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Abstract: This paper presents a single-copter localization system as a first step towards a scalable
multihop drone swarm localization system. The drone was equipped with ultrawideband (UWB)
transceiver modules, which can be used for communication, as well as distance measurement.
The location of the drone was detected based on fixed anchor points using a single type of UWB
transceiver. Our aim is to create a swarm localization system that enables drones to switch their
role between an active swarm member and an anchor node to enhance the localization of the whole
swarm. To this end, this paper presents our current baseline localization system and its performance
regarding single-drone localization with fixed anchors and its integration into our current modular
quadcopters, which was designed to be easily extendable to a swarm localization system. The distance
between each drone and the anchors was measured periodically, and a specially tailored gradient
descent algorithm was used to solve the resulting nonlinear optimization problem. Additional copter
and wireless-specific adaptations were performed to enhance the robustness. The system was tested
with a Vicon system as a position reference and showed a high precision of 0.2 m with an update
rate of <10 Hz. Additionally, the system was integrated into the FINken copters of the SwarmLab
and evaluated in multiple outdoor scenarios. These scenarios showed the generic usability of the
approach, even though no accurate precision measurement was possible.

Keywords: localization; communication; drone swarm

1. Introduction

Drones are gaining increasing importance in industrial and research applications.
Applications range from inspection tasks for bridges [1] and wind turbines [2] to natural
disaster management [3]. For these tasks, reliability, autonomy, and stability are the most
relevant properties in the current research [4–6]. Currently, there is a trend towards the
combination of multiple drones into swarms to enhance the performance, stability, and mis-
sion times [7–9]. Independent of the number of drones, the quality of position information
is highly relevant, because it enables reliable and robust movement of the swarm. However,
such reliable position information is hard to achieve. Global Positioning System (GPS)
localization is not always available or precise. Indoor scenarios especially have no access
to GPS, but even in outdoor environments, GPS may be unreliable or unavailable. Conse-
quently, a general-purpose drone swarm needs a localization mechanism that is compatible
with indoor and outdoor scenarios, without specific deployment.

The transition from singular drones to swarms of drones creates new challenges, espe-
cially regarding the localization, because the precision of the provided position information
needs to be higher to prevent crashes among swarm members. Additionally, the localiza-
tion needs to be reliable and uncertainty-aware. Reliable localization allows the swarm to
execute its mission, while uncertainty awareness allows the swarm behavior to react to a
degradation in the localization precision. The last important factor is scalability because
most localization systems require communication among the swarm members, which is
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performed through a shared medium. Consequently, using the available resources of the
communication system efficiently is of utmost importance for any localization system to be
scalable to any swarm size.

In a swarm of drones, more options are available for the localization of individual
drones. Drones without a connection to static anchors or GPS may use multihop localization
to acquire the localization information of neighbors to enhance their own localization.

Our vision is to create a swarm localization system that enables drones to switch their
role between active swarm member and anchor node to enhance the localization of the
whole swarm. To this end, this paper present our current baseline localization system,
which was designed to be easily extendable to a swarm localization system. Additionally,
its performance regarding single-drone localization with fixed anchors and its integration
into our current modular quadcopters is presented.

The following section (Section 2) discusses some relevant work in the area of robot
and quadcopter localization, followed by the description of the hardware used (Section 3)
and our algorithms in Section 4 and the evaluation experiments and results in Section 5.
The paper closes with the conclusion and future work in Section 6.

2. Related Work

The area of localization is filled with a plethora of approaches, because the application
field is also very vast. The most prominent solution for outdoor applications is GPS.
Baseline GPS is a receiver-only system, which uses satellites around the globe to provide
Time-of-Flight (TOF) distances between the receiver and sending satellite. The existing
known orbital data of the satellites allow the reconstruction of the position using these
TOF distances and an accurate time stamp. The typical precision of GPS positions is in
the order of 5 m (https://www.gps.gov/systems/gps/performance/accuracy/, accessed
on 25 August 2021). However, GPS is prone to distortions if the line-of-sight is blocked.
Assisted GPS (AGPS) is one approach to enhance the quality of the localization information.
AGPS uses additional satellites, which are deployed regionally and compensate for the
atmospheric distortions of the GPS signals. Most commercially available GPS receivers
already support AGPS, which provides these receivers with a maximum accuracy of 30 cm.

Further localization enhancements of GPS for high-precision applications are available
through Differential GPS (D-GPS), which uses an additional local receiver to compensate for
local signal distortions. Even though D-GPS at best can reach millimeter precision, the hard-
ware is costly and requires a long time to be deployed (more than 20 min of initial conver-
gence time [10]). An example is the DJI D-RTK2, which costs EUR ≈ 3000 (https://store.dji.
com/de/product/d-rtk-2-high-precision-gnss-mobile-station,
accessed on 25 August 2021). An overview of D-GPS systems and their performance
can be found in [11].

Another approach more tailored to indoor scenarios is camera-based localization
systems. In this area, multiple approaches exist. The most famous one is the Vicon system,
which uses infrared reflective passive markers and multiple infrared cameras to track an
object with high precision (typically less than 1 mm with an update rate of 100 Hz [12]).
The performance of the Vicon system comes at a very high cost of typically more than EUR
50,000. Other approaches are based on single cameras and use no markers, such as that
in [13]. These provide far less precision (typically 10 cm, but also with a high update rate of
50 Hz or more). These systems are less expensive because fewer cameras and no markers
are needed. A good overview of vision-based localization systems is given in [14].

The third type of system uses radiofrequency (RF) or sonar waves to detect the distance
between two objects. In this area, sonar waves have been used for a long time. However,
currently, the trend is moving towards extensions of existing wireless communication
standards. As the information, ToF, Time-Difference of Arrival (TDoA), Received Signal
Strength (RSSI), or Phase Difference (PD) is used. Among these approaches, RSSI methods
provide the worst precision of≈1.2 m for Bluetooth [15] and 1 m for WiFi [16], with the ben-
efit that they can be applied to all existing wireless hardware without any modification. ToF,

https://www.gps.gov/systems/gps/performance/accuracy/
https://store.dji.com/de/product/d-rtk-2-high-precision-gnss-mobile-station
https://store.dji.com/de/product/d-rtk-2-high-precision-gnss-mobile-station
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TDoA, and PD provide better distance estimations, but typically require specialized hard-
ware, such as the DWM1000 (https://www.decawave.com/product/dwm1000-module,
accessed on 25 August 2021) modules. These modules are typically used with two-way-
ranging, which sends 3 to 4 packets between two nodes, which cancel out internal timing
errors and increase the precision at the cost of more communication per measurement [17].
A system using this approach was presented in [18]. The proposed system showed an
average precision of 0.4 m with a 20 Hz update rate using 27 packets per measurement.
This disqualifies the approach for large amounts of swarm members or anchor nodes.

The last type of approach is swarm-based, which exploits the existence of multiple
objects of similar type to be localized to share information and increase precision. One
such approach is called Simultaneous Localization and Optimization [19], which exploits
movement command information in each object together with distance measurements
between the objects to enhance the positioning precision and resolve ambiguities, as well as
enhance the execution of the movement goals. The most complete approach in this area is
OmniSwarm [20]. This approach provides up to 0.02 m precision for a three-drone system
and 0.14 m precision for a swarm of two drones. The system uses visual odometry together
with Ultra-Wideband (UWB) communication and distance estimation to determine the
position of the swarm members. Even though the OmniSwarm approach provides superior
localization quality, it does not scale well, due to the communication necessary to exchange
information. Additionally, the system uses information from many subcomponents of a
drone, which make its integration into an existing drone setup very tedious and difficult.

3. Hardware Design and Integration

This section gives an overview of the used hardware components and their soft-
ware integration.

The localization system is integrated into our swarm of quadcopters FINken [21],
which are self developed and modular consisting of a basic copter frame with four motors
in X-setup. The central unit of control is a LisaMX Autopilot (https://wiki.paparazziuav.
org/wiki/Lisa/MX, accessed on 25 August 2021) running Paparazzi as flight software.
The autopilot also provides all necessary sensors. During our tests, the drone was equipped
with a TeraRanger, which is an optical height sensor with a range of 14 m and an update rate
of 1 kHz (Figure 1b). The drone is additionally equipped with a GPS module (Figure 1a),
a ranging module capable of UWB communication and a micro-SD card reader used
for logging.

(a) Top view showing GPS receiver and SD
card mount.

(b) Bottom view showing the TeraRanger
distance sensor.

Figure 1. Images of the custom-built drones of the FINken swarm.

The communication and localization of the drones are powered by a DWM1000 UWB-
compliant wireless transceiver. The DWM1000 module supports a wide frequency range
from 3.5 GHz to 6.5 GHz and directly supports ToF measurement. The modules are used

https://www.decawave.com/product/dwm1000-module
https://wiki.paparazziuav.org/wiki/Lisa/MX
https://wiki.paparazziuav.org/wiki/Lisa/MX
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to provide drones with communication capabilities between each other and to the ground
station. Additionally, they provide the distance measurements for the localization system.
To integrate these DWM1000 modules into our drones, a PCB was designed; see Figure 2.
Besides the DWM1000 module, it contains a STM32 microcontroller, a micro-USB port and
several status LEDs. In terms of connectivity, two Universal Serial Asynchronous Receiver
Transmitter (USART) connections and one Inter-Integrated-Circuit (I2C)-Bus, along with
several input and output pins, are accessible. The modules are used as components of
the copters as well as anchor nodes. This enables an easy integration of dynamic anchors
created by stationary copters in later stages of the localization system. The modules do not
use any specific directional antenna to enhance communications to the anchors because
in the later stages of the development of the swarm localization system, the anchors will
be moving.

(a) The designed PCB of the custom interface
module used for integration into the copters.

(b) Picture of the final manually assembled
interface board.

Figure 2. Illustrations of the custom DWM1000 PCBs used for copters and anchors.

In addition to the distance measurements, the modules are used to transmit telemetry
data of the copters to the ground station through the UWB link. The ground station
is equipped with an anchor node to receive all telemetry data. To communicate with
the drones during operation, the drones receive and send Paparazzi messages to the
microcontroller on the DWM1000-board via USART. The microcontroller then handles the
sending and receiving of data using the DWM1000 module. Furthermore, double-sided
two-way ranging is implemented on the microcontroller. The modules mounted on the
copters will periodically initiate two-way ranging to other nodes, while modules acting as
anchor nodes will only respond to ranging requests. The microcontroller on the module
then calculates a position according to our proposed localization Algorithm 1. Once the
calculation is performed, a National Marine Electronics Association (NMEA)-GPS message
based on that position is generated and sent to a dedicated GPS port on the autopilot.

By emulating a real GPS module, the module is easily exchangeable against a real GPS.
Furthermore, existing hardware and software structures, especially the Inertial Navigation
System (INS) filters of Paparazzi, can be reused. To support other researchers using
Paparazzi as autopilot software, we provide the hardware description of our interface
board and the software of the interface board as Open Hardware/Source through our
GitHub Repository (https://github.com/ovgu-FINken/DWM1000_Copter_Integration,
accessed on 25 August 2021).

https://github.com/ovgu-FINken/DWM1000_Copter_Integration


Drones 2021, 5, 85 5 of 20

Algorithm 1: Continuous Localization.

Data: p(0), vmax, ∆T
Input: d(t−1), ∆t(t),
Output: p(t)

begin
p(t) ←− p(0);
m←− 0;
while True do

p(t−1) ←− p(t);

w←− b

(
1− ∆t(t)

∆T

)
;

w←− w #w
∑ w ;

p(t) ←− localization_step
(

p(t−1), d(t), w(t)
)

;

v←− ‖p(t)−p(t−1)‖
∆T ;

if v > am · vmax then
m←− 0;
p(t) ←− p(t−1);

else
m←− m + 1;

Our localization modules differ in the generic design relating to other approaches.
We combined the ranging capability of the modules with the communication capability
to use the module for localization and for drone to drone and drone to ground station
communication. Additionally, we did not develop a new software interface to the autopilot
of the copter, but reused the existing NMEA-capable GPS interface of Paparazzi, which
enables an integration of the modules to any Paparazzi-enabled copter. Finally, we did not
use any specific antenna setup to not jeopardize the reception quality as soon as anchors
are moving.

4. UWB-Ranging-Based Localization Algorithm

In the following sections, we describe the problem of the localization based on dis-
tances acquired through the UWB-Ranging modules (Section 4.1). Afterwards, we present
the algorithm to compute a single localization step in Section 4.2, followed by the algorithm
using the single step localization for continuous localization in Section 4.3.

4.1. Problem Statement

Given the observed distance values d(t) =
(

d̂(t)0 + e(t)0 , . . . , d̂(t)m + e(t)m

)
between the

node to be localized and each anchor node Ai at time step t, compute the position of
the node to be localized p(t) at time step t. The observed distances are composed of the
correct distance d̂(t)i = ‖ p̂t − Ai‖ and an unknown time-varying error e(t)i . Considering we
have enough anchor nodes available, the resulting system of equations is over-determined.
Therefore, the problem is an optimization problem as follows:

Problem 1. Considering the observed distances d(t), we want to compute a position p(t), which
minimizes the difference between the observed distances d(t) and the distance given by the estimated
position and each anchor node ‖p(t) − Ai‖.

min
p(t)

(
m

∑
i=0

(
‖p(t|) − Ai‖ − d(t)i

)2
)

This problem is a nonlinear least squares optimization problem.
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4.2. Single Step Localization Algorithm

To solve the optimization Problem 1 stated in Section 4.1, various approaches are
possible. We decided to use a gradient-based optimization, due to its speed and the low-
resource consumption. This approach is based on the work of Mantilla-Gaviria et al. [22]
and Murphy and Hereman [23].

Algorithm 2 uses static (A, η, zmin, ∆pmin and n) and dynamic (p(t−1), w(t) and d(t))
inputs. A represents a m × 3 matrix of the position of the m anchor nodes. η controls
the speed of convergence of the gradient descent and is typically called step size. zmin
is a parameter defining the minimum height of the trajectory of the node to be tracked.
This parameter is necessary to decide between multiple possible solutions in the case of
planar setups of anchor nodes; see Section 5.2. ∆pmin and n are parameters controlling the
iteration of the algorithm. ∆pmin defines the minimum movement of the position that the
algorithm needs to execute on p(t). If the movement is smaller, the estimated position is
assumed to have converged for time step t and the iteration is stopped. The iteration is

stopped anyway if n number of iterations are executed. p(t−1) = (x(t−1), y(t−1), z(t−1))
T

is
the estimated position of the last time step t− 1, and d(t) is the observed distance of the
current time step, which is weighted by the age weight vector w(t) ∈ (0, 1]m. The output of

the algorithm is the estimated position p(t) = (x(t), y(t), z(t))
T

for time step t.

Algorithm 2: Single Localization Step.
Data: A, η, zmin, ∆pmin, n
Input: p(t−1), d(t), w(t)

Output: p(t)

begin
p(t) ←− p(t−1);
i←− 0;
repeat

for i in 0, . . . , m do
Gi ←− p(t) − Ai;
Ri ←− ‖Gi‖;
Gi ←− Gi

Ri
;

∆p←− G−1
((

d(t) − R
)

w(t)
)

;

p(t) ←− p(t) + η · ∆p;
if z(t) < zmin then

z(t) ←− 2zmin − z(t);

j←− j + 1;
until j ≥ n or ‖∆p‖ < ∆pmin;

The algorithm starts by generating a gradient matrix through the computation of the
vector distance between the current estimation p(t) and the position of each anchor node
Ai. By computing the norm of each line Gi within G, we obtain the estimated distance
vector R =

(
‖pt − A0‖, . . . , ‖pt − Am‖

)T . We now normalize Gi with Ri. Afterwards,
the next movement ∆p of the estimated position p(t) is computed by pseudo-inverting
G and multiplying with the weighted difference of observed distances and estimated
distances

(
d(t) − R

)
w(t). If the weighting of nodes is not wanted, the weight vector w(t)

can be replaced with a vector of ones. The use of the pseudo-inverse guarantees a correct
weighting of the individual anchors to minimize the overall error. The resulting movement
∆p is scaled by the step size η and added to the current estimated position p(t). If the
resulting z-coordinate is below the minimum z-coordinate defined by zmin, we invert the
coordinate by computing z′ = zmin + zmin − z = 2zmin − z. This is repeated until either
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the maximum number of iterations n is reached or the current movement of the estimated
position ∆p is smaller than the defined minimum movement ∆pmin.

4.3. Continuous Localization

Localizing a node is a continuous process. Therefore, the Localization Step described
in Algorithm 2 needs to be executed repeatedly. Algorithm 1 describes the process. This
algorithm takes the current observed distances d(t) and the age of each distance value
∆t(t) as input because we cannot expect to receive distances from all anchors at every time
step. Additionally, vmax defines the maximum expected speed of the node to be tracked,
a defines the base of the exponential growth of vmax and ∆T indicates the desired update
frequency of the estimated position. b controls the decay of the influence of an anchor
based on the age of its last received distance measurement. Higher values of b increase the
decay, whereas the minimal value of 1 disables it.

The algorithm starts with initializing the position of the tracked node to p(0) = (0, 0, 0)T.
This initialization is arbitrary and can be adapted as necessary based on environmental
circumstances. However, for our relative localization, it worked well. For each update
of distance observations d(t), the algorithm executes localization_step, supplying the
observed distances and the current position estimate. The weight vector regarding the
age of the measurements w is computed as exponentially decreasing with growing age.
To prevent different sizes of update steps due to delays in communication, the weight
vector is normalized to have the sum ∑ w equal to its length #w. Afterwards, the speed
of the node is estimated based on the results of the localization of the current p(t) and the
previous time step p(t−1). If the estimated speed v = ‖p(t) − p(t−1)‖/∆T is smaller than
the maximum speed vmax multiplied by the exponential growth factor am, the position
is updated. Otherwise, the old position is kept because the newly estimated position is
considered an outlier. The exponential growth factor am increases every time a position is
not updated to prevent the localization from becoming stuck in local optima far away from
the real trajectory due to a sequence of bad measurements.

Compared to existing systems using only ranging information, our approach is spe-
cially tailored towards drone localization. First, we assume the localization to output
3D-coordinates because drones typically move in all 3 dimensions. Additionally, we as-
sume anchors to often be located in a plane, which poses additional challenges regarding
the z-coordinate estimation of the algorithm. To overcome this, we use the additional zmin
parameter and the associated logic to select the correct solution. The vmax and a parame-
ters handle the specific movement speed of drones by filtering out unreasonable values
based on the possible movement speed of the tracked object. This parameter may even be
delivered by the control software of the drone to further enhance the filter characteristics.
To prevent the localization from becoming stuck in local optimum far away from the
real trajectory, the parameter a enables exponential growth of the allowed vmax enabling
resynchronization of the localization and the real trajectory.

5. Experimental Evaluation

To evaluate the performance of the proposed localization system, we conducted
multiple experiments. We started with an experiment to evaluate the performance of
the GPS receiver used in the copters to evaluate their usage as position reference, see
Section 5.1. Afterward, we evaluated the system in an indoor environment equipped with
a Vicon indoor localization system; see Section 5.2. Finally, we tested the system in-flight in
an outdoor scenario; see Section 5.3.

5.1. GPS Experiments

Our first experiment was designed to test the quality of our used GPS receivers as a
position reference. Additionally, we wanted to detect the level of quality the localization
system needs to be beneficial to the copters in an outdoor scenario. According to our
vision, our swarm of copters flies between indoor and outdoor scenarios, which places a
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large quantity of the mission trajectory close to buildings. Therefore, for the GPS quality
assessment, we decided to put the receiver close to the outer wall of our lab. The receiver
was connected to a Raspberry Pi to collect data and write the data to an SD card. We let the
receiver collect data for 7 days. The resulting distribution of positions is visible in Figure 3.
Additionally, we show the distribution of the individual coordinates and the number of
satellites in Figure 4a,b.

The results of the experiments show a deviation of typically±40 m in the GPS position,
even through we received data from at least 5 satellites in 99.9% of the data points. Another
disadvantage is the maximum deviation of the positions, which can be as large as ±150 m.
Especially noteworthy is the biased distribution of data points. The deviation is far larger
for the latitude than for the longitude. This is to be expected as the receiver was placed
to the north of a building, which probably reflected the incoming satellite signals and
disturbed the distance measurement. This is also an explanation for the offset of the center
of the measured positions against the location of the receiver.

150 170 190 210 230 250 270 290
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]
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#
Sa

t

Figure 3. Visualization of every 100th coordinate of the static GPS receiver experiment. All coordi-
nates are transformed into Universal Transverse Mercator (UTM) coordinates (Zone 32U) for better
assessment of the distance to the center. The color indicates the number of satellites perceived by the
receiver. The black X marks the position of the receiver.

In consequence, even a medium precision (±0.5 m) localization system used within
a swarm will provide major benefits regarding swarm stability if the swarm is flying in
an urban scenario. This is caused by the usage of distances between swarm members in
most swarm algorithms. These distances are computed from positions by periodically
calculating the difference between positions, which mathematically resembles a numerical
differentiation. Stochastic variations in the position data will be amplified by the numerical
differentiation, leading to large movements within the swarm, which may jeopardize
swarm stability.
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(b) Satellites.
Figure 4. Box–Whisker plots showing the distribution of the longitude and latitude coordinates after
transformation to UTM, as well as the distribution of satellite reception.

5.2. Indoor Evaluation with Precise Reference

For the precise evaluation of the localization system, we used an existing Vicon system.
The Vicon camera-based tracking system delivers 100 Hz updates with a precision of 1 mm.
The observable area is a cube of 3 m× 3 m× 3 m. We set up 8 static anchor nodes labeled
128–135 in the area, as shown in Figure 5. Due to the flat ground in the test area, all anchors
were placed at 0.2 m height. This setup is typical for manually placed anchors in flat
environments. This presents a problem for the localization system, as two solutions exists,
which are equally likely: one above the anchors and one below the anchors. Consequently,
the zmin parameter of Algorithm 2 was set to 0.2 m to mitigate this problem for the following
experiments. We executed two random trajectories by moving a single node in the area
manually. The resulting trajectories are visualized in Figure 5. The node was attached to
a stick of 1 m length to avoid blocking the line of sight between the node and the anchor
nodes with our bodies.

Our localization system was configured with the parameters described in Table 1.
The step size parameter η was deduced as iterative through preliminary experiments.
The origin of the local coordinate system was chosen as the initial position p(0). The min-
imum localization height zmin was chosen based on the average height of the anchors.
The maximum speed vmax is defined by our copters, even though a much smaller value
is defined as the maximum speed in software. The a parameter was empirically deduced.
∆T was chosen based on the capabilities of our hardware modules. We derived some rele-
vant parameter configurations to test different components of the algorithm. The default
configuration contains the typical standard parameters without the use of age information.
The age configuration adds the capability of weighting the individual anchors based on the
age of the information. The best parameter set is the combination of all positive parameter
changes in comparison to the default. The heavy configuration tests if additional computa-
tional resources may enhance the performance of the algorithm. The ground configuration
checks the performance of the algorithm in case no assumption on anchor positions is
made. To this end, the minimum z-height is defined as 0 m in the local coordinate sys-
tem of the localization. The slow configuration tests the influence of the speed limitation
through vmax.
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Figure 5. Visualizations of the difference between the Vicon reference positions (light blue dashed
trajectory) and the estimated position by the localization system (red dots) in the xy-plane. The colors
of the dots indicate the differences between the reference position and the estimated position.
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Table 1. Localization algorithm parameter configurations. The table shows the evaluated configura-
tions of the algorithm parameters for both algorithms. The differences of the individual configuration
against the default configuration is highlighted in bold.

Config Algorithm 2 Parameters Algorithm 1 Parameters
p(0) [m] η zmin [m] ∆p [m] n vmax [m/s] a b ∆T [s]

default (0, 0, 0)T 0.1 0.2 0.1 100 20 1.01 1 0.1
age (0, 0, 0)T 0.1 0.2 0.1 100 20 1.01 2 0.1
ground (0, 0, 0)T 0.1 0.0 0.1 100 20 1.01 1 0.1
slow (0, 0, 0)T 0.1 0.2 0.1 100 5 1.1 1 0.1
heavy (0, 0, 0)T 0.1 0.2 0.01 1000 20 1.01 1 0.1
best (0, 0, 0)T 0.1 0.0 0.1 100 5 1.1 2 0.1

First, we look at the difference in distance measurements between the Vicon system
and our UWB-Ranging nodes. Figure 6a,b show the distance error e for each trajectory
for each anchor node. Interestingly, the distribution of errors is close to a zero mean with
generally less than 0.1 m deviation. However, the spread of the distribution is quite high.
The 90% quantile reaches ±0.3 m for both experiments. Anchor 134 is an exception with a
negative 90% quantile of over −0.5 m. In general, the distance estimation can be assumed
to provide an accuracy of ±0.3 m in most cases.
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(a) Scenario 1.
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(b) Scenario 2.
Figure 6. Box–Whisker of distance errors for each anchor in both indoor evaluation scenarios.

The resulting trajectories of applying Algorithms 1 and 2 to the acquired distance
values extracted from the UWB modules during the execution of trajectory 1 and 2 are
shown in Figure 7. As shown in Figure 7, the error e between the true positions and
the estimated positions from the localization system is typically in the range of ±0.25 m.
However, some outliers exist with large errors beyond ±2 m. Looking at the detailed
composition of the errors in Figure 8a,b, we observe that the worst outliers are not visible
because they make up less than 5% of the data. However, for the first trajectory, an increased
error is visible for the z-coordinate, which also increases the overall error. This is probably
created through the location of the anchor nodes in a plane parallel to the xy-plane.



Drones 2021, 5, 85 12 of 20

0.0 0.5 1.0 1.5 2.0 2.5

e [m]

0

100

200

300

400

500

600

700

co
un

t

default
age
ground
slow
heavy
best

(a) Scenario 1.

0 1 2 3 4

e [m]

0

200

400

600

800

1000

1200

co
un

t

default
age
ground
slow
heavy
best

(b) Scenario 2.
Figure 7. Histogram of localization errors for both indoor evaluation scenarios. Each parameter
configuration of the localization algorithm is shown in a separate bar.



Drones 2021, 5, 85 13 of 20

e d
ef

au
lt

e b
es

t

∆
x d

ef
au

lt

∆
x b

es
t

∆
y d

ef
au

lt

∆
y b

es
t

∆
z d

ef
au

lt

∆
z b

es
t

e [
m
]

(a) Scenario 1.

e d
ef

au
lt

e b
es

t

∆
x d

ef
au

lt

∆
x b

es
t

∆
y d

ef
au

lt

∆
y b

es
t

∆
z d

ef
au

lt

∆
z b

es
t

−0.5

0.0

0.5

(b) Scenario 2.
Figure 8. Box–Whisker plot of the localization error of both indoor scenarios. e shows the norm of
the error vector, whereas x, y and z show the error for each component of the error vector. The values
are shown for the default and the best parameter configuration of the localization algorithm.

Figure 8a shows that the error in the z-coordinate is different from the error in the other
components. Based on this situation, we suspected a correlation between the localization
error and z-coordinate (height). To verify this, we conducted a Pearson correlation analysis
between the observed position error ∆e and the z-coordinate of the Vicon reference position.
The results are visible in Table 2.

For most algorithm configurations, a correlation coefficient r1 ≈ −0.4 for scenario
1 and 2 can be observed. To verify the statistical soundness of the result, we conducted
a two-way permutation of 100,000 permutations of the input data for each algorithm
configuration for each scenario, which resulted in a p-value of 0.0 for all combinations.
Consequently, there is a weak negative linear correlation between the position error and
the z-coordinate of the object to be localized. It appears that the typical ground reflects the
wireless signals and generates additional errors through multipath effects. Interestingly,
the age configuration using the age-awareness extension of the algorithm reduced the
correlation for scenario 2 to ≈0.37. The ground detection with a zmin = 0.0 m also shows a
deduction in the correlation for the second scenario. The slow configuration also reduced
the correlation for both scenarios to the minimally observed correlations of −0.274 and
−0.25. However, this comes at the cost of reducing the maximum movement speed of the
copters. Interestingly, there is a large deviation in correlation coefficients between scenario
1 and 2 for the best configuration. This is caused by the larger variation of the error in
z-coordinate for the first scenario with this configuration. In the first scenario, the zmin
parameter has a large influence and filters out some wrong z-coordinates if it is set to 0.2 m.
In the second scenario, it does not have any significant impact at all. The best configuration
omits the parameter because this makes the resulting algorithm setup more general without
any assumptions on anchor placement. Therefore, we decided to use zmin = 0.0 for best,
even though it does not provide the best possible localization precision for both scenarios.

Table 2. Pearson correlation coefficients between the error e of localization and z-coordinate of the
tracked object.

Configuration
Parameters r1 p1 r2 p2

default −0.426 0.0 −0.439 0.0
age −0.459 0.0 −0.370 0.0
ground −0.447 0.0 −0.327 0.0
slow −0.274 0.0 −0.250 0.0
heavy −0.426 0.0 −0.439 0.0
best −0.188 0.0 −0.398 0.0
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Figure 9 shows the time difference between received distance measurements of the
different anchors. As shown, the time difference is very similar for all nodes. The median
is at ≈0.23 s, which indicates that either the receiver module was overloaded with the
reception and forwarding of the measurements or wireless packages were lost between the
nodes. As the spread of the distribution of time differences is rather high, we assume that
we have approx. 50% package loss in our scenario. Consequently, the parameters of the
modules need to be optimized to enhance the reliability of the communication.
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Figure 9. Box–Whisker plot of the age between received measurements from the different anchors
for both indoor scenarios.

The results of our indoor evaluation show that our systems provides similar precision,
even though we observed a large loss of packets mid-flight. This, of course, reduces
the update rate of the system to less than 10 Hz, which may easily be compensated by
the internal INS filters of the autopilot software. Additionally, we achieved an average
precision of 0.2 m, which is better than the work of Kempke et al. [18], but with much less
communication overhead. This is important because our later extension to a swarm-based
localization will increase the necessary communication further. We also achieved slightly
less precision than OmniSwarm [20] for two drones. However, this approach used way
more sensors and was integrated deeper into the drone system. Our approach can easily
be used as an extension module to existing copter builds.

5.3. Outdoor Evaluation

In addition to the indoor experiments with a high-precision reference, we conducted
two outdoor experiments. These experiments have no high-precision reference. Therefore,
we analyzed the behavior based on the flight patterns.

The first experiment used the anchor setup shown in Figure 10. The anchors are
all placed in a xy-plane because the experiment was conducted on flat ground and no
variation in height was possible. The receiving node was attached to a FINken quadcopter,
which was manually controlled. The node transmitted all distance measurements to a
laptop for logging purposes. The localization algorithm was executed afterwards with
configuration best. We executed two trajectories with the same quadcopter. In the first
trajectory, the quadcopter hovered over each anchor node with slow movement speed
between the anchors. The second trajectory executed multiple counter-clockwise circles
over the area.

As shown in Figure 10a, the generic flight behavior can be reconstructed by the
localization system. The visible instability is not necessarily caused by the localization
system, but may also be caused by the manual control of the copter. The second trajectory,
visible in Figure 10b, also shows the expected behavior of counter-clockwise circles in
the area.

Similar to the results of the indoor experiments, Figure 11a,b show the higher proba-
bility of localization errors close to the ground. In the case of trajectory 1, the z-coordinate
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of the copter increased to ≈2.5 m, even though the flight had not started yet. The final
z-coordinate after landing (after ≈250 s and ≈200 s, respectively) also shows an offset of
≈1 m. The offset of the z-coordinate cannot be evaluated mid-flight because no reliable
reference is available for these flights.
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Figure 10. Visualizations of the reconstructed trajectories from the first outdoor evaluation for both
scenarios. The flight time at each position is shown as a color from red to yellow according to the
attached color bar.
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Figure 10. Visualizations of the reconstructed trajectories from the first outdoor evaluation for both
scenarios. The flight time at each position is shown as a color from red to yellow according to the
attached color bar.

Similar to the results of the indoor experiments, Figure 11a,b show the higher proba-
bility of localization errors close to the ground. In the case of trajectory 1, the z-coordinate
of the copter increased to ≈2.5 m, even though the flight had not started yet. The final
z-coordinate after landing (after ≈250 s and ≈200 s, respectively) also shows an offset of
≈1 m. The offset of the z-coordinate cannot be evaluated mid-flight because no reliable
reference is available for these flights.

(b) Scenario 2
Figure 10. Visualizations of the reconstructed trajectories from the first outdoor evaluation for both
scenarios. The flight time at each position is shown as a color from red to yellow according to the
attached color bar.

As shown in Figure 12, the distribution of the time difference between the reception
of distance measurements in both trajectories show similar median values to the indoor
experiments. However, the variance between the individual anchor nodes is higher. This
may be caused by shadowing effects of the components of the copter, especially the battery,
which prevent line-of-sight communication to certain anchors.

The second outdoor experiment used the fully integrated system. The receiver node
was attached to a copter. The node transformed the received distance measurements to
positions in the local coordinate system using configuration ground without any speed
limitation. The resulting relative coordinate was then transformed to GPS coordinates
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based on hard-coded reference points. The GPS information was packed into the NMEA
format and directly transmitted to the copter via UART. The copter used the provided data,
similar to real GPS data. In this experiment, we set up anchors along a walkway in a park
close to the faculty. This allowed us to easily obtain the GPS coordinates of the anchors with
relatively high precision from open street maps. The resulting anchor position overlaid on
top of an OpenStreetMap is shown in Figure 13. The copter was controlled manually and
again flew over all anchor nodes, while always hovering above each one.

Unfortunately, the used hard-coded reference points deviated from the anchor po-
sitions. Therefore, the references need to be modified after the experiment. To this end,
a nonlinear gradient descent on an affine transformation consisting of scaling, rotation
and translation was executed. The loss function of the gradient descent was formed by
the sum of squared distances between each trajectory position and the position of the
associated anchor. The position–anchor association was performed manually and is shown
in Figure 14. The resulting trajectory after executing optimized affine transformation on
the original trajectory is shown in Figure 13.
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Figure 11. Line plot of the reconstructed z-coordinates of the first outdoor evaluation experiment for
both scenarios.
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Figure 12. Box–Whisker plot of the distribution of time difference between reception of distance
measurements from the different anchors for both scenario of the first outdoor evaluation.
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Figure 13. Visualization of the anchors, node trajectory and localization error for the second outdoor
experiment. The anchors are marked with X. The node trajectory is colored to indicate time. The flight
time is visible in seconds in the color bar.
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Figure 14. Visualization of the anchor assignment for evaluation of the outdoor performance. Each
position is assigned to the anchor with the respective color visible in the color bar. The anchor with
number −1 is a virtual anchor, capturing all positions not assigned to any anchor.

Figure 15 shows the resulting errors of the associated anchors and the positions. As shown,
the general positions of the copter fit the expected trajectory. However, Figures 13 and 15
still show larger deviations from the correct positions. We expect the rotation of the copter
together with the antenna characteristics of the node to have a high influence in this scenario.
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Figure 15. Visualization of the anchors and localization error for the second outdoor experiment.
The anchors are marked with X. The estimated position error of each position is indicated using
colors visible in the color bar.

Additionally, the embedded software did not yet support all parameters of the local-
ization algorithm, which is the reason for the usage of a suboptimal configuration.

6. Conclusions and Future Work

In this paper, we showed that GPS may be unreliable, and additional local relative
localization systems are necessary to support the robust behavior of drones. To this end,
we developed a localization system based on UWB-Ranging to fixed anchor nodes. We
showed that without additional hardware besides the DWM1000 module, the distance
measurements between the quadcopter and the anchors are typically in the range of±0.2 m.
We developed two algorithms, which together form a continuous localization mechanism
usable in autonomous quadcopters. The algorithms were tested with different parameters
in indoor and outdoor scenarios. In the indoor scenario, the achievable precision has a
median value of ≈0.2 m. The outdoor scenarios showed the system capability regarding
the tracking, even though no precise error estimation was possible. An interesting finding
of the approach was that the error in the localization has a weak correlation to the height of
the object being tracked. This seems to be created by reflection and line-of-sight obstruction
created by the ground.

In summary, the described approach showed reasonable performance on par or better
than state-of-the-art approaches, but with minimal integration to the drone system. This
enables easy integration to other copters as long as they are using the same autopilot
software. Additionally, the approach is very efficient regarding communications, which is
beneficial for the later extension to a swarm-localization system.

For future work, we want to integrate information from the INS of the copters. This
enables the additional usage of movement commands and local sensors on the copter
to further increase the precision of the localization. While the used NMEA protocol is
rather simple, it is limited in update rate and precision. However, an implementation of
the UBLOX protocol is planned. This will provide a higher precision and update rate.
In the next step, the embedded localization software will be enhanced to support the best
parameter configuration to enhance localization accuracy. The third modification that we
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aim to evaluate is the usage of external antenna for the DWM100 modules to mitigate the
line-of-sight issues in close-to-ground scenarios.

Our final goal is the extension of the current system to multihop localization to enable
swarm localization of a swarm of drones. To this end, the localization node of each swarm
member needs to be able to freely switch between the tracked node and anchor node
based on its possible contribution to the localization quality of other localization nodes.
The benefit of this approach is that even a copter with depleted energy, which cannot
continue flying, may serve the swarm as an additional anchor for localization. To this
end, a decision-making algorithm needs to be developed, which can manage the different
goals of such an integrated swarm localization system, such as minimizing movement
times, maximizing localization precision, ensuring safety of each drone and minimizing
energy cost.
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UAV Unmanned Aerial Vehicle
USART Universal Serial Asynchronous Receiver Transmitter
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