memory usage and computation
time are used in real time. As UAVs have limited hardware specifications that can be
implemented, we need to reduce memory usage and computational load by limiting the
perception area to only the adjacent surrounding area of the UAV. Reference [11] proposed
an occupancy grid map using a circular buffer for this purpose. The occupancy map
of [11] is limited only for a local area around the current UAV location for efficiency and
it is suitable for UAVs. However, it is still regrettable that [11] does not have object-level
expressions such as the position and velocity of each object, which are useful for navigation.

Most object-level perception algorithms are based on a deep learning approach such
as in [10,12,13]. In recent years, many studies have been continuously conducted and object
recognition and classification have been performed using camera and LiDAR. However,
deep learning based algorithms can recognize only pre-trained objects. In the case of
autonomous vehicles, the objects that can appear on the road are limited, but since UAVs
do not have the concept of a driving road, a wide variety of objects can appear, so it
is difficult to fully recognize the surrounding environment only with a deep learning
approach. In addition, it requires vast amounts of training data, but UAVs’ flying data is
insufficient, making it difficult to apply. Therefore, an additional method is needed and
OGMs are appropriate for a perception system for collision avoidance navigation of UAVs.

As mentioned above, the limitation of OGM is no representation of the object-level
state. So, OGMs that contain object-level representation can break the limitation and Oc-
cupancy Grid Filter (OGF) algorithms such as in [14–16] are most suited to this purpose.
OGF expresses the occupancy and velocity of each cell as a probability. Furthermore,
references [17,18] calculated the position and velocity of each object cluster through cluster-
ing and tracking between cells. However, these algorithms are studied for autonomous
vehicles so they are conducted in 2D space. For UAVs, reference [19] expresses even the
dynamic situation by utilizing the Bin-occupancy filter for the local area around the UAV,
but the computational load is heavy.

In summary, the previous perception algorithms for safe navigation of UAVs have
limitations in the way of expression and the types of objects that can be recognized. OGM
algorithms such as [9,11] are not designed to express object-level expressions such as
object velocity, size and position. On the other hand, deep learning approaches such as
in [10,12,13] were able to express the object level, but could only recognize learned objects
and did not show grid-level expression using occupancy probability. In addition, most of
the OGF algorithms do not target UAVs, so they are limited to the 2D domain and some
algorithms for UAVs have high computational costs, making it difficult to apply them in
real time. In this paper, to solve the problems of these previous algorithms, we propose
an algorithm to generate a Local Dynamic Map (LDM) that includes a 3D voxel grid map,
object clusters and particle set. LDMs that are generated by the proposed algorithm can
express the UAV flying environment in two ways, grid-level and object-level, so that there
is no limit to the path planning and collision avoidance algorithms that can be used in
conjunction. In order to reduce used memory and computation time, we use a circular
buffer data structure from [11]. The occupancy probability of each voxel in a grid map
is predicted by using the previous state of object clusters and is updated by using the
sensor measurement of the current time. Using this voxel grid map, the occupied area and
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velocity of each object are obtained through particle filter based velocity estimation and
clustering. We evaluate the occupancy grid accuracy of the proposed LDM algorithm with
the one used in [11]. The state of objects such as position and velocity are compared with
the ground truth in the simulation. In addition, it is also tested and evaluated using an
outdoor UAV composed of LiDAR sensor and onboard PC.

This paper is structured as follows. Section 2 describes the related works of LDMs.
Section 3 explains the LDM algorithm that we proposed and an evaluation of the algorithm
is described in Section 4. Finally, Section 5 concludes the paper.

2. Related Works

OGM is an algorithm that represents the surrounding environment for safe navigation.
Various sensors such as a sonar sensor, LiDAR and RGB-D camera are used and applied
to various platforms such as mobile robot and autonomous vehicle [20–24]. However,
these OGMs express the environment in two dimensions; reference [9] makes a 3D grid
map by using an octree data structure to reduce memory usage and computation time.
References [25,26] use an Octomap as a perception system for 3D navigation of UAVs.
However, OGMs have weaknesses in update speed and prediction for dynamic objects
because they accumulate measurements and show only the occupancy probability of the
current state.

Reference [14] proposed one of the OGFs, Bayesian Occupancy Filter (BOF), which
extended OGM to a 4D-grid that consists of velocity probabilities of each occupancy grid
cell to compensate for the weaknesses of an OGM that can only consider occupancy. In BOF,
the state of each cell is predicted using the previous occupancy and velocity probability.
Through this, a corresponding grid map is created for dynamic objects, but there is an
inefficient aspect of having a velocity grid for all cells including free cells.

References [15,16] applied a particle filter to BOF to solve the above inefficient problem
and expressed the velocity of each cell as particle distribution. In addition, the cell was
divided into static, dynamic and free and the efficiency of calculation was improved by
allocating and removing particles.

The aforementioned OGF algorithms express the occupancy probability and velocity
of a grid cell, but these are all two-dimensional representations and are not suitable for
3D navigation of UAVs. Reference [19] created a 3D grid map for a local area around the
UAV to avoid collision based on the Bin-occupancy filter which predicts the movement
of particles in each cell. However, it is limited in use due to insufficient evaluation of the
accuracy of mapping and the heavy computational load. References [27,28] use a Euclidean
Signed Distance Fields (ESDFs) grid map as a 3D representation for UAV navigation. These
obtain the shortest distance to the occupied voxel and obtains the possible collision distance
in real time. However, these algorithms have no representation of velocity field or object
state so the trajectory of dynamic objects cannot be predicted.

Reference [11] proposed an algorithm that creates a circular buffer based local grid
map for UAV replanning. The data structure of the occupancy grid is a circular buffer to
reduce computation time. We take the circular buffer data structure proposed by [11] for
our proposed LDM. However, unlike [11], we perform the occupancy prediction process to
respond to dynamic objects.

Clustering of occupancy grid has been proposed for a planning technique that uses
object recognition information. In [29], the states of grid cells are determined through
comparison between cell occupancy probability of the current and previous time and cell
clustering is applied using these states. Reference [18] projected the clustering result from
the superpixel approach, which uses the pixel clustering algorithm, to grid space and
assign the clusters to each cell. Reference [17] applied clustering and tracking between cells
using the BOF grid.
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3. Local Dynamic Map (LDM) Generation

We propose an algorithm for Local Dynamic Map (LDM) generation that expresses
the surrounding environment by occupancy grid and obstacle clusters. The proposed
algorithm represents the space occupied by obstacles in the local area around the UAV as
the occupancy grid and at the same time recognizes the states of obstacles such as position
and velocity. The occupancy grid is predicted by using the previous state of objects and is
updated by using sensor measurement of current time. To extract the obstacle state, LDM
uses grid voxel clustering and particle filter based velocity of cluster estimation.

As shown in Figure 1, the overall process proceeds in the order of prediction, update,
resampling and clustering. The prediction step predicts the movement of close objects
based on the LDM of previous time step, time k− 1 in Figure 1. This process is divided into
occupancy prediction, which predicts the occupancy grid map state and particle prediction,
which predicts the particle state. After that, the update step, which reflects the current
flying environment information of the UAV, is performed. It is divided into three steps:
Movement update, occupancy update and particle update. The movement update step
updates the grid map region of LDM by using the current position of the UAV. This step
removes the area away from the LDM due to the movement of the UAV and initializes the
area that is newly close to the UAV. Occupancy update is the process of reflecting distance
sensor measurements such as LiDAR mounted on the UAV to the 3D voxel grid map of the
LDM. This process can determine whether each voxel in the LDM is currently occupied
by objects. The particle update step is the process of updating the particle state using
the voxel grid map in the LDM. Each particle’s weight is updated using the occupancy
probability of the voxel in which each particle is located. This is a process to get a difference
in the reliability of the position and velocity information of each particle. After that, the
resampling step adjusts the overall number of particles based on weight. The clustering
process generates object clusters by using occupancy probability to provide object-level
representation. In the next time segment, time k + 1 in Figure 1, the prediction and update
steps are performed recursively by using object clusters and particle states of timek. In this
section, the prediction, update, resampling and clustering steps are described in detail.

Figure 1. An overview of the proposed local dynamic map algorithm.

3.1. LDM State Representation

Before explaining each step of the proposed algorithm, we summarize the composition
and state of LDM. LDM consists of a 3D voxel grid map representing the local area of the
UAV, a set of object clusters and a set of particles freely present in the grid map region.
Each voxel of the grid map stores an occupancy probability, which is a probability that
the corresponding voxel area is occupied. Object clusters are created for object-level
representation of the flight environment and it has position and velocity as the state of each
cluster. Particles play a role in estimating the moving velocity of objects in the grid map
region. The state of each particle consists of position, velocity and weight.
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In LDM, the environment around the UAV is divided into a 3D grid composed of
voxels. Each voxel in the form of a cube expresses occupancy and dynamic state by
using the occupancy probability and velocity. Occupancy probability is stored as log-odds
notation as shown in Equation (1) for computational benefits.

l(Occi
k) = log

(
P(Occi

k)

1− P(Occi
k)

)
, (1)

where l(Occi
k) is log-odds notation of voxel i and P(Occi

k) is its occupancy probability.
In order to recognize only the local area around the UAV, the grid map region con-

tinuously moves based on the location of the UAV. The easiest way to do this is to match
the center of the grid map region with the location of the UAV. However, this requires an
occupancy probability update process for whole voxels every time the UAV moves. In
most cases, the accuracy of occupancy probability may be lost due to overlap between
voxels. To prevent this, we update the grid map region so that the UAV is located only
inside the center grid voxel of the map. Due to the movement of UAVs, if the UAV located
voxel moves ∆X = (∆X, ∆Y, ∆Z), where X, Y, Z are multiples of voxel resolution from the
previous UAV located voxel (same as the center grid voxel), the grid map region moves by
the same distance so that the UAV located voxel becomes the center grid voxel. Moreover,
the rotation of the grid map due to the rotation of the UAV is not considered and the
orientation of the map is fixed as the orientation of the initial. Therefore, since the grid map
region moves only in multiples of the voxel resolution, the overlap between voxels can be
blocked. Figure 2 describes this with an example situation.

Figure 2. An example of the update process of the grid map in the proposed LDM. For visualization, we reduce the
dimension to 2D. On the left is the example of the overlap situation when the update grid map region depends on UAV
position and orientation. The right image is the update process used in our LDM. If the UAV located voxel moves (∆X, ∆Y)
as shown in the right image, the grid map region also moves (∆X, ∆Y). LDM prevents overlap issues by using this
updated process.

The estimated velocity of each voxel is expressed as a set of particles. The particles
have their position and velocity. To represent the reliability of the particle’s position and
velocity, each particle has a weight. The representation of the particle state is:

xi = (px, py, pz) (2)

vi = (vx, vy, vz) (3)
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where xi is the position of particle i and vi is the velocity of particle i. Obstacles can move
randomly; so we have to predict the probability of the movement in all possible directions.
Therefore, we use weighted particles as a probability of the obstacle state to recognize the
velocity and position of each obstacle.

The particles of the LDM are initialized so that they are evenly distributed over the
entire grid map region. So the particle i, xi ∼ U

(
−M

2 , M
2
)

is in uniform distribution over
the grid map region with M = (Mx, My, Mz) being the size of the grid map region. The
velocity of particle i, vi ∼ N (0, Σ) is normal distribution with covariance Σ. The weight of
each particle, wi, is set to the same value.

3.2. Prediction

Because traditional occupancy grid measurement update methods such as [9,11] are
based on accumulation of measurements, the reaction of the dynamic obstacles is slow
in a dynamic environment. To prevent this, occupancy prediction is applied using the
clustering result. Through the clustering to be described in Section 3.5, we collected the
clusters with their corresponding voxels and the velocity of clusters. By using this, the
current moving position of the clusters are predicted and the corresponding occupancy
probability can be predicted as described in Figure 3.

Figure 3. Example of occupancy prediction. The gray color cells are occupied cells and the part where the border is drawn
with a thick line is one cluster. In left image, red dots are the position of each cluster, red arrows are the velocity of each
cluster. The end of the arrow is the predicted position of each cluster. In this case the left upper cluster is predicted to the
right upper direction and the right lower cluster is predicted to the right lower direction. The occupancy probabilities are
moved according to the same direction of clusters.

Particles distributed over the grid map region are predicted using the prediction
model from [16].

vi
k = vi

k−1 + σ (4)

xi
k = xi

k−1 + dt · vi
k (5)

where dt is the time difference between time k and time k − 1, σ ∼ N (0, Σ) is the zero
mean normal distribution noise with covariance Σ. If the predicted location of the particle
is outside the grid map, it is removed and is not used in the subsequent process.
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3.3. Update
3.3.1. Movement Update

We use the circular buffer data structure of [11] for our grid map data structure. It is
composed of a circular buffer array that stores the occupancy probability of each voxel in
3D grid space and offsets voxel o = (ox, oy, oz), indicating the grid voxel that corresponds
to the first index of the circular buffer array. To update the grid map region, the offset voxel
is updated using Equation (6).

ok = ok−1 − (Xk − Xk−1) (6)

with Xk = (ixk, iyk, izk) means grid voxel where the UAV located at time k relative to grid
voxel coordinate at time k− 1 and ok means the offset voxel at time k. In this process, voxels
that move out of the grid map region are cleaned and voxels that are included newly to
the grid map region are initialized. To do this simply and fast, circular buffer indexes of
the moved out voxels are allocated to newly entered voxels and initialized to log-odds
notation of unknown probability, as shown in Figure 4. Through this, the grid map update
according to the movement of the UAV can be performed with high speed.

Figure 4. Movement update process. For visualization, we reduce the dimension to two dimensions. The number of each
voxel is the index of the circular buffer array. At time k− 1, the voxel with the index of the circular buffer equal to 18 is the
origin voxel of the grid voxel coordinate. The offset voxel ok−1 = (2, 2) and Xk−1

k−1 = (2, 2) where the UAV is located. At time
k, after the UAV moved, the voxel where the UAV located relative to the grid voxel coordinate at time k− 1, Xk−1

k = (3, 3).
The offset voxel is updated as ok = ok−1 − (Xk−1

k − Xk−1
k−1) = (1, 1). Now the voxel with the index of the circular buffer

equal to 24 is the origin voxel of the grid voxel coordinate. By update offset and grid voxel coordinate, the voxels in the
green zone are now out of the grid map region and voxels in the blue zones have newly entered the grid map region. To
reduce the time used by data update, the circular buffer array indexes of green zone voxels such as 3, 15, 16 and 23 are
allocated to blue zone voxels with 0 value.

3.3.2. Occupancy Update

We use 3D-LiDAR, which provides point measurements with low noise compared to
vision and radar sensors, to recognize the surrounding environment of the UAV. In order
to update measurements to the occupancy grid, a measurement flag grid of the same size
as the occupancy grid is created to indicate the presence or absence of measurement of
each voxel. In the the measurement flag grid, the voxel with the measurement is marked as
occupied. We apply the ray-casting algorithm to the occupied voxels and voxels that pass
by rays are marked as free.
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For each voxel of the occupancy grid, the occupancy probability is updated by using
the marking of the measurement flag grid. Since we use log-odds notations, we can simplify
update Equations (7) and (8).

P(Occi
k|k)

1− P(Occi
k|k)

=
P(Occi

k|k−1)

1− P(Occi
k|k−1)

· P(Occi|zk)

1− P(Occi|zk)
(7)

l(Occi
k|k) = l(Occi

k|k−1) + l(Occi|zk) (8)

where zk is measurement at time k, P(Occi
k|k−1) is predicted occupancy probability of voxel

i at time k, P(Occi
k|k) is occupancy probability posterior to voxel i at time k and P(Occi|zk)

means measurement probability. The equation is:

P(Occi|zk) =

{
pocc, if flag of voxel i is occupied
p f ree, if flag of voxel i is free

(9)

where pocc and p f ree are constant parameters and it is recommended to set pocc to more
than 0.5 and p f ree to less than 0.5.

Some voxels may not have any flags due to the influence of sensing field of view or
interference from other objects. In a dynamic environment, concerning voxels without
sensor information it could not be guaranteed that the previous occupancy probability was
reasonable for the present occupancy probability. Therefore, the LDM that we proposed
updates these voxels using the survival probability so that the influence of the previous
occupancy probability gradually decreases over time. Now we update voxels that do not
have any flags by using Equation (10).

l(Occi
k|k) = l(Occi

k|k−1) · P
i
s (10)

where, Pi
s < 1 is survival probability that the state of voxel i can remain. If a lot of time

passes without sensor measurement, log-odds notation of occupancy probability of voxel
converges to 0, which is the middle of the free and occupied state.

Survival probability is set differently for each voxel in consideration of occupancy
grid of time k − 1 and flag grid of current time. Voxels that do not have any flags are
divided into three cases: First, the voxels that are occupied by a static object at k− 1 time.
In this case, it can be said that the occupancy probability of these voxels is the same as
before because they are occupied by the same object even after time passes. Therefore, if
the velocity of a voxel at k− 1 time is less than the threshold velocity, it is determined that
the voxel is occupied by a static object and the Pi

s is set to 1.
Except for the above case, voxels can be divided into the case where they are located

outside the sensor range and the part of the voxels where they are inside the sensor range
but interfered with by other objects. In the former case, the current situation is unknown
due to the hardware limitation of the sensor, so all voxels in this case have the same Pi

s < 1.
In the latter case, different Pi

s is determined according to the distance from the object
causing the interference. The distance close to the interfering object is more likely to be
occupied by the object due to the effect of the object’s thickness, motion, etc., but this
decreases as the distance increases. Therefore, for voxels passing by extending the ray
between the voxel occupied by the interference object (same as occupied flag voxel) and
the sensor origin to the end of the map, voxels at a certain distance from the occupied flag
voxel have high Pi

s and subsequent voxels are set so that Pi
s decreases in inverse proportion

to the distance.
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3.3.3. Particle Update

The reliability of the prediction of the particle is high if the occupancy probability of
the voxel that the predicted particle is located is high. Therefore, the weight of the particle
is updated using the occupancy probability updated to the current measurement. The
particle update equation is:

wi
k = wi

k−1 + P(Occj
k|k) (11)

where wi
k is the weight of particle i at time k and j is the index of the voxel where particle i

is located.
We can express the state of the voxel using particles. The velocity of each voxel is

expressed as the weighted average of particles in each voxel:

V j
k =

(
∑n

i=1 wi
k · v

i
k

∑n
i=1 wi

k

)
. (12)

where V j
k = (VX j

k, VY j
k, VZj

k) means velocity of voxel j, n is the number of particles in
voxel j and vi

k is the velocity of particle i. In this process, some occupied voxels may not be
properly updated due to the insufficient number of particles. Therefore, to prevent this,
add particles to occupied voxels where not enough particles are located. The position of
new particles, xi

k,new ∼ U
(
− r

2 , r
2
)
(r = (r, r, r), r is voxel resolution) is uniformly distributed

within the voxel and the velocity is:

vi
k,new = V j

k + σ (13)

where σ ∼ N (0, Σ) is zero mean normal distribution noise with covariance Σ. The weight
of each particle, wi

k,new is set as P(Occj
k|k) where j is the voxel where particle i is located.

The last part of the update process, the weight of the particles are normalized and the
equation is:

wi
k =

1
µk
· wi

k (14)

where µk is the normalization factor with:

µk =
N

∑
i=1

wi
k (15)

where N is the number of total particles.

3.4. Resampling

The total number of particles has changed due to particle deletion or addition through
the prediction and update process. Therefore, to keep the number of particles the same as
the initial state, the resampling process is essential. The resampling sequence is as follows.
First, a discrete distribution is created based on the weight of particles and a particle is
randomly selected using this distribution and added to the new particle array. This is
done until the size of the new array becomes Ninit, which is the initial number of particles.
Through this, particles can be selected in proportion to the weight and therefore more
particles can be placed in occupied voxels.

3.5. Voxel Clustering

Objects with different states are clustered using the occupancy probability of the
voxels. We consider the connectivity between 26-neighborhood voxels for only voxels
with an occupancy probability higher than the threshold. The position of each cluster is
expressed as the average value of the voxels included in the cluster. The velocity of each
cluster is expressed as the weighted average of particles existing in the cluster,
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Vcluster,j
k =

(
∑n

i=1 wi
k · v

i
k

∑n
i=1 wi

k

)
(16)

where Vcluster,j
k is the velocity of cluster j at time k; n is the number of particles in cluster j.

From this process, the grid voxels included in each cluster and the velocity of the cluster
are obtained.

After clustering, particles located in the clusters additionally adjust the velocity. We
can know the velocity of each cluster, grid voxels and particles corresponding to the cluster.
Among the resampled particles, they are located in the same cluster, but the velocity can be
very different. Therefore, the velocity of these particles is readjusted using the velocity of
the cluster. The equation is:

vi
k = Vcluster,j

k (17)

where Vcluster,j
k is the velocity of cluster j where particle i is located.

4. Evaluation

To evaluate the LDM algorithm, we built a testbed in both simulation and outdoor
UAV with LiDAR sensor. Occupancy grid and estimated velocity accuracy is evaluated in
various scenarios.

4.1. Simulation
4.1.1. Experimental Setup

The simulation constructed a virtual environment using the V-REP simulator. We
created a number of static and dynamic objects in a virtual space and constructed a
virtual UAV equipped with 3D LiDAR. The LDM algorithm is implemented with a C++
based ROS node. The UAV position, orientation and LiDAR sensor data of the V-REP
are communicated to the LDM algorithm node as an ROS topic using the V-REP-ROS
communication node. The parameters for the proposed LDM algorithm are initialized
before activation of the UAV. Ninit, which is the initial number of the particles is set to
200,000, the resolution of voxel is set to 0.15m and the number of grid voxels is 32,768 (323).
pocc and p f ree are set in the same manner as in [9,11].

To evaluate the occupancy probability and estimated velocity of LDM, we generated
the corresponding ground truth values. For evaluation of the scenarios in which dynamic
obstacles exist, a ground truth grid map is created based on the current position of the
obstacle for every time. By comparing the occupancy probability with this, we define an
evaluation indicator:

Occupancy Grid Accuracy(%) =
∑t Xnumber

∑t D
(18)

where Xnumber is the number of voxels matched to the same state ({occupied, free}) by
comparing ground truth and occupancy grid of LDM, D is the number of voxels at onetime
step and t is the value of the time step. We also know the ground truth velocity of each object
in the simulation, so we compared this value with the estimated velocity of each cluster.

We created various scenarios with dynamic and static obstacles through simulation
and measured the accuracy of the LDM algorithm. The scenarios are:

• Scenario 1: Dynamic obstacles and UAV flying
• Scenario 2: Static obstacles and UAV flying
• Scenario 3: Dynamic and static obstacles and UAV flying

these are describe in Figure 5. In these scenarios, we ignore the ground measurement.
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Figure 5. Simulation scenarios. Left image is scenario 1, middle image is scenario 2 and right image is scenario 3. The
blue obstacles are static obstacles and green obstacles are static obstacles. The black arrows are the trajectory of the
dynamic obstacles.

4.1.2. Occupancy Grid Accuracy

We evaluate the occupancy grid accuracy of the proposed LDM and the circular buffer
based grid map in [11]. We also measure the number of false expressed voxels divided into
two cases. Case 1 means that the ground truth is occupied but expressed as free and case 2
means that the ground truth is free but expressed as occupied.

Compared with [11], the proposed LDM predicts the occupancy probability by using
the velocity of clusters and Table 1 shows the effect of these approaches. In scenario 1 where
there are dynamic obstacles, the number of case 1 and case 2 false voxels of the proposed
algorithm is less than that in [11]. This is because the accumulation of the occupancy
probabilities continued more rapidly by the prediction of the occupancy probability using
the predicted velocity of the dynamic obstacle. Therefore, the proposed algorithm provides
a more accurate representation of free space by the decrease in the number of case 1 false
voxels and also represents the occupied space better.

Table 1. Occupancy grid accuracy of each scenario. The number of case1 false voxels means the number of false expressed
voxels where the ground truth is occupied but expressed as free. The number of case 2 false voxels means the number of
false expressed voxels where the ground truth is free but expressed as occupied.

Scenario 1 Scenario 2 Scenario 3

Algorithm Proposed [11] Proposed [11] Proposed [11]

Occupancy Grid Accuracy 99.55% 99.49% 99.22% 99.26% 99.50% 99.48%
Number of case1 false voxels 29,355 40,215 65,034 57,853 44,520 49,506
Number of case2 false voxels 148,406 158,700 241,245 233,250 150,593 154,824

In scenario 2, which is composed of only static obstacles, the accuracy of the proposed
algorithm is slightly lower. The proposed algorithm applies the survival probability to
voxels without measurement due to object interference or sensor field of view. On the other
hand, reference [11] keeps the previous occupancy probability of the unobserved voxels.
Therefore, it can be seen that [11] is more advantageous in a static environment, but it is
not appropriate to say that it is advantageous even in general scenarios involving dynamic
obstacles such as scenario 3 because the accuracy of the proposed algorithm is slightly
higher. The average of the total computation time of the proposed LDM is 98 ms.

4.1.3. Velocity Estimation

To evaluate the estimated velocity from the proposed algorithm, we compared the
velocity of dynamic and static obstacles with the ground truth. There are many algorithms
that estimate the velocity in the 2D grid, but in the 3D grid there is no velocity estimation
with voxels for the local grid map. So we used a method that applied the particle filter
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based velocity estimation part of our proposed algorithm to the occupancy grid map of [11]
as a comparison algorithm of the proposed algorithm and this is expressed as in [11] with
the PF (Particle Filter) in this evaluation.

Figure 6 shows the absolute value of the estimated velocity error of a static obstacle.
The velocity estimation of the proposed algorithm is more accurate for static obstacles
in almost all times compared to [11] with PF. The average velocity error of the proposed
algorithm is 0.009 m/s, while [11] with PF showed an average velocity error of 0.019 m/s.

Figures 7–9 show the result of velocity estimation of a dynamic obstacle. The measured
obstacle moved only the x and y directions. The time for the estimated velocity to reach
the ground truth velocity of the dynamic obstacle is similar between the proposed LDM
and [11] with PF. However, in the case of [11] with PF, the estimated velocity is not constant,
whereas in the case of the proposed LDM, the estimated velocity is almost similar to the
ground truth velocity and is estimated at a constant. The average velocity error of the
proposed LDM is 0.12 m/s, while [11] with PF shows 0.15 m/s average velocity error.

Figure 6. Estimated velocity error of static obstacle. The dotted line is [11] with PF method and the solid line is the proposed
LDM generation algorithm.

Figure 7. Estimated x direction velocity and ground truth velocity of the dynamic obstacle. The dotted line is [11] with PF
method, the black solid line is the proposed LDM generation algorithm and the blue solid line is the ground truth.
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Figure 8. Estimated y direction velocity and ground truth velocity of the dynamic obstacle. The dotted line is [11] with PF
method, the black solid line is the proposed LDM generation algorithm and the blue solid line is the ground truth.

Figure 9. Estimated z direction velocity and ground truth velocity of the dynamic obstacle. The dotted line is [11] with PF
method, the black solid line is proposed LDM generation algorithm and the blue solid line is the ground truth.

4.2. Outdoor UAV Experiment
4.2.1. Experimental Setup

We implement the hardware and software system for outdoor UAV to evaluate the
proposed LDM algorithm. as shown in Figure 10. As the body frame, Matrice 100, which
includes GPS, IMU and flight controller, is used. Ouster 16-channel 3D LiDAR is used as
a sensor to recognize the flying environment. Jetson TX2 board is used to acquire sensor
data and run the algorithm and an extra battery is additionally installed to operate the
board. The proposed LDM algorithm implementation is the same as the simulation’s one.
The evaluation is conducted in two scenarios. Scenario 1 is a scenario consisting of two
moving people and one stationary person and scenario 2 is a situation where the UAV and
the person move in the same direction as shown in Figure 11.
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Figure 10. The structure of the implemented UAV.

Figure 11. Scenarios of outdoor UAV experiment. In scenario 1, the UAV is stopped and there are three people. In scenario 2,
the UAV and one person move in the same direction.

4.2.2. Experiment Results

The results of the proposed LDM are shown in Figures 12 and 13. In Figure 12, for
the experiment, we created an environment with one static obstacle (Person1) and two
dynamic obstacles (Person2 and Person3). Among the dynamic obstacles, Person2 moves
to Person3 (+x direction) and Person3 moves to Person2 (−x direction). When each reaches
the other’s starting position, they come back to their own starting position. Interference of
Person3 by Person2 occurs in image 3 in Figure 12, but the cluster is not lost because of
occupancy prediction. It can be seen that the velocity direction is estimated according to
the moving direction of the dynamic objects.

Figures 14–16 show the velocity, estimated by the proposed LDM, of obstacles in the
scenario of Figure 12. Figure 14 is the estimated velocity of the static obstacle (Person1). The
proposed LDM shows an error of up to 0.05 m/s in all directions for the estimated velocity
of a static obstacle. Figure 15 represents the estimated velocity of Person2 and Figure 16
represents the estimated velocity of Person3. From 91 to 181 frames, when Person2 moves
in the +x direction, we can see that Person3 moves in the −x direction. It can also be seen
that after frame 181, these peoples return to their starting points.

Figure 13 shows another scenario testing the proposed LDM and its results. In this
scenario, the UAV and an obstacle are moving in the same direction always. In images 1–3
of Figure 13, the UAV is moved to the +y direction and the obstacle is also moved in the
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same direction. In image 4 of Figure 13, the UAV is moved to the −y direction and the
obstacle is also moved. We can see that the direction of the obstacle and the direction of the
estimated velocity of the obstacle are the same.

Figure 12. Subfigures of the proposed LDM for scenario 1 of the outdoor UAV experiment. The number of each subfigure
represents the passage of time. Person1 is a static obstacle that does not move, Person2 and Person3 are moved to each
other. The colored points represent LiDAR measurements and only occupied voxels among all voxels are visualized. The
color of each voxel means the cluster number and the direction of the velocity of each voxel is marked with a red arrow.

Figure 13. Subfigures of the proposed LDM for scenario 2 of the outdoor UAV experiment with the dynamic obstacle. The
number of each subfigure represents the passage of time. In this scenario, the UAV and the obstacle are moving in the
same direction and the big blue arrow is the direction of the UAV and the obstacle. The colored points represent LiDAR
measurements and only occupied voxels among all voxels are visualized. The color of each voxel means the cluster number
and the direction of the velocity of each voxel is marked with a red arrow.
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Figure 14. Estimated velocity of the static obstacle (Person1) in Figure 12.

Figure 15. Estimated velocity of the dynamic obstacle that started at the upper left (Person2) in Figure 12.

Figure 16. Estimated velocity of the dynamic obstacle that started at the lower right (Person3) in Figure 12.
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5. Conclusions

In this paper, we proposed an LDM generation algorithm that expresses the surround-
ing environment of the UAV with a 3D occupancy grid and the object clusters in real time.
The proposed LDM represents the local area around the UAV as a circular buffer based
occupancy grid to reduce computational cost. To extract object-level state information
such as velocity and position of object clusters, we use grid voxel clustering and particle
filter based velocity estimation. We evaluated the performance of the proposed algorithm
through simulations and real world experiments. The results showed that the proposed
algorithm can estimate the velocity of an object with less error while exhibiting mapping
accuracy similar to that of the grid map in [11]. In addition, object-level expression is also
provided through clustering, enabling connection with various planning algorithms. Fi-
nally, the proposed algorithm satisfied three considerations for the UAV perception system
mentioned in Section 1.

In the future, the algorithm that we proposed will be used together with the planning
and control algorithm to form an integrated UAV system capable of collision avoidance
flying. Because the computation time of the proposed algorithm may increase when the
map size and the number of particles are increased, we plan to address this issue through
parallel programming and optimization of the algorithm.
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