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Abstract: In a fifth generation (5G) vehicular network architecture, several point of access (PoA)
types, including both road side units (RSUs) and aerial relay nodes (ARNs), can be leveraged to
undertake the service of an increasing number of vehicular users. In such an architecture, the
application of efficient resource allocation schemes is indispensable. In this direction, this paper
describes a network slicing scheme for 5G vehicular networks that aims to optimize the performance
of modern network services. The proposed architecture consists of ground RSUs and unmanned
aerial vehicles (UAVs) acting as ARNs enabling the communication between ground vehicular
nodes and providing additional communication resources. Both RSUs and ARNs implement the
LTE vehicle-to-everything (LTE-V2X) technology, while the position of each ARN is optimized by
applying a fuzzy multi-attribute decision-making (fuzzy MADM) technique. With regard to the
proposed network architecture, each RSU maintains a local virtual resource pool (LVRP) which
contains local RBs (LRBs) and shared RBs (SRBs), while an SDN controller maintains a virtual
resource pool (VRP), where the SRBs of the RSUs are stored. In addition, each ARN maintains its
own resource blocks (RBs). For users connected to the RSUs, if the remaining RBs of the current RSU
can satisfy the predefined threshold value, the LRBs of the RSU are allocated to user services. On the
contrary, if the remaining RBs of the current RSU cannot satisfy the threshold, extra RBs from the
VRP are allocated to user services. Similarly, for users connected to ARNs, the satisfaction grade of
each user service is monitored considering both the QoS and the signal-to-noise plus interference
(SINR) factors. If the satisfaction grade is higher than the predefined threshold value, the service
requirements can be satisfied by the remaining RBs of the ARN. On the contrary, if the estimated
satisfaction grade is lower than the predefined threshold value, the ARN borrows extra RBs from the
LVRP of the corresponding RSU to achieve the required satisfaction grade. Performance evaluation
shows that the suggested method optimizes the resource allocation and improves the performance of
the offered services in terms of throughput, packet transfer delay, jitter and packet loss ratio, since
the use of ARNs that obtain optimal positions improves the channel conditions observed from each
vehicular user.

Keywords: 5G vehicular networks; unmanned aerial vehicles (UAVs); fuzzy multi-attribute decision-
making (fuzzy MADM); LTE advance pro with FD-MIMO (LTE-A Pro FD-MIMO); LTE vehicle-to-
everything (LTE-V2X); network slicing; computation offloading; software-defined networking (SDN)
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1. Introduction

In recent years, network slicing has rapidly evolved, providing novel techniques for
performing resource allocation in fifth generation (5G) network infrastructures. One of the
most important developments that network slicing has enabled is that of the virtualization
of radio access network (RAN) resources [1]. As a result, virtual communication resources
can be shared between many points of access (PoAs) by taking into consideration the
current demands of user services. Thus, PoAs with saturated communication resources can
borrow additional resources from their neighboring PoAs in order to satisfy the increased
requirements of user services.

Several RAN technologies can be used to construct RAN infrastructures with both
ground and aerial PoAs. Indicatively, in a 5G vehicular network, road side units (RSUs)
can implement the long-term evolution of vehicle-to-everything (LTE-V2X) [2] technology,
while unmanned aerial vehicles (UAVs) [3] can simultaneously act as aerial relay nodes
(ARNs) [4] that provide additional communication resources for user services, as well
as improve the channel conditions for users that receive decreased SINR from their RSU.
Additionally, in a vehicular network environment, vehicles usually serve many passengers
with multiple services each. Thus, the optimal allocation of the available communication
resource, called resource blocks (RBs) [5] in the case of the LTE technology, is a critical
challenge which must be addressed.

To satisfy the aforementioned requirement of the improved allocation of communi-
cation resources, this paper proposes a novel network scheme for performing network
slicing on a 5G vehicular network. This scheme aims to improve the performance of
vehicular services such as autonomous navigation (ANav), conversational voice (CVo),
conversational video (CVi) and Web browsing (WB). Moreover, this scheme was deployed
to a novel network architecture that consists of UAVs acting as ARNs and RSUs, providing
RBs to vehicular users. Moreover, the position of each ARN is optimized by applying
a fuzzy multi-attribute decision-making (fuzzy MADM) method which is implemented
using interval valued icosagonal fuzzy numbers (IVIFNs) [6]. Regarding the design of
the proposed scheme, each ARN maintains its own RBs, while each RSU maintains a
local virtual resource pool, called LVRP, where both LRBs and SRBs exist. Furthermore, a
software-defined networking (SDN) controller maintains a global virtual resource pool,
called VRP, where the SRBs of the RSUs are stored. For users connected to either the ARNs
or the RSUs, the satisfaction grade of their services is monitored considering both the
quality of service (QoS) and the signal-to-noise plus interference (SINR) parameters. If the
satisfaction grade is higher than the predefined threshold value, the service requirements
can be satisfied from the remaining local RBs of the ARN or the RSU, respectively. On the
contrary, if the satisfaction grade is lower than the predefined threshold, the ARN or the
RSU borrows extra RBs from the LVRP or the VRP, respectively.

The proposed approach includes the following characteristics:

• A three-layer architecture is implemented for the optimal allocation of communication
resources to user services.

• Both RSUs and ARNs are deployed to undertake the service of vehicular users.
• The satisfaction grade of user services, considered during the network slicing process,

is estimated using the Mamdani fuzzy inference system (MFIS).
• Both the QoS and the SINR are considered for the estimation of the satisfaction grade

of user services.
• A fuzzy MADM algorithm is used for the optimization of the position of each ARN.
• ARNs can commit additional communication resources from the LVRP of the corre-

sponding RSUs to meet the requirements of the services of their users.
• An SDN controller maintains a VRP allowing the RSUs to commit additional commu-

nication resources to satisfy the strict requirements of users’ services.
• Both the MFIS that estimates the satisfaction grade of user services and the fuzzy

MADM algorithm that performs the optimization of the ARNs’ positions are imple-
mented using IVIFNs.
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The remainder of the paper is as follows: in Section 2, the current state of the art is
revised, while Section 3 presents the proposed scheme for performing network slicing on
5G vehicular networks. Section 4 presents the simulation setup and Section 5 describes the
evaluation results. Finally, Section 6 concludes the discussed work.

2. State of the Art

In recent years, various contributions in relevant technological areas have been re-
ported upon which the proposed network slicing framework is based.

2.1. Network Slicing in Vehicular Networks

Several schemes for performing resource allocation on 5G network architectures,
including 5G vehicular networks, have been proposed in the research literature. Indica-
tively, in order to optimize the performance of the 5G RAN environment, a scheme for
the manipulation of network resources has been proposed based on the next-generation
mobile network alliance (NGMN) [7,8]. In this scheme, each network slice employs multi-
ple instances of logical subnetworks, while each subnetwork fulfills the requirements of
specific user services. In addition to the NGMN’s scheme, several network slicing schemes
perform the resource allocation by applying either non-QoS-aware or QoS-aware strate-
gies. Indicatively, in [9], three methods for performing network slicing by applying the
proportional fairness (PF) [10] non-QoS-aware scheduler are proposed. The first method
is called the static allocation (SA) method. It estimates the required number of RBs for
each slice by taking into consideration the constraints of the slice’s services. Subsequently,
the PF algorithm is used for the allocation of the RBs that each slice has committed to
vehicular users. Accordingly, the second method is called the allocation of ordered slices
(AOS). Its functionality is similar to the one implemented by the SA method, while in this
case, the priorities of the services that each slice serves are considered during the resource
allocation. Finally, the third method is called impartial allocation (IA). This method is
similar to AOS. The only difference is that, in this case, each slice commits RBs by not
considering only the number of RBs that should be committed but also the channel quality
that is observed in each RB. Thus, in this case, a service with higher priority allocates RBs
with better channel quality.

Furthermore, the ultra-reliable low latency communication for autonomous vehicular
networks (URLLC-AVN) QoS-aware algorithm described in [11] performs RAN virtualiza-
tion to enhance the allocation of the communication resources in vehicular networks. In
particular, in this case, each RSU maintains a set of RBs. The RBs of each RSU are divided
into two subsets, which are referred to as local-RBs and as shared-RBs. The local-RBs of
each specific RSU are only allocated to vehicular users that are connected to this RSU. On
the other hand, the shared-RBs of each RSU are stored to a virtual resource pool. The queue
delay that is observed for the services of each vehicular user is considered for the allocation
of the shared RBs. Specifically, if the observed queue delay is lower than a delay threshold,
then the local RBs are considered sufficient for satisfying the constraints of the services
of the user. However, in cases where the observed queue delay is higher than the delay
threshold, additional shared-RBs from the virtual resource pool are allocated to improve
the performance of the services of the vehicular user.

The frame level scheduler (FLS) described in [12,13] is another QoS-aware algorithm
used for resource allocation in 5G network infrastructures. This algorithm implements two
levels, namely the upper and the lower level. The upper level estimates the quota of data
that each real-time flow must transmit in order to satisfy its QoS constraints. Subsequently,
the lower level initially allocates RBs to real-time flows using the PF algorithm, while the
remaining RBs are allocated to non-real-time flows. Moreover, an improved version of the
FLS algorithm, called FLS advanced (FLSA) is proposed in [14], where the performance of
real-time services is further enhanced. Finally, another improved version of the algorithm,
called FLS advanced with cross carrier (FLSA-CC) is described in [15] where the operating
principles of cross carrier (CC) scheduling [16] are applied.
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In [17], the throughput enhanced scheduler (TES) is described. The TES algorithm
defines two scheduling techniques. The first technique allocates resources to real-time
flows by taking into consideration parameters such as the maximum acceptable delay
of each service, the head of line (HOL) delay observed in each service queue, the SINR,
the available throughput and the past average throughput observed for each service
flow. Accordingly, the second technique is applied for the allocation of communication
resources to non-real-time service. It must be noted that this technique does not take into
consideration the target delay, but in this case, the maximum acceptable packet loss ratio
is considered.

2.2. The Emergence of Aerial Networks

As the demand for comprehensive wireless communication services and ubiquitous
access over large coverage areas has grown, the UAVs, widely known as drones, can
strongly support the ground networks in propagation scenarios with obstacles and highly
mobile and remote nodes [18–20]. In this direction, drone-to-everything (D2X) networks
can complement the ground vehicle-to-everything (V2X) networks and significantly im-
prove connectivity [21]. More specifically, the UAVs can fly at modest altitudes over
connected vehicles and enable the establishment of an adaptable and reliable multi-hop
communication backbone. A two-layer architecture for cooperative vehicular networking
in challenging environments was presented in [22]. This architecture consists of multiple
UAVs and ground components and enables relay-based, inter-UAV air-to-air (A2A), and
air-to-ground (A2G) communications.

In order to facilitate the seamless integration of different heterogeneous networks
consisting of ground and aerial entities, Cloud and Fog computing and networking have
been previously suggested and network architectures with UAVs acting as providers of Fog
computing services were proposed [23]. In addition, machine learning (ML) techniques
have been exploited to improve various design and functional aspects of UAV-based
communications [24]. In addition, the software-defined radio (SDR) and software-defined
networking (SDN) can bring flexibility and cost-efficient deployment and runtime of
customized networks [25]. A network architecture that integrates both ground and flying
network nodes was proposed in [26] and intended to meet the requirements for extended
radio coverage and increases sum-rate. This architecture takes advantage of moving radio
access (RA) nodes, SDN, network functions virtualization (NFV), and energy-awareness
for sustainable operation.

Previously, UAVs were also employed to construct air–ground integrated mobile
edge networks [27,28], since next-generation computation-intensive and delay-sensitive
applications necessitate flexible network deployments and improved quality of the com-
munication links. In order to obtain ultra-low latency in scenarios with large distances
and during the processing of large data volumes, the use of computing resources at the
edge of the network was also suggested in [29]. In particular, a flying ad hoc network
(FANET) with multiple UAVs equipped with a mobile edge computing (MEC) server was
envisioned as a key enabler for efficient computing. As the UAVs typically have certain
constraints in terms of computing resources and battery capacity, a novel computation
and offloading strategy relying on reinforcement learning (RL) was considered, where the
onboard computing elements (CE) of the UAVs can be enabled or disabled according to the
battery status using a system controller (SC). Based on this strategy, the computation task
can be transferred to other UAVs in a cooperative manner, in order to satisfy a trade-off
between power consumption, successful task processing, and delay.

As 5G network slicing aims to provide particular network resources to specific appli-
cations on demand, “AirSlice”, a UAV-based network slicing framework, was presented
in [30] as capable of supporting variable quality-of-service (QoS) requirements of UAV-
based applications based on traffic classes. In addition, the feasibility of integrating UAVs
as aerial nodes into 5G network slicing configurations for the enhanced reliability and
robustness of control links was underlined in [31]. In addition, the efficacy of UAV-based
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network slicing along with mobile broadband services was experimentally validated in [32]
for rail and vehicle scenarios using a 5G testbed. A service-oriented network slicing frame-
work was proposed in [33] for an air-ground integrated vehicular network (AGIVEN)
consisting of high-altitude platforms (HAPs), ground road side units (RSUs), and vehicles,
in order to control multi-dimensional heterogeneous resources. In this regard, the AGIVEN
was split into distinct virtual slices, each associated with particular applications and service
requirements. In addition, a space–air–ground integrated vehicular network (SAGVN)
was presented in [34] and the spectrum resources were dynamically sliced based on the
demands of vehicular services. In [35], a 5G network slice framework was proposed that
includes a FANET with UAVs capable of providing MEC services. This framework in-
tended to provide improved reliability and decreased end-to-end latency between sources
and actuators.

2.3. Contribution

This paper proposes a novel network framework that satisfies the requirements of
5G vehicular networking applications. More importantly, this framework extends the
conventional network slicing concept and provides a flexible UAV-based network slicing
that maintains wireless connections in challenging propagation areas, where vehicles
struggle for connectivity.

The strong aspects of the URLLC-AVN [11], FLSA-CC [15] and TES [17] schemes, as
well as of aerial networks, are combined to accomplish enhanced performance regarding
the allocation of the RBs to vehicular users. In particular, the design of the URLLC-AVN
was extended, resulting in a three-layer architecture according to the operating principles
of the FLSA-CC algorithm, in a way similar to [36]. At the same time, the proposed archi-
tecture was further enhanced with the use of ARNs that provide additional communication
resources and improved channel conditions. In this point, it should be noted that the geo-
graphical position of each ARN is optimized using a fuzzy MADM algorithm. Furthermore,
for the allocation of RBs which is performed from the corresponding layers of the proposed
architecture, the proposed network slicing scheme estimates the satisfaction grade of each
user service using a Mamdani fuzzy inference system (FIS), and subsequently, an improved
version of the TES, where the maximum acceptable packet loss ratio is considered both
in real-time and non-real-time services, along with the other parameters that the TES
algorithm considers in each case.

The evaluation of the satisfaction grade of user services using fuzzy logic can be
considered a critical advantage of the proposed scheme against alternative solutions such
as [30–35], since fuzzy logic enables the extraction of useful conclusions even if intermediate
or approximate information is considered [37,38]. Furthermore, another advantage of the
described methodology is the selection of the positions of the ARNs considering multiple
criteria as input to a fuzzy MADM algorithm. As a result, each ARN obtains an optimal
position enhancing the quality of the communication channel and thus, the performance of
the entire 5G vehicular network architecture.

3. The Proposed Network Slicing Scheme

This paper leverages a three-layer design to optimize the allocation of the commu-
nication resources to user services. The network slicing scheme is deployed in a 5G
network architecture, where each network component implements specific layers of the
implemented layered stack. In the following subsections, both the design of the proposed
scheme and the underlying network architecture are described.

3.1. The Layered Design of the Proposed Scheme

The proposed slicing scheme improves the three-layer design of the FLSA-CC [15]
scheduler. In particular, as presented in Figure 1, two service groups are defined, namely
the guaranteed bit rate (GBR) and the non-guaranteed bit rate (non-GBR) containing
best effort services. Initially, the upper layer categorizes the GBR service flow into two
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subcategories. The first subcategory called delay critical GBR (DC-GBR) includes services
where the observed delay is a very critical factor that should be satisfied. Indicatively, an
autonomous navigation service flow with maximum acceptable delay up to 5 ms [39] is
considered as a DC-GBR service. Accordingly, the second subcategory called non-delay
critical GBR (DC-GBR) includes real-time services with increased tolerance to the delay
factor (e.g., conversational video services). Indicatively, a conversational video service flow
with maximum acceptable delay up to 150 ms [39] is considered as a nDC-GBR service.
Subsequently, the upper layer evaluates the amount of RBs that should be committed for
each DC-GBR and nDC-GBR service to satisfy its QoS requirements. Then, the middle
layer allocates RBs obtained from the upper layer to both DC-GBR and nDC-GBR services.
Finally, the lower layer allocates the remaining RBs to non-GBR services. The functionalities
of each layer are described in the following subsections.

Free RBs 
(locally or on Virtual Resource Pool)

?

Lower Layer (TES-nRT)

Allocate RBs to non-GBR services

Lower Layer (TES-nRT)

Allocate RBs to non-GBR services

Middle Layer (TES-RT)

Step 1: Allocate RBs to DC-GBR services

Upper Layer (MFIS)

Step 1: Categorize GBR services as Delay Critical GBR (DC-GBR) 
and non-Delay Critical GBR (nDC-GBR)

GBR services

non-GBR 
services

Step 2: Commit the required number of RBs for DC-GBR services

Step 3: Commit the required number of RBs for nDC-GBR services

Step 2: Allocate RBs to nDC-GBR services

Figure 1. The layer stack of the proposed scheme.

3.1.1. The Upper Layer of the Network Slicing Scheme

A set Mu(tn) of GBR services per user u requires communication resources to sat-
isfy particular constraints during the tn TTI. Initially, the upper layer creates two sub-
sets of services, namely the Mu,DC−GBR(tn) and the Mu,nDC−GBR(tn) consisting of the
DC-GBR and the nDC-GBR services of the user, respectively. Subsequently, for each
mu,DC−GBR(tn) ∈ Mu,DC−GBR(tn) service, the Sestimated

m,u (tn) indicator is defined. It deter-
mines the estimated satisfaction grade of user service mu,DC−GBR during the upcoming
tn TTI.

The Mamdani fuzzy inference system (MFIS) system [40] is applied for the estimation
of the Sestimated

m,u (tn). In this cases, both the SINRestimated
m,u and the Qestimated

m,u parameters are
considered inputs, while they are expressed as interval valued icosagonal fuzzy numbers
(IVIFNs) [6]. The linguistic terms and the corresponding IVIFNs used for the representation
of the Sestimated

m,u , the SINRestimated
m,u and the Qestimated

m,u values are presented in Table 1. In
addition, Table 2 presents the fuzzy rules used for the estimation of the Sestimated

m,u parameter.
In particular, the SINRestimated

m,u parameter represents the SINR observed from the
user u. Furthermore, the Qestimated

m,u (tn) parameter represents the estimated quality of
the mu,DC−GBR user’s service regarding the available RBs in the tn TTI. Qestimated

m,u (tn)
is calculated using Formula (1) which applies the multiplicative exponent weighting
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(MEW) method described in [41]. In this formula, the thestimated
m,u (tn), the destimated

m,u (tn),
the jestimated

m,u (tn) and the plestimated
m,u (tn) parameters represent the normalized values of the

throughput, the packet transfer delay, the jitter and the packet loss ratio parameters, re-
spectively. In addition, the wth, wd, wj and wpl represent the weights of the considered
parameters. In this work, the aforementioned weights are calculated using the fuzzy
analytic network process (FANP) method [40] which is implemented using IVPFNs:

Qestimated
m,u (tn) =

[
thestimated

m,u (tn)
]wth ·

[
destimated

m,u (tn)
]wd ·

[
jestimated
m,u (tn)

]wj ·
[
plestimated

m,u (tn)
]wpl

(1)

Furthermore, it should be noted that the value thestimated
m,u (tn) is calculated using

Formula (2), where µ(t) is the estimated throughput per RB and ravailable represents the
number of RBs that are available for allocation:

thestimated
m,u (tn) =

(µ(tn) · ravailable)− thmin

thmax − thmin (2)

Moreover, the values of the destimated
m,u (tn), jestimated

m,u (tn) and plestimated
m,u (tn) parameters

are calculated using Formulas (3)–(5), respectively. The paverage
m,u parameter represents the

average packet size, the dpast_average
m,u is the past average packet transfer delay and the

threquired
m,u is the required throughput of the mth service of user u:

destimated
m,u (tn) = 1−

[
(

paverage
m,u

thestimated
m,u (tn)

)− dmin

dmax − dmin

]
(3)

jestimated
m,u (tn) = 1−

[
|destimated

m,u (tn)− dpast_average
m,u | − jmin

jmax − jmin

]
(4)

plestimated
m,u (tn) = 1−

[ ( threquired
m,u (tn)−thestimated

m,u (tn)

threquired
m,u (tn)

)− plmin

plmax − plmin

]
(5)

The minimum acceptable satisfaction grades Sthreshold
m,u per user and service are ob-

tained using the SINRthreshold
m,u and the Qthreshold

m,u threshold values defined in [39]. Sub-
sequently, the aforementioned procedure is also performed for each mu,nDC−GBR(tn) ∈
Mu,nDC−GBR(tn) service.

The Mamdani Satisfaction Chart

During the instantiation of the system architecture, a Mamdani satisfaction chart,
which contains the Sestimated

m,u values obtained for each possible SINRestimated
m,u and Qestimated

m,u
combination, is created. Specifically, each satisfaction indicator Sestimated

m,u of Figure 2 is
obtained using the MFIS method, considering the SINRestimated

m,u and the Qestimated
m,u as input

parameters. Both SINRestimated
m,u and Qestimated

m,u are normalized in order to have values within
the range of [0, 1]. In addition, the MFSINR, MFQ, MFS membership functions (MFs) are
defined using the equalized universe method (EUM) method [40], indicating the linguistic
terms and the corresponding IVPFNs for the fuzzy representation of the SINRestimated

m,u ,
Qestimated

m,u and Sestimated
m,u factor, respectively. Thus, for each crisp value, two membership

degrees are determined in the corresponding MF, one for the upper octagon and one for
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the lower octagon. Table 1 represents the linguistic terms and the corresponding IVPFNs
of MFSINR, MFQ and MFS membership functions, which are equally distributed inside
the domain [Umin, Umax] = [0, 1], as described in [40]. Furthermore, Table 2 presents the
considered fuzzy rule base which is used from the MFIS for producing the satisfaction chart.

Table 1. The linguistic terms used for the representation of MFSINR, MFQ and MFS membership functions and the
corresponding interval-valued icosagonal fuzzy numbers .

Linguistic Terms for
the MFSINR

Membership Functions

Linguistic Terms for
the MFQ Membership

Functions

Linguistic Terms for the MFS
Membership Functions

Interval-Valued Icosagonal Fuzzy
Number

Absolutely Bad (AB) Absolutely Poor (AP) Absolutely Unsatisfactory
(AU)

[(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.008, 0.023,
0.038, 0.053, 0.068, 0.083, 0.098, 0.113,
0.128, 0.143, 1, 0.20, 0.40, 0.60, 0.80, 0.80,
0.60, 0.40, 0.20), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.006, 0.018, 0.030, 0.042, 0.054, 0.066,
0.078, 0.090, 0.102, 0.114, 0.8, 0.08, 0.26,
0.44, 0.62, 0.62, 0.44, 0.26, 0.08)]

Too Bad (TB) Very Poor (VP) Very Unsatisfactory (VU)

[(0, 0, 0, 0, 0.028, 0.043, 0.058, 0.074, 0.089,
0.104, 0.119, 0.134, 0.149, 0.164, 0.179,
0.194, 0.209, 0.224, 0.239, 0.254, 1, 0.20,
0.40, 0.60, 0.80, 0.80, 0.60, 0.40, 0.20), (0,
0.009, 0.021, 0.033, 0.045, 0.057, 0.069,
0.081, 0.093, 0.105, 0.117, 0.129, 0.141,
0.153, 0.165, 0.177, 0.189, 0.201, 0.213,
0.225, 0.8, 0.08, 0.26, 0.44, 0.62, 0.62, 0.44,
0.26, 0.08)]

Bad (B) Poor (P) Unsatisfactory (U)

[(0.079, 0.094, 0.109, 0.124, 0.140, 0.155,
0.170, 0.185, 0.200, 0.215, 0.230, 0.245,
0.260, 0.275, 0.290, 0.305, 0.320, 0.335,
0.350, 0.365, 1, 0.20, 0.40, 0.60, 0.80, 0.80,
0.60, 0.40, 0.20), (0.108, 0.120, 0.132, 0.144,
0.156, 0.168, 0.180, 0.192, 0.204, 0.216,
0.228, 0.240, 0.252, 0.264, 0.276, 0.288,
0.300, 0.312, 0.324, 0.337, 0.8, 0.08, 0.26,
0.44, 0.62, 0.62, 0.44, 0.26, 0.08)]

Less than Enough (LE) Less than Medium (LM) Less than Acceptable (LA)

[(0.190, 0.206, 0.221, 0.236, 0.251, 0.266,
0.281, 0.296, 0.311, 0.326, 0.341, 0.356,
0.371, 0.386, 0.401, 0.416, 0.431, 0.446,
0.461, 0.476, 1, 0.20, 0.40, 0.60, 0.80, 0.80,
0.60, 0.40, 0.20), (0.219, 0.231, 0.243, 0.255,
0.267, 0.279, 0.291, 0.303, 0.315, 0.327,
0.339, 0.351, 0.363, 0.375, 0.387, 0.399,
0.412, 0.424, 0.436, 0.448, 0.8, 0.08, 0.26,
0.44, 0.62, 0.62, 0.44, 0.26, 0.08)]

Enough (EN) Medium (M) Acceptable (A)

[(0.302, 0.317, 0.332, 0.347, 0.362, 0.377,
0.392, 0.407, 0.422, 0.437, 0.452, 0.467,
0.482, 0.497, 0.512, 0.527, 0.542, 0.557,
0.572, 0.587, 1, 0.20, 0.40, 0.60, 0.80, 0.80,
0.60, 0.40, 0.20), (0.330, 0.342, 0.354, 0.366,
0.378, 0.390, 0.402, 0.414, 0.426, 0.438,
0.450, 0.462, 0.475, 0.487, 0.499, 0.511,
0.523, 0.535, 0.547, 0.559, 0.8, 0.08, 0.26,
0.44, 0.62, 0.62, 0.44, 0.26, 0.08)]
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Table 1. Cont.

Linguistic Terms for
the MFSINR

Membership Functions

Linguistic Terms for
the MFQ Membership

Functions

Linguistic Terms for the MFS
Membership Functions

Interval-Valued Icosagonal Fuzzy
Number

More than Enough (ME) More than Medium
(MM) More than Acceptable (MA)

[(0.413, 0.428, 0.443, 0.458, 0.473, 0.488,
0.503, 0.518, 0.533, 0.548, 0.563, 0.578,
0.593, 0.608, 0.623, 0.638, 0.653, 0.668,
0.683, 0.698, 1, 0.20, 0.40, 0.60, 0.80, 0.80,
0.60, 0.40, 0.20), (0.441, 0.453, 0.465, 0.477,
0.489, 0.501, 0.513, 0.525, 0.538, 0.550,
0.562, 0.574, 0.586, 0.598, 0.610, 0.622,
0.634, 0.646, 0.658 0.670, 0.8, 0.08, 0.26,
0.44, 0.62, 0.62, 0.44, 0.26, 0.08)]

Less than Excellent (LE) Less than Good (LG) Slightly Satisfactory (SS)

[(0.524, 0.539, 0.554, 0.569, 0.584, 0.599,
0.614, 0.629, 0.644, 0.659, 0.674, 0.689,
0.704, 0.719, 0.734, 0.749, 0.764, 0.779,
0.794, 0.810, 1, 0.20, 0.40, 0.60, 0.80, 0.80,
0.60, 0.40, 0.20), (0.552, 0.564, 0.576, 0.588,
0.601, 0.613, 0.625, 0.637, 0.649, 0.661,
0.673, 0.685, 0.697, 0.709, 0.721, 0.733,
0.745, 0.757, 0.769, 0.781, 0.8, 0.08, 0.26,
0.44, 0.62, 0.62, 0.44, 0.26, 0.08)]

Almost Excellent (AE) Good (G) Satisfactory (S)

[(0.635, 0.650, 0.665, 0.680, 0.695, 0.710,
0.725, 0.740, 0.755, 0.770, 0.785, 0.800,
0.815, 0.830, 0.845, 0.860, 0.876, 0.891,
0.906, 0.921, 1, 0.20, 0.40, 0.60, 0.80, 0.80,
0.60, 0.40, 0.20), (0.663, 0.676, 0.688, 0.700,
0.712, 0.724, 0.736, 0.748, 0.760, 0.772,
0.784, 0.796, 0.808, 0.820, 0.832, 0.844,
0.856, 0.868, 0.880, 0.892, 0.8, 0.08, 0.26,
0.44, 0.62, 0.62, 0.44, 0.26, 0.08)]

Excellent (EX) More than Good (MG) Very Satisfactory (VS)

[(0.746, 0.761, 0.776, 0.791, 0.806, 0.821,
0.836, 0.851, 0.866, 0.881, 0.896, 0.911,
0.926, 0.942, 0.957, 0.972, 0.987, 1, 1, 1, 1,
0.20, 0.40, 0.60, 0.80, 0.80, 0.60, 0.40, 0.20),
(0.775, 0.787, 0.799, 0.811, 0.823, 0.835,
0.847, 0.859, 0.871, 0.883, 0.895, 0.907,
0.919, 0.931, 0.943, 0.955, 0.967, 0.979,
0.991, 1, 0.8, 0.08, 0.26, 0.44, 0.62, 0.62,
0.44, 0.26, 0.08)]

Absolutely Excellent
(AX) Absolutely Good (AG) Absolutely Satisfactory (AS)

[(0.857, 0.872, 0.887, 0.902, 0.917, 0.932,
0.947, 0.962, 0.977, 0.992, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0.20, 0.40, 0.60, 0.80, 0.80, 0.60,
0.40, 0.20), (0.886, 0.898, 0.910, 0.922,
0.934, 0.946, 0.958, 0.970, 0.982, 0.994, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.08, 0.26, 0.44, 0.62,
0.62, 0.44, 0.26, 0.08)]
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Figure 2. The S values range as obtained using the Mamdani fuzzy Inference System.

Indicatively, when the SINRestimated
m,u and Qestimated

m,u values are too low, the produced
Sestimated

m,u value is too low as well. On the contrary, when the SINRestimated
m,u and Qestimated

m,u
values are close to 1, the produced Sestimated

m,u value is also high, indicating that the user is
fully satisfied. Furthermore, when only one of the SINRestimated

m,u or the Qestimated
m,u values is

close to 0, the user satisfaction is in low levels.
At this point, it has to be noted that since the user’s satisfaction is obtained at the

Fog by looking up the performance on the satisfaction indicators’ chart, the overhead
introduced is minimal. In addition, the method does not impose any significant overhead
at the user equipment due to the monitoring of the SINRm,u and Qm,u parameters.

3.1.2. The Middle Layer of the Network Slicing Scheme

In each TTI, the middle layer allocates to each GBR service the number of RBs esti-
mated from the upper layer. The allocation is performed by applying an improved version
of the scheduling metric that the throughput enhanced scheduler (TES) [17] algorithm
defines for real-time services, where the maximum acceptable packet loss ratio is consid-
ered along with the other parameters that consider the aforementioned metric. Specifically,
this metric is calculated using Formula (6), where τi stands for the maximum acceptable
delay, DHOLi represents the head of line delay, b is a constant, SINRi represents the
signal-to-interference plus noise ratio, ri is the available throughput and Ri(t) is the past
average throughput for the ith flow. The αi value is calculated using Formula (7) where δi
represents the maximum acceptable packet loss ratio:

m
TES−RTimproved
i,k = αi · exp(−τi − DHOLi

τi
) · log(b · SINRi) ·

ri
Ri(t)

(6)

αi = −
logδi

τi
(7)
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Table 2. The fuzzy rule (or knowledge) base.

Rule MFSINR Operator MFQ MFS

1 AB and AP AU
2 AB and VP AU
3 AB and P AU
4 AB and LM AU
5 AB and M AU
6 AB and MM AU
7 AB and LG AU
8 AB and G AU
9 AB and MG AU
10 AB and AG AU
11 TB and AP AU
12 TB and VP AU
13 TB and P AU
14 TB and LM AU
15 TB and M AU
16 TB and MM VU
17 TB and LG VU
18 TB and G VU
19 TB and MG VU
20 TB and AG VU
21 B and AP AU
22 B and VP AU
23 B and P AU
24 B and LM VU
25 B and M VU
26 B and MM VU
27 B and LG U
28 B and G U
29 B and MG U
30 B and AG U
31 LE and AP AU
32 LE and VP AU
33 LE and P VU
34 LE and LM VU
35 LE and M VU
36 LE and MM U
37 LE and LG U
38 LE and G LA
39 LE and MG LA
40 LE and AG LA
41 EN and AP AU
42 EN and VP AU
43 EN and P VU
44 EN and LM VU
45 EN and M U
46 EN and MM U
47 EN and LG LA
48 EN and G LA
49 EN and MG A
50 EN and AG A
51 ME and AP AU
52 ME and VP VU
53 ME and P VU
54 ME and LM U
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Table 2. Cont.

Rule MFSINR Operator MFQ MFS

55 ME and M U
56 ME and MM LA
57 ME and LG A
58 ME and G A
59 ME and MG MA
60 ME and AG MA
61 LE and AP AU
62 LE and VP VU
63 LE and P U
64 LE and LM U
65 LE and M LA
66 LE and MM A
67 LE and LG A
68 LE and G MA
69 LE and MG SS
70 LE and AG SS
71 AE and AP AU
72 AE and VP VU
73 AE and P U
74 AE and LM LA
75 AE and M LA
76 AE and MM A
77 AE and LG MA
78 AE and G SS
79 AE and MG S
80 AE and AG S
81 EX and AP AU
82 EX and VP VU
83 EX and P U
84 EX and LM LA
85 EX and M A
86 EX and MM MA
87 EX and LG SS
88 EX and G S
89 EX and MG VS
90 EX and AG VS
91 AX and AP AU
92 AX and VP VU
93 AX and P U
94 AX and LM LA
95 AX and M A
96 AX and MM MA
97 AX and LG SS
98 AX and G S
99 AX and MG VS

100 AX and AG AS

3.1.3. The Lower Layer of the Network Slicing Scheme

The lower layer allocates available RBs to best effort flows using the scheduling metric
that the TES [17] algorithm defines for non-real-time services. In particular, the metric is
estimated using Formula (8):

mTES−nRT
i,k = αi · DHOLi · log(b · SINRi) ·

ri
Ri(t)

(8)
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3.2. The Proposed Network Architecture

The network architecture (Figure 3) consists ARNs and RSUs that facilitate the pro-
vision of network access to vehicular users. In particular, the coverage area of the access
network is divided into K cells while each cell is served from an ARN and an RSU.

Each k ∈ K ARN (ARNk) has a local monitoring module (LMM), a local allocation
module (LAM) and a set of resource blocks (RBs). A variable RBrem

ARNk
(tn) indicates the

remaining RBs of the kth ARN during the tn transmission time interval (TTI). Similarly,
each k ∈ K RSU (RSUk) implements its local monitoring module (LMM), its local allocation
module (LAM) and a local virtual resource pool (LVRP) with a set of resource blocks (RBs).
A variable RBrem

RSUk
(tn) indicates the remaining RBs of the kth RSU during the tn TTI. In

addition, the RBs of the LVRP are organized into two subsets, which are called local RBs
(LRBs) and shared RBs (SRBs).

An SDN controller maintains a virtual resource pool (VRP) where the SRBs of the
RSUs are stored, in a way similar to [36,42]. In addition, the SDN controller includes an
allocation module (AM) and a MANO entity which orchestrates the entire network slicing
procedure whilst maintaining the necessary frequency reuse factor. At this point, it has
to be noted that in order to ensure the scalability of the proposed scheme, multiple SDN
controllers can be used. In this case, each SDN controller will maintain a VRP for a specific
geographical area in a way similar to that described in [36]. Thus, as the system expands,
additional SDN controllers can be used to control the VRPs of each subarea of the entire
system coverage.

... ...
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Figure 3. The proposed network slicing architecture.

Based on the layered design of the proposed scheme, the allocation of RBs to user
services is as follows. For users of the ARNs, the LMM module of each ARN initially
implements the upper layer of the scheme to monitor the satisfaction grade Sestimated

m,u (tn)

of each user service. If the estimated Sestimated
m,u (tn) is higher than the predefined Sthreshold

m,u
threshold value, the service requirements can be satisfied from the remaining RBs that exist
in the current ARNk. Thus, the LAM module of the ARN implements the middle and the
lower layers of the slicing scheme to allocate RBs of the ARNk to both GBR and non-GBR
services for the next TTI. However, if the estimated satisfaction grade Sestimated

m,u (tn) is lower
than the predefined Sthreshold

m,u threshold value, the service requirements cannot be satisfied
from the RBrem

ARNk
(tn). In this case, the ARN borrows extra RBs from the LVRP of the

corresponding RSU to achieve the required satisfaction grade. For the users of RSUs, the
LMM module of each RSU initially implements the upper layer of the scheme to monitor
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the satisfaction grade Sestimated
m,u (tn) of each user service. If the remaining RBs of the current

RSUk can satisfy the predefined Sthreshold
m,u threshold value, the LAM module of the RSU

implements the middle and the lower layers of the slicing scheme to allocate LRBs of the
RSUk to both GBR and non-GBR services for the next TTI. The remaining RBs RBrem

k (tn) are
sent back to the VRP of the SDN controller. However, if the remaining RBs of the current
RSUk cannot satisfy the Sthreshold

m,u threshold, the AM of the SDN controller implements the
middle and the lower layers of the scheme to allocate extra RBs from the VRP to the user
services. As far as the VRP is concerned, the algorithm prefers to allocate RBs with similar
sub frequencies for each user to minimize the number of antennas required for each vehicle,
which is a factor that affects the energy consumption of the system.

4. Optimization of the Positions of ARNs

In this section, an algorithm that optimizes the geographical position of each ARN is
described. Using this algorithm, the most appropriate position for each ARN is selected,
in order to enhance the overall performance of the system since ARNs with optimized
positions provide communication resources with improved channel conditions. More
specifically, the main goal of the proposed procedure is the improvement of network
technical characteristics such as the throughput, the delay, the jitter and the packet loss
ratio, by placing each ARN to the most appropriate position. Indicative criteria that can be
considered for this procedure include the vehicle density in each geographical area, the
SINR of the corresponding RSU in this area, as well as the average priorities of the services
used from the vehicles moving inside this area. Thus, the ARN’s position that maximizes
these parameters will be selected.

The Icosagonal Fuzzy TOPSIS (IFT)

As has been proved in several works, the technique for order preference by similarity
to ideal solution (TOPSIS) and its variants perform optimal multi-attribute decision making
considering multiple criteria. Indicatively, as shown in [43], the trapezoidal fuzzy TOPSIS
(TFT) method outperforms the fuzzy analytic hierarchy process (AHP)—elimination et
choix traduisant la realité (ELECTRE) [44] method—which is also called FAE method, in
scenarios where the most appropriate network should be selected for a user. In addition, as
proven in [40], a mobility management scheme that applies the pentagonal fuzzy TOPSIS
(PFT) method outperforms the fuzzy AHP simple additive weighting (FAS) [45], the fuzzy
AHP multiplicative exponent weighting (FAM) [45] and the FAE methods. Furthermore,
similar conclusions about the performance of the TOPSIS method were mentioned to [46,47]
against several alternative methodologies. In addition, as it is shown to [48], the trapezoidal
fuzzy TOPSIS for heritage route selection (TFT-HRS) method performs the optimal selection
of flying routes for drones. By taking into consideration the aforementioned research works,
in this paper, the icosagonal fuzzy TOPSIS (IFT) algorithm is proposed for the selection
of the optimal positions of the ARNs. It is an improved version of the pentagonal fuzzy
TOPSIS (PFT) [40] using interval-valued icosagonal fuzzy numbers for the representations
of the values of criteria attributes. As each algorithm that is based on TOPSIS [49], IFT
applies the concept that the best alternative solution should have the shortest distance from
the positive ideal solution and the longest distance from the negative ideal solution.

Regarding the functionality of the algorithm, a set C = {C1, C2, . . . , Cm} of criteria
along with the corresponding criteria weights w1, w2, . . . , wm are considered. Furthermore,
a list A = {A1, A2, . . . , Az} is constructed determining the alternative positions from which
the best one should be selected for the ARN. The steps of the algorithm are as follows:
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• Step 1. Construction of the decision matrix: each xij element of the n×m decision ma-
trix D is an interval-valued icosagonal fuzzy number which expresses the evaluation
of the alternative position i considering the criterion j. Thus:

D =

C1 . . . Cm
ineA1 x11 . . . x1m

...
...

. . .
...

An xn1 . . . xnm

(9)

where:
xij = [(xU

ij1, xU
ij2, xU

ij3, xU
ij4, xU

ij5, xU
ij6, xU

ij7, xU
ij8, xU

ij9, xU
ij10, xU

ij11, xU
ij12, xU

ij13, xU
ij14, xU

ij15, xU
ij16, xU

ij17, xU
ij18,

xU
ij19, xU

ij20, vU
ij , vU

ij1, vU
ij2, vU

ij3, vU
ij4, vU

ij5, vU
ij6, vU

ij7, vU
ij8), (xL

ij1, xL
ij2, xL

ij3, xL
ij4, xL

ij5, xL
ij6, xL

ij7, xL
ij8, xL

ij9,

xL
ij10, xL

ij11, xL
ij12, xL

ij13, xL
ij14, xL

ij15, xL
ij16, xL

ij17, xL
ij18, xL

ij19, xL
ij20, vL

ij, vL
ij1, vL

ij2, vL
ij3, vL

ij4, vL
ij5, vL

ij6, vL
ij7,

vL
ij8)].

• Step 2. Normalization of the decision matrix: consider that Ωb is the set of benefit
evaluation criteria and Ωc is the set of cost evaluation criteria. Then, the elements of
the normalized decision matrix are computed as

rij = [(
xU

ij1
bj

,
xU

ij2
bj

,
xU

ij3
bj

,
xU

ij4
bj

,
xU

ij5
bj

,
xU

ij6
bj

,
xU

ij7
bj

,
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bj

,
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,
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ij14
bj

,
xU

ij15
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bj

,
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bj
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ij6, vU
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(10)

where bj = maxi xU
ij for each j ∈ Ωb, or:

rij = [(
cj

xU
ij1

,
cj

xU
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(11)

where cj = mini xL
ij for each j ∈ Ωc.

• Step 3. Construction of the weighted normalized decision matrix: for the construction
of the weighted normalized decision matrix, each element rij of the normalized
decision matrix is multiplied with the respective criterion weight wj according to
the formula:

uij = [(rU
ij1 · wj, rU

ij2 · wj, rU
ij3 · wj, rU

ij4 · wj, rU
ij5 · wj, rU

ij6 · wj, rU
ij7 · wj, rU

ij8 · wj, rU
ij9 · wj,

rU
ij10 · wj, rU

ij11 · wj, rU
ij12 · wj, rU

ij13 · wj, rU
ij14 · wj, rU

ij15 · wj, rU
ij16 · wj, rU

ij17 · wj, rU
ij18 · wj,

rU
ij19 · wj, rU

ij20 · wj, vU
ij , vU

ij1, vU
ij2, vU

ij3, vU
ij4, vU

ij5, vU
ij6, vU

ij7, vU
ij8),

(rL
ij1 · wj, rL

ij2 · wj, rL
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ij15 · wj, rL
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ij3, vL
ij4, vL
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ij6, vL

ij7, vL
ij8)]

(12)
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At this point, it must be noted that the criteria weights can be estimated using the
analytic hierarchy process (AHP) [50], the analytic network process (ANP) [51] or
another similar method.

• Step 4. Determination of the positive and negative ideal solution: in this step, the
positive ideal solution is defined as
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ij8 , x+U
ij9 , x+U

ij10, x+U
ij11, x+U

ij12, x+U
ij13, x+U

ij14, x+U
ij15,

x+U
ij16, x+U

ij17, x+U
ij18, x+U

ij19, x+U
ij20, v+U

ij , v+U
ij1 , v+U

ij2 , v+U
ij3 , v+U

ij4 , v+U
ij5 , v+U

ij6 , v+U
ij7 , v+U

ij8 ),

(x+L
ij1 , x+L

ij2 , x+L
ij3 , x+L

ij4 , x+L
ij5 , x+L

ij6 , x+L
ij7 , x+L

ij8 , x+L
ij9 , x+L

ij10, x+L
ij11, x+L
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ij14, x+L
ij15,

x+L
ij16, x+L

ij17, x+L
ij18, x+L
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where
∧
i
≡ maxi in case j ∈ Ωb and

∧
i
≡ mini in case j ∈ Ωc. Accordingly, the

negative ideal solutions is defined as

X− = [(x−U
ij1 , x−U

ij2 , x−U
ij3 , x−U

ij4 , x−U
ij5 , x−U

ij6 , x−U
ij7 , x−U
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where
∨

i ≡ mini in case j ∈ Ωb and
∨

i ≡ maxi in case j ∈ Ωc.
• Step 5. Estimation of the distance of each alternative solution from the positive and

the negative ideal solutions: the distances d+i1 and d+i2 of each alternative solution from
the positive ideal solution are estimated as follows:

d+i1 =
m

∑
j=1
{ 1

20
[(uU

ij1 − x+U
ij1 )2 + (uU

ij2 − x+U
ij2 )2 + (uU

ij3 − x+U
ij3 )2 + (uU

ij4 − x+U
ij4 )2

+ (uU
ij5 − x+U

ij5 )2 + (uU
ij6 − x+U

ij6 )2 + (uU
ij7 − x+U

ij7 )2 + (uU
ij8 − x+U

ij8 )2

+ (uU
ij9 − x+U

ij9 )2 + (uU
ij10 − x+U

ij10)
2 + (uU

ij11 − x+U
ij11)

2 + (uU
ij12 − x+U

ij12)
2

+ (uU
ij13 − x+U

ij13)
2 + (uU

ij14 − x+U
ij14)

2 + (uU
ij15 − x+U

ij15)
2 + (uU

ij16 − x+U
ij16)

2

+ (uU
ij17 − x+U

ij17)
2 + (uU

ij18 − x+U
ij18)

2 + (uU
ij19 − x+U

ij19)
2 + (uU

ij20 − x+U
ij20)

2]}
1
2 (15)
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d+i2 =
m

∑
j=1
{ 1

20
[(uL

ij1 − x+L
ij1 )2 + (uL

ij2 − x+L
ij2 )2 + (uL

ij3 − x+L
ij3 )2 + (uL
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ij4 )2

+ (uL
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ij6 )2 + (uL
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ij8 − x+L

ij8 )2

+ (uL
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ij9 )2 + (uL
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2 + (uL

ij11 − x+L
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2 + (uL
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2

+ (uL
ij13 − x+L
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2 + (uL

ij14 − x+L
ij14)

2 + (uL
ij15 − x+L

ij15)
2 + (uL
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ij16)

2

+ (uL
ij17 − x+L
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2 + (uL

ij18 − x+L
ij18)

2 + (uL
ij19 − x+L

ij19)
2 + (uL

ij20 − x+L
ij20)

2]}
1
2 (16)

Similarly, the distances d−i1 and d−i2 of each alternative solution from the negative ideal
solution are estimated as follows:

d−i1 =
m

∑
j=1
{ 1

20
[(uU

ij1 − x−U
ij1 )2 + (uU
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ij2 )2 + (uU

ij3 − x−U
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ij4 )2

+ (uU
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ij6 )2 + (uU
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ij7 )2 + (uU
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ij13 − x−U
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2
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2]}
1
2 (17)

d−i2 =
m

∑
j=1
{ 1
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ij4 )2
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ij6 − x−L

ij6 )2 + (uL
ij7 − x−L

ij7 )2 + (uL
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ij8 )2

+ (uL
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ij9 )2 + (uL
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2 + (uL
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2

+ (uL
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ij14 − x−L
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1
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Thus, the distance of the alternative solutions from the positive and negative ideal
solutions are expressed by intervals such as [d+i1 , d+i2 ] and [d−i1 , d−i2 ] [52], instead of single
values. In this way, less information is lost.

• Step 6. Calculation of the relative closeness: the relative closeness of the distances
from the ideal solutions are computed as follows:

RCi1 =
d−i1

d+i1 + d−i1
(19)

and:

RCi2 =
d−i2

d+i2 + d−i2
(20)

The compound relative closeness is obtained from the average of the above values:

RCi =
RCi1 + RCi2

2
(21)

• Step 7. Alternatives ranking: the alternative solutions are ranked according to their
RCi values. The position with the higher RCi value is selected since it is considered
the best alternative solution.

5. Simulation Setup

For the evaluation of the proposed scheme, the UAV-aided 5G network topology
presented in Figure 4 is simulated. A map of the area where the University of Piraeus is
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located has been created using the open street map (OSM) software [53]. Then, the map
has been used as input in the simulator of urban mobility (SUMO) simulator [54] allowing
the production of a trace file indicating the mobility of vehicles in the corresponding
geographical area. At this point, it has to be noted that the average height of the buildings
that exist to the simulated map, is supposed to be equal to 30 m. Subsequently, the network
topology is being built upon the map, using the Network Simulator 3 (NS3) [55], including
a Fog and a Cloud infrastructure.
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Figure 4. The simulated topology.

The Fog infrastructure consists of nine LTE-V2X RSUs, along with an ARN per LTE-
V2X RSU providing additional communication resources for users moving inside the
corresponding coverage area. Both the medium access control (MAC) and the physical
(PHY) layers of the LTE-V2X RSUs and ARNs are simulated using the LTE-V2X extension
module of the NS3 [56]. In addition, the default altitude of each ARN is equal to the average
height of the buildings that exist on the map. Table 3 presents the spectrum used from each
RSU and ARN, while Table 4 presents their geographical positions. Also, an OpenFlow
SDN controller provides centralized control of the entire network access environment.
The 3GPP urban channel model [57,58] is considered. Due to the assumption that the
channel between LTE-V2X RSU or ARN and the vehicular user usually encounters non-
line-of-sight (NLOS) transmission, its propagation loss is estimated using Formulas (22)
and (23), respectively, where d represents the distance among the nodes and fc represents
the carrier frequency. Correspondingly, due to the assumption that the channel between a
LTE-V2X RSU and an ARN encounters line-of-sight (LOS) transmission, its propagation
loss is estimated using Formula (24). Additionally, it should be noted that when the battery
level of an ARN tends to run out, another ARN replaces it in the corresponding position.
In this case, the respective users perform a handover from the previous to the new ARN:

PLNLOS
LTE−V2XRSU→VehicularUser = 37.6 · log10(d) + 58.94 + 21 · log10( fc) (22)

PLNLOS
ARN→VehicularUser = 36.7 · log10(d) + 22.7 + 26 · log10( fc) (23)

PLLOS
LTE−V2XRSU→ARN = 22 · log10(d) + 28 + 20 · log10( fc) (24)

Accordingly, the Cloud infrastructure includes a set of virtual machines (VMs) provid-
ing services such as autonomous navigation (ANav), conversational voice (CVo), conversa-
tional video (CVi) and Web browsing (WB). Table 5 presents the 5QI value assigned to each
service as defined in the 5GPPP specifications for 5G communications [39], along with the
corresponding constrains that should be satisfied.
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Table 3. The spectrum used from each RSU and ARN.

Name
Uplink Spectrum Downlink Spectrum

LTE Band Number
From To From To

LTE-V2X 1 703 MHz 723 MHz 758 MHz 778 MHz 28
LTE-V2X 2 832 MHz 852 MHz 800 MHz 820 MHz 20
LTE-V2X 3 1630 MHz 1650 MHz 1525 MHz 1545 MHz 24
LTE-V2X 4 1710 MHz 1730 MHz 1805 MHz 1825 MHz 3
LTE-V2X 5 1730 MHz 1750 MHz 1825 MHz 1845 MHz 3
LTE-V2X 6 1750 MHz 1770 MHz 1845 MHz 1865 MHz 3
LTE-V2X 7 1900 MHz 1920 MHz 2600 MHz 2620 MHz 15
LTE-V2X 8 1920 MHz 1940 MHz 2110 MHz 2130 MHz 1
LTE-V2X 9 1940 MHz 1960 MHz 2130 MHz 2150 MHz 1

ARN 1 1960 MHz 1980 MHz 2150 MHz 2170 MHz 1
ARN 2 2000 MHz 2020 MHz 2180 MHz 2200 MHz 23
ARN 3 2500 MHz 2520 MHz 2620 MHz 2640 MHz 7
ARN 4 2520 MHz 2540 MHz 2640 MHz 2660 MHz 7
ARN 5 2540 MHz 2560 MHz 2660 MHz 2680 MHz 7
ARN 6 3410 MHz 3430 MHz 3510 MHz 3530 MHz 22
ARN 7 3430 MHz 3450 MHz 3530 MHz 3550 MHz 22
ARN 8 3450 MHz 3470 MHz 3550 MHz 3570 MHz 22
ARN 9 3470 MHz 3490 MHz 3570 MHz 3590 MHz 22

Table 4. The geographical position of each RSU and ARN.

RSU Geographic Latitude, Geographic Longitude

LTE-V2X 1 37.941746, 23.647962
LTE-V2X 2 37.942985, 23.649007
LTE-V2X 3 37.944259, 23.650166
LTE-V2X 4 37.941141, 23.649080
LTE-V2X 5 37.942303, 23.650272
LTE-V2X 6 37.943664, 23.651470
LTE-V2X 7 37.940304, 23.650710
LTE-V2X 8 37.941564, 23.651784
LTE-V2X 9 37.942847, 23.652859

ARN Possible Position: Geographic Latitude, Geographic Longitude

ARN 1 1a: 37.941630, 23.646994 - 1b: 37.942107, 23.647428 - 1c: 37.942617, 23.647842 - 1d: 37.942334, 23.648342
1e: 37.941989, 23.648996 - 1f: 37.941489, 23.648520 - 1g: 37.941061, 23.648098 - 1h: 37.941347, 23.647473

ARN 2 2a: 37.942795, 23.647994 - 2b: 37.943256, 23.648375 - 2c: 37.943846, 23.648896 - 2d: 37.942317, 23.648341
2e: 37.943244, 23.650030 - 2f: 37.942758, 23.649617 - 2g: 37.942224, 23.649160 - 2h: 37.942592, 23.648570

ARN 3 3a: 37.944008, 23.649037 - 3b: 37.944502, 23.649430 - 3c: 37.945053, 23.649887 - 3d: 37.944801, 23.650429
3e: 37.944441, 23.651041 - 3f: 37.943850, 23.650572 - 3g: 37.943340, 23.650169 - 3h: 37.943895, 23.649658

ARN 4 4a: 37.940950, 23.648250 - 4b: 37.941363, 23.648619 - 4c: 37.941887, 23.649127 - 4d: 37.941560, 23.649751
4e: 37.941251, 23.650302 - 4f: 37.940781, 23.649910 - 4g: 37.940312, 23.649487 - 4h: 37.940622, 23.648926

ARN 5 5a: 37.942098, 23.649270 - 5b: 37.942664, 23.649770 - 5c: 37.943085, 23.650107 - 5d: 37.942806, 23.650774
5e: 37.942424, 23.651281 - 5f: 37.941937, 23.650920 - 5g: 37.941428, 23.650485 - 5h: 37.941747, 23.649841

ARN 6 6a: 37.943197, 23.650268 - 6b: 37.943756, 23.650725 - 6c: 37.944339, 23.651194 - 6d: 37.944011, 23.651859
6e: 37.943743, 23.652401 - 6f: 37.943079, 23.651867 - 6g: 37.942682, 23.651530 - 6h: 37.943041, 23.650980

ARN 7 7a: 37.940158, 23.649763 - 7b: 37.940619, 23.650154 - 7c: 37.941137, 23.650589 - 7d: 37.940896, 23.651039
7e: 37.940459, 23.651762 - 7f: 37.940014, 23.651017 - 7g: 37.939674, 23.650724 - 7h: 37.939901, 23.650201

ARN 8 8a: 37.941282, 23.650730 - 8b: 37.941817, 23.651155 - 8c: 37.942236, 23.651555 - 8d: 37.942084, 23.652112
8e: 37.941714, 23.652786 - 8f: 37.941344, 23.652356 - 8g: 37.940726, 23.651990 - 8h: 37.941091, 23.651150

ARN 9 9a: 37.942586, 23.651776 - 9b: 37.942974, 23.652134 - 9c: 37.943596, 23.652687 - 9d: 37.943346, 23.653167
9e: 37.942959, 23.653872 - 9f: 37.942377, 23.653362 - 9g: 37.941902, 23.652866 - 9h: 37.942278, 23.652275
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Table 5. The 5QI value and the corresponding constraints for each service.

Service 5QI Value Resource Type Priority Level Packet Delay
Budget

Packet Error
Rate

Autonomous Navigation (ANav) 81 Delay Critical GBR 11 5 ms 10−5

Conversational Voice (CVo) 1 GBR 20 100 ms 10−2

Conversational Video (CVi) 2 GBR 40 150 ms 10−3

Web Browsing (WB) 6 Non-GBR 60 300 ms 10−6

Up to 50 vehicles are moving inside the coverage area of each RSU requiring commu-
nication resources to satisfy the constraints of their services. In particular, regarding the
OSM data about the vehicles’ density in the city of Piraeus, Greece, at off-peak hours, the
density of vehicles is approximately 10 vehicles per RSU, while at peak hours, the density
of vehicles on the map is about 50 vehicles per RSU. At this point, it has to be noted that
since the proposed scheme is applied to an urban environment, the average velocity of the
vehicles is equal to 9 m/s, while their moving direction in each road depends on the OSM
data about each area of the simulated map. In particular, each vehicle receives one flow for
each service. Table 6 presents the simulation parameters.

Table 6. The simulation parameters.

Parameter Value

Simulation duration 86,400 s (24 h)
LTE-V2X RSUs count 9 LTE-V2X RSUs

ARNs count 1 UAV per RSU
Average communication range of each RSU 100 m
Average communication range of each ARN 100 m

Number of vehicles in the area of each RSU

Simulation run 1: 10 vehicles
Simulation run 2: 20 vehicles
Simulation run 3: 30 vehicles
Simulation run 4: 40 vehicles
Simulation run 5: 50 vehicles

Vehicles’ mobility pattern According to OpenStreetMap (OSM) data
ARNs mobility pattern Stationary

Average velocity of vehicles 9 m/s
Average height of buildings exist in the map 30 m

Default altitude of ARNs 1 × Average_Buildings_Height = 30 m

Services

Autonomous Navigation (ANav)
- Average datarate per flow: 0.6 Mbps
- Simulated data type: TCP data traffic
- Used NS3 module: NS3 OnOffApplication [59]

Conversational Voice (CVo)
- Average datarate per flow: 200 kbps
- Simulated data type: Voice over IP (VoIP) with G.729 codec
- Used NS3 module: NS3 OnOffApplication [59]

Conversational Video (CVi)
- Average datarate per flow: 35.3 Mbps (according to Huawei
specifications for 4K video with frame rate equal to 60 Frames per
Second (FPS) [60]
- Simulated data type: Live MP4 video
- Used NS3 module: NS3 UDPTraceClient [61] using MP4 video trace

Web Browsing (WB)
- Average datarate per flow: 8.0 Mbps
- Simulated data type: HTTP data traffic
- Used NS3 module: ThreeGppHttpClient [62]



Drones 2021, 5, 70 21 of 29

The aforementioned simulation setup has been chosen since it implements a realistic
scenario for the evaluation of the proposed scheme. In particular, the entire network
infrastructure has been built upon a real map, while the vehicles’ movement is similar to
the movement of real vehicles in the specific geographic area, as it is obtained from the OSM
data. In addition, the height of the buildings that exist in the map is configured considering
the real height of each building that exists in the simulated geographical area. In general,
the average height of the buildings is a critical parameter that affects the performance of
the system, since it affects the required altitude of the ARNs as it will be shown in the
following paragraphs.

6. Experimental Results and Discussion

For the evaluation of the proposed scheme, three different test cases are considered.
Specifically, during the first case, only the LTE-V2X RSUs provide communication resources
to vehicular users. Accordingly, during the second case, both LTE-V2X RSUs and ARNs
are used. In this case, during the instantiation of the system, each ARN obtains a random
geographical position inside the coverage area of the corresponding RSU and remains
stationary to this position for the entire simulation time. Finally, during the third case, the
position of each ARN is optimized by applying the proposed IFT algorithm. In this case,
the criteria considered for the evaluation of the alternative positions for each ARN include
the vehicles’ density in each geographical area, the SINR of the corresponding RSU in this
area, as well as the average priorities of the services used from the vehicles moving inside
this area. In our case, these criteria are supposed to have equal importance with each other,
namely the fact that the corresponding criteria weights are equal to 0.3333. Furthermore,
Table 7 presents the IVIFNs considered for the evaluation of each criterion, while it should
be noted that the alternative positions for each ARN are presented in Figure 4.

Table 7. The linguistic terms used for the evaluation of the IFT criteria and the corresponding interval-valued icosagonal
fuzzy numbers.

Linguistic Terms Used for the
Vehicles’ Density Criterion

Linguistic Terms Used
for the RSU SINR

Criterion

Linguistic Terms Used for the
Vehicles’ Services Average

Priorities Criterion

Interval-Valued Icosagonal Fuzzy
Number

Very Low Vehicles’ Density
(VLVD) Very Low SINR (VLS) Very Low Service Priority (VLSP)

[(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.026, 0.079, 0.132,
0.184, 0.237, 0.289, 0.342, 0.395, 0.447, 0.500,
1, 0.20, 0.40, 0.60, 0.80, 0.80, 0.60, 0.40, 0.20),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.021, 0.063, 0.105,
0.147, 0.189, 0.232, 0.274, 0.316, 0.358, 0.400,
0.8, 0.08, 0.26, 0.44, 0.62, 0.62, 0.44, 0.26,
0.08)]

Low Vehicles’ Density (LVD) Low SINR (LS) Low Service Priority (LSP)

[(0, 0, 0, 0, 0, 0.013, 0.066, 0.118, 0.171,
0.224, 0.276, 0.329, 0.382, 0.434, 0.487, 0.539,
0.592, 0.645, 0.697, 0.750, 1, 0.20, 0.40, 0.60,
0.80, 0.80, 0.60, 0.40, 0.20), (0, 0, 0, 0, 0.018,
0.061, 0.103, 0.145, 0.187, 0.229, 0.271, 0.313,
0.355, 0.397, 0.439, 0.482, 0.524, 0.566, 0.608,
0.650, 0.8, 0.08, 0.26, 0.44, 0.62, 0.62, 0.44,
0.26, 0.08)]
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Table 7. Cont.

Linguistic Terms Used for the
Vehicles’ Density Criterion

Linguistic Terms Used
for the RSU SINR

Criterion

Linguistic Terms Used for the
Vehicles’ Services Average

Priorities Criterion

Interval-Valued Icosagonal Fuzzy
Number

Medium Vehicles’ Density (MVD) Medium SINR (MS) Medium Service Priority (MSP)

[(0, 0.053, 0.105, 0.158, 0.211, 0.263, 0.316,
0.368, 0.421, 0.474, 0.526, 0.579, 0.632, 0.684,
0.737, 0.789, 0.842, 0.895, 0.947, 1, 1, 0.20,
0.40, 0.60, 0.80, 0.80, 0.60, 0.40, 0.20), (0.100,
0.142, 0.184, 0.226, 0.268, 0.311, 0.353, 0.395,
0.437, 0.479, 0.521, 0.563, 0.605, 0.647, 0.689,
0.732, 0.774, 0.816, 0.858, 0.900, 0.8, 0.08,
0.26, 0.44, 0.62, 0.62, 0.44, 0.26, 0.08)]

High Vehicles’ Density (HVD) High SINR (HS) High Service Priority (HSP)

[(0.250, 0.303, 0.355, 0.408, 0.461, 0.513,
0.566, 0.618, 0.671, 0.724, 0.776, 0.829, 0.882,
0.934, 0.987, 1, 1, 1, 1, 1, 1, 0.20, 0.40, 0.60,
0.80, 0.80, 0.60, 0.40, 0.20), (0.350, 0.392,
0.434, 0.476, 0.518, 0.561, 0.603, 0.645, 0.687,
0.729, 0.771, 0.813, 0.855, 0.897, 0.939, 0.982,
1, 1, 1, 1, 0.8, 0.08, 0.26, 0.44, 0.62, 0.62, 0.44,
0.26, 0.08)]

Very High Vehicles’ Density
(VHVD) Very High SINR (VHS) Very High Service Priority (VHSP)

[(0.500, 0.553, 0.605, 0.658, 0.711, 0.763,
0.816, 0.868, 0.921, 0.974, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0.20, 0.40, 0.60, 0.80, 0.80, 0.60, 0.40,
0.20), (0.600, 0.642, 0.684, 0.726, 0.768,
0.811, 0.853, 0.895, 0.937, 0.979, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0.8, 0.08, 0.26, 0.44, 0.62, 0.62,
0.44, 0.26, 0.08)]

Moreover, it should be noted that the IFT algorithm is periodically executed at the
SDN controller, for the area of each RSU, in order for the position of the corresponding
ARNs to be updated according to the current status of the positions’ evaluation criteria. The
time interval T IFTexecution

r that determines how often the IFT algorithm should be executed
for each ARN is estimated using Formula (25), where the dr parameter represents the
average distance between the alternative positions that are available for the corresponding
ARN, and the vr parameter represents the average velocity of the vehicles in the area of the
r RSU which is determined from the OSM data about each specific geographical area. Thus,
Table 8 presents the value of the time interval T IFTexecution

r parameter obtained for each RSU.
Additionally, Table 9 presents the positions that are mostly being selected for each ARN,
randomly during the second test case or using the IFT algorithm during the third test case.
As it can be observed, in most cases, the IFT algorithm selects a position near a central road
where usually the requirements for communication resources are increased:

T IFTexecution
r =

dr

vr
(25)

Table 8. The value of the time interval T IFTexecution
r parameter obtained for each RSU.

RSU Average Distance between the
Alternative Positions (dr)

Average Velocity of
Vehicles (vr)

Estimated Time Interval
(T IFTexecution

r )

1 142.85 m 8.33 m/s 17.14 s
2 142.85 m 5.55 m/s 25.73 s
3 142.85 m 5.55 m/s 25.73 s
4 142.85 m 8.33 m/s 17.14 s
5 142.85 m 9.72 m/s 14.69 s
6 142.85 m 11.11 m/s 12.85 s
7 142.85 m 4.16 m/s 34.33 s
8 142.85 m 4.16 m/s 34.33 s
9 142.85 m 2.77 m/s 51.57 s
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Table 9. The ARNs’ positions that are mostly being selected in each case.

RSU Serving the
Corresponding Area

Mostly Selected ARN Position for
the Second Case (Randomly)

Mostly Selected ARN Position for
the Third Case (Using the IFT

Algorithm)

LTE-V2X 1 1h 1d
LTE-V2X 2 2b 2g
LTE-V2X 3 3b 3d
LTE-V2X 4 4h 4e
LTE-V2X 5 5c 5f
LTE-V2X 6 6a 6e
LTE-V2X 7 7f 7c
LTE-V2X 8 8d 8c
LTE-V2X 9 9h 9d

The parameters considered for the performance evaluation include the throughput,
the end-to-end delay, the jitter and the packet loss ratio. As observed from the simulation
results, where the positions of the ARNs are optimized, the proposed scheme succeeds
improved performance since optimal channel conditions are provided to the vehicular
users. In particular, as presented in Figure 5, for the ANav service slice, in the case where
ARNs obtain optimized positions, the proposed scheme succeeds up to 2.01 Mbps higher
throughput than these succeeded when the ARNs obtain a random position, as well as up
to 5.39 Mbps higher throughput in comparison with the case where no ARNs used. At
the same time, up to 0.6 ms, 0.07 ms and 17.9% lower values are observed for both the
packet transfer delay, the jitter and the packet loss ratio factors, respectively. Similarly,
Figures 6–8 present the corresponding results for the VoIP, the CV and the WB services,
respectively. As it can be observed, in the case of the VoIP service slice, where the ARNs
obtain optimized positions, up to 0.91 Mbps and 2.45 Mbps higher throughput is achieved,
in comparison with the cases where either the ARNs obtain random positions or no ARNs
used, respectively. At the same time, for the VoIP service slice, up to 11.27 ms, 0.24 ms
and 24.5% lower values are observed for the delay, the jitter and the packet loss ratio
factors, respectively. In addition, similar results are observed in the case of the CV service
slice, which is the most demanding service in terms of throughput in our simulation. In
particular, in the case of the CV service slice up to 296.7 Mbps and 793.2 Mbps, higher
throughput is observed where the positions of the ARNs are optimized, compared with
the cases where the ARNs obtain random positions or no ARNs exist. In addition, similar
to the other service slices, the values for the delay, the jitter and the packet loss ratio are
up to 41.2 ms, 12.35 ms and 44% lower than those observed in the other two cases, where
either ARNs are not used or their geographical positions are not optimized. Finally, for the
WB service slice, the proposed scheme succeeds up to 105.5 Mbps and 282.1 Mbps higher
throughput from the other two cases, respectively, and up to 157.7 ms, 19.71 ms and 70.5%
lower values for the delay, the jitter and the packet loss ratio, respectively, where the ARNs
obtain optimal geographical positions.
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Figure 5. The simulation results for the autonomous navigation (ANav) service slice.

Figure 6. The simulation results for the voice over IP (VoIP) service slice.

Figure 7. The simulation results for the conversational video (CV) service slice.
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Figure 8. The simulation results for the Web browsing (WB) service slice.

In some cases where the service requirements cannot be met from the RSUs, the
use of ARNs results in critical improvements of the system performance and thus to the
satisfaction of the constraints of the aforementioned services. Indicatively, in the case of
the CV service, the maximum acceptable is equal to 150 ms. In this case, when the number
of vehicular users becomes equal to 50, the observed packet transfer delay is equal to
154.29 ms (Figure 7) and thus the delay constraint is not satisfied. However, with the use of
ARNs, even when their position has not been optimized, the observed packet transfer delay
is less than 150 ms and thus it can be considered a satisfied QoS parameter. Additionally,
in the case of the WB service, when the number of vehicular users becomes equal to 50,
the delay constraint of the 300 ms is satisfied only in the case where ARNs with optimized
positions are used (Figure 8). In addition, similar improvements are observed in the case
of the packet loss ratio factor. Specifically, considering the results for the entire services
(Figures 5–8), when no ARNs used the packet loss ratio constraint is satisfied only for the
case of 10 users. On the contrary, when ARNs used the packet loss ratio is satisfied for up
to 30 users, while in the case where the ARNs obtain optimal positions, the packet loss
ratio factor is satisfied for up to 40 users.

Furthermore, Figure 9 presents how the altitude of ARNs affects the performance of
the system. As it can be observed, when the altitude of the ARNs is 25% higher than the
average height of the buildings, better performance is observed for the entire services in
terms of throughput, delay, jitter and packet loss ratio. On the contrary, worse performance
is observed when the ARNs obtain lower altitude than the average height of the building,
since in this case, worse channel conditions occur due to the increased number of obstacles
that exist between the ARNs and the vehicular users.

Accordingly, Figure 10 presents how the average velocity of the vehicles affects the
performance of the system. In particular, as the vehicles move with lower velocity, the
performance of the system is maximized since each ARN remains for a longer period of
time at a specific position without requiring the execution of the IFT algorithm for selecting
another optimal position. On the contrary, when the average velocity of the vehicles is
increased, the overall performance of the system is reduced. However, as it is observed,
if we compare the results presented in Figure 10 with the ones presented in Figures 6–8,
where the vehicles are supposed to have average velocity equal to 9 m/s, even when the
vehicles obtain an average velocity equal to 18 m/s, the performance achieved from the
proposed scheme is better than the one observed in the case where no ARNs used.
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Figure 9. The simulation results with respect to the altitude of the ARNs.

Figure 10. The simulation results with respect to the average velocity of the vehicles.

Regarding the simulation results, it is obvious that when the ARNs obtain optimal
positions, even if the same amount of communication resources is committed by the
algorithm, improved performance is achieved since improved channel conditions are
established. As a conclusion of this situation, it can be said that from the network provider’s
point of view, this means that communication resources can be released in cases where the
requirements of the services are satisfied. On the other hand, from the user’s point of view,
even better QoS can be perceived.

7. Conclusions

In this paper, a network slicing scheme for 5G networks was proposed, aimed at the
optimization of the performance of vehicular services. In particular, the proposed network
architecture consists of UAVs acting as ARNs and RSUs that provide communication
resources to vehicular users. Moreover, the position of each ARN is optimized by applying
the proposed IFT algorithm. Regarding the proposed scheme, each ARN maintains its own
RBs, while each RSU maintains an LVRP which contains LRBs and SRBs. An SDN controller
provides centralized control of the entire architecture, while at the same time, it maintains
a VRP, where the SRBs of the RSUs are stored. The satisfaction grade of each user service
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is monitored considering both the QoS and the SINR factors. If the satisfaction grade is
higher than the predefined threshold value, the service requirements can be satisfied from
the remaining RBs of the RSU or ARN where the user is connected. On the contrary, if
the estimated satisfaction grade is lower than the predefined threshold value, the RSU
or ARN borrows extra RBs from the corresponding virtual resource pool. Performance
evaluation shows that enhanced performance is achieved where the geographical positions
of the ARNs are optimized, since in this case, improved channel conditions are provided to
the users.
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