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Abstract: With the rise of Deep Learning approaches in computer vision applications, significant
strides have been made towards vehicular autonomy. Research activity in autonomous drone
navigation has increased rapidly in the past five years, and drones are moving fast towards the
ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific
tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and
a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is
established by mapping the definitions of vehicular autonomy levels, as defined by the Society of
Automotive Engineers, to specific drone tasks in order to create a clear definition of autonomy when
applied to drones. A top–down examination of research work in the area is conducted, focusing on
drone navigation tasks, in order to understand the extent of research activity in each area. Autonomy
levels are cross-checked against the drone navigation tasks addressed in each work to provide a
framework for understanding the trajectory of current research. This work serves as a guide to
research in drone autonomy with a particular focus on Deep Learning-based solutions, indicating
key works and areas of opportunity for development of this area in the future.

Keywords: artificial intelligence; deep learning; neural networks; artificial neural networks; multi-
layer neural network; neural network hardware; autonomous systems; internet of things; machine
vision; unmanned autonomous vehicles; unmanned aerial vehicles

1. Introduction

Since 2016, drone technology has seen an increase in consumer popularity, growing in
market size from 2 billion USD in 2016 [1] to 22.5 billion USD in 2020 [2]. As small form
factor UAVs similar to the drone pictured in Figure 1 flooded the market, several industries
adopted these devices for use in areas including but not limited to cable inspection, product
monitoring, civil planning, agriculture and public safety. In research, this technology has
been used mostly in areas related to data gathering and analysis to support these applica-
tions. However, direct development of navigation systems to provide great automation of
drone operation has become a realistic aim, given the increasing capability of Deep Neural
Networks (DNN) in computer vision, and its application to the related application area,
vehicular autonomy. The work outlined in this paper is twofold: (1) it provides a common
vocabulary around levels of drone autonomy, mapped against drone functionality, and
(2) it examines research works within these functionality areas, so as to provide an indexed
top–down perspective of research activity in the autonomous drone navigation sector. With
recent advances in hardware and software capability, Deep Learning has become very
versatile and there is no shortage of papers involving its application to drone autonomy.
While domain-knowledge engineered solutions exist that utilize precision GPS, lidar, image
processing and/or computer vision to form a system for autonomous navigation, these
solutions are not robust, have a high cost for implementation, and can require important
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subsystems to be present for optimal operation, such as network access. The focus in this
paper is on navigation works that utilise Deep Learning or similar learning-based solutions
as a basis for implementation of navigation tasks towards drone autonomy. Just as Deep
Learning underpins the realisation of self-driving cars, the ability of trained Deep Learning
models to provide robust interpretation of visual and other sensor data in drones is critical
to the ability of drones to reach fully autonomous navigation. This paper aims to highlight
navigation functionality of research works in the autonomous drone navigation area, across
the areas of environmental awareness, basic navigation and expanded navigation capabili-
ties. While the general focus is on DNN-based papers, some non-DNN-based solutions are
present in the collected papers for contrast.

Figure 1. A typical quad rotor helicopter drone, constructed for autonomous flight research.

Research projects focused specifically on the development of new navigational tech-
niques with or without the cooperation of industry partners form the definition of what
is considered as the state of the art—not as currently implemented solutions in industry
but solutions and implementations being actively researched with the potential for future
development.

Sources

Our overview covers peer-reviewed publications, acquired using conditional searches
of relevant keywords including “drones”, “autonomous navigation”, “artificial intelligence”
and “deep learning” or other similar keywords in databases of quality research such as
Google Scholar, IEEE Xplore and ArXiv. The most common source of publications found
after selection was revealed to be the IEEE Xplore database [3], likely due to the high
coverage of high-quality published academic research in the area of electronic engineering
and computer science. From the sources found, the most relevant papers on autonomous
drone navigation were selected by assessing their relevance to the topic as well as the
number of citations per year, as a basic measure for citation analysis [4,5]. The set of papers
selected is referred to as the “research pool” (Appendixes A–E).

2. Approach

In this section, we explain the structure and high level metrics that we apply to
this overview.
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2.1. Levels of Autonomy

As a first step, we need to define the concept of autonomy for drones, with a view to
recognising different levels of autonomous navigation. This paper identifies the emergent
navigation features in current research against these levels. We apply the Six levels of
autonomy standard published by the Society of Automation Engineers (SAE) International.
Though the context of these levels was intended by SAE for autonomous ground vehicles,
the logic can apply to any vehicle capable of autonomy [6]. The concept of autonomy for
cars and drones is similar, implying a gradual removal of driver roles in the navigation of
obstacles and path finding. This, progressing to fully independent autonomous navigation
regardless of restrictions due to surface bound movement or obstacles. By examining
the SAE levels of autonomy for cars, we note how each level is directly applicable to
drones. This provides a useful line of analysis for our overview In Figure 2, we set out the
functionality of drone navigation, mapped against these levels of autonomy. Autonomy
starts at Level 1 with some features assisted, including GPS guidance, airspace detection
and landing zone evaluation. These features are designed to provide automated support
to a human operator. These features are already to be found in commercially available
drones. Level 2 autonomous features are navigational operations that are specific and use
case dependent, where an operator must monitor but not continuously control. In the
context of drone operation this can include features where the drone is directed to navigate
autonomously if possible, e.g., the “follow me” and “track target” navigational commands.
Some of these features are available in premium commercial products. Level 3 features
allow for autonomous navigation in certain identified environments where the pilot is
prompted for engagement when needed. At level 4 the drone must navigate autonomously
within most use cases without the need for human interaction. Level 5 autonomy implies
Level 4 autonomy but in all possible use cases, environments and conditions and as such is
considered a theoretical ideal that is outside the scope of this overview. Though this paper
aims at evaluating the features of papers in the context of Level 4 autonomy, it was found
that the bulk of the papers approached in the research pool involved Level 2 or 3 auton-
omy, with the most common project archetype involving DNN training for autonomous
navigation in a specific environment.

Figure 2. Level of autonomous drone navigation mapped by functional features.
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2.2. Features of Autonomy

We identified that autonomous navigation features fall into three distinct groups:
“Awareness”, which details the vehicle’s understanding of its surroundings, which can be
collected via non-specific sensors; “Basic Navigation”, which includes the functionality
expected from autonomous navigation, such as avoiding relevant obstacles and collision
avoidance strategies; and “Expanded Navigation”, which covers features with a higher de-
velopment depth such as pathway planning and multiple use case autonomous navigation.
These groupings and their more detailed functional features are listed in Figure 3, as identi-
fied for Level 4 automation. In addition, we note that common engineering features are a
useful category for this overview of navigation capability, and we include these as a fourth
category for analysis. This is done to acknowledge projects in the research pool that are
aimed at achieving a goal within a given hardware limitation, such as optimisations for
lower-end hardware and independence from subsystems such as wireless networks [7].

Figure 3. A categorisation of Level 4 autonomous navigation features by group/function.

2.3. Citations

In this overview, we indicate the level of research activity by functional area of
autonomous drone navigation. We note that within the research domain of autonomous
drone navigation there is a lack of standard metrics to enable comparison of contribution
and performance. In Section 3, we include “number of citations” as a basic indicator
of research attention, whilst also acknowledging that the number of citations can be
ambiguous. We order our research by number of citations per year to allow for elapsed
time building larger citation counts. We also note that citations in themselves are not a
quality indicator, but are simply an indicator of research attention/critical analysis from
other works.
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2.4. Evaluation Criteria in the Literature

The most common technical approach in the research pool is that of deep learning-
based navigation policies implemented on monocular quad-rotor helicopter drones. Within
these, the most common criteria for the evaluation of neural networks are accuracy and F1
score. These are applied to assess the ability of the particular DNN to correctly address a
particular sensor-data driven tasks, such as object detection, image classification or distance
assessment. While accuracy is straightforward, being a direct measure of the network’s
ability to predict values correctly against the test dataset, F1 score is less transparent as a
harmonic mean of precision and recall [8]. As such, a low F1 value implies a high number
of false positive predictions. Due to DNN accuracy being dependent on the quality of the
data, and F1 score being both data-specific and situational, we consider it irrelevant to
compare the accuracy and F1 score of one DNN architecture to another if the application
of the said architecture is in an entirely different environment. Efficiency, in the context
of drone navigation, can take the form of processing time in milliseconds (ms), or the
power draw while the solution is running in milliwatts (mW). This can be relevant across
environments and applications, as it is in part a product of the DNN architecture itself and
the implementation of that architecture into experiments, not necessarily the training/test
dataset that was fed into it. For this overview, this metric is only represented in the form
of processing time, as power draw is more reliant on the engineering of the hardware.
Though evaluating quantitative values such as accuracy, efficiency and F1 score are outside
the scope of this paper, they are included where visible in the full research pool.

3. Results

The following results are a subset of the full research pool that contains the navigation
features of the most cited papers per year published, organised by the feature headers
described in Figure 3. Quantitative results, using the aforementioned typical evaluation
criteria, are available for reference in Appendixes A–E (A complete evaluation matrix for
the research pool, with bold text for readability, is available in Table S1 in the Supplemen-
tary Materials, additionally Table S2 is included in the Supplementary Materials as an
abbreviation legend).

3.1. Awareness

This encompasses any feature that is included in the referred solution as analysis of the
drone’s spatial environment; though basic navigation features can be developed without
this understanding, it limits the capability of the said navigation. Projects that do not
include awareness features could lead to limited command capability and an over-reliance
on prediction; the feature mappings of the awareness section can be seen in Table 1.

• Spatial Evaluation (SE): The drone can account for the basic spatial limitations of
its surrounding environment, such as walls or ceilings, allowing it to safely operate
within an enclosed space.

• Obstacle Detection (ODe): The drone can determine independent objects, such as
obstacles beyond the bounds of the previously addressed Spatial Evaluation, but does
not make a distinction between those objects.

• Obstacle Distinction (ODi): The drone can identify distinct objects with independent
properties or labels, e.g., identifying a target object and treating it differently from
other objects or walls/floors in the environment.
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Table 1. The most cited research pool entries as of 18 March 2021 in the context of awareness features.

Paper Year Citations SE ODe ODi

A. Loquercio et al. [9] 2020 34 No No Yes
M. K. Al-Sharman et al. [10] 2020 11 No No No

S. Nezami et al. [11] 2020 8 No No Yes
H. Shiri et al. [12] 2020 6 No No No
K. Lee et al. [13] 2020 6 No No No

A. Anwar et al. [14] 2020 5 No No No
R. Chew et al. [15] 2020 4 No No Yes
D. Wofk et al. [16] 2019 55 Yes No No

E. Kaufmann et al. [17] 2019 50 No No Yes
D. Palossi et al. [7] 2019 43 Yes Yes No
Hossain et al. [18] 2019 19 No No Yes

Y. Y. Munaye et al. [19] 2019 11 No No Yes
S. Islam et al. [20] 2019 9 No No No

A. Alshehri et al. [21] 2019 8 No No Yes
A. Loquercio et al. [22] 2018 158 Yes Yes No
E. Kaufmann et al. [23] 2018 60 No No Yes

O. Csillik et al. [24] 2018 58 No No Yes
S. Jung et al. [25] 2018 57 No No Yes

A. A. Zhilenkov et al. [26] 2018 23 Yes No No
S. Lee et al. [27] 2018 14 No No Yes

S. Dionisio-Ortega et al. [28] 2018 14 No Yes No
D. Gandhi et al. [29] 2017 165 No Yes No
D. Falanga et al. [30] 2017 98 No No No
K. McGuire et al. [31] 2017 88 Yes No No
A. Zeggada et al. [32] 2017 43 No No Yes

Y. Zhao et al. [33] 2017 31 No No No
L. Von Stumberg et al. [34] 2017 25 Yes Yes No

P. Moriarty et al. [35] 2017 11 No No Yes
A. Giusti et al. [36] 2016 424 No No Yes
T. Zhang et al. [37] 2016 263 No No No
S. Daftry et al. [38] 2016 26 Yes No No

M. E. Antonio-Toledo et al. [39] 2016 3 No No No

3.2. Basic Navigation

Most of the solutions examined implement features in the category of basic naviga-
tion, which we describe as core navigation features for autonomous drones. The Basic
Navigation features outlined below are tabulated in Table 2.

• Autonomous Movement (AM): The drone has a navigation policy that allows it to
fly without direct control from an operator; this policy can be represented in forms as
simple as navigation commands such as “go forward” or as complex as a vector of
steering angle and velocity in two dimensions that lie on the x–z plane.

• Collision Avoidance (CA): The drone’s navigation policy includes learned or sensed
logic to assist in avoiding collision with non-distinct obstacles.

• Auto Take-off/Landing (ATL): The drone is able to enact self-land and take-off rou-
tines based on information from its awareness of the environment; this includes
determining a safe spot to land and a safe thrust vector to take off from.
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Table 2. The most cited entries in the research pool as of 18 March 2021 in the context of Basic Navigation features.

Paper Year Citations AM CA ATL

A. Loquercio et al. [9] 2020 34 Yes Yes No
M. K. Al-Sharman et al. [10] 2020 11 No Yes No

S. Nezami et al. [11] 2020 8 No No No
H. Shiri et al. [12] 2020 6 No No No
K. Lee et al. [13] 2020 6 Yes Yes No

A. Anwar et al. [14] 2020 5 Yes Yes No
R. Chew et al. [15] 2020 4 No No No
D. Wofk et al. [16] 2019 55 No No No

E. Kaufmann et al. [17] 2019 50 Yes Yes No
D. Palossi et al. [7] 2019 43 Yes Yes No
Hossain et al. [18] 2019 19 No No No

Y. Y. Munaye et al. [19] 2019 11 No No No
S. Islam et al. [20] 2019 9 No Yes No

A. Alshehri et al. [21] 2019 8 No No No
A. Loquercio et al. [22] 2018 158 Yes Yes No
E. Kaufmann et al. [23] 2018 60 Yes Yes No

O. Csillik et al. [24] 2018 58 No No No
S. Jung et al. [25] 2018 57 Yes No No

A. A. Zhilenkov et al. [26] 2018 23 Yes Yes No
S. Lee et al. [27] 2018 14 No No Yes

S. Dionisio-Ortega et al. [28] 2018 14 Yes Yes No
D. Gandhi et al. [29] 2017 165 Yes Yes No
D. Falanga et al. [30] 2017 98 Yes Yes No
K. McGuire et al. [31] 2017 88 Yes Yes No
A. Zeggada et al. [32] 2017 43 No No No

Y. Zhao et al. [33] 2017 31 No No No
L. Von Stumberg et al. [34] 2017 25 No No No

P. Moriarty et al. [35] 2017 11 No No Yes
A. Giusti et al. [36] 2016 424 Yes Yes No
T. Zhang et al. [37] 2016 263 Yes Yes No
S. Daftry et al. [38] 2016 26 Yes Yes No

M. E. Antonio-Toledo et al. [39] 2016 3 No No No

3.3. Expanded Navigation

Expanded navigation covers elements of autonomy that we suggest are second-level
navigation autonomy features, relative to those of Section 3.2, and will be addressed at a
later stage than the core features of basic navigation. These features would increase the
operational capacity of a drone autonomy project that already covers some features of basic
navigation; the following features are tabulated in Table 3.

• Path Generation (PG): The drone attempts to generate or optimize a pathway to a
given location, the application of the generated pathway can vary depending on the
goal of the project (e.g., pathways for safety or pathways for efficiency).

• Environment Distinction (ED): The drone can distinguish or take advantage of fea-
tures of an uncommon use case environment, such as forests, rural areas or mountain-
ous regions. Urban and indoor environments have been excluded from this criteria.

• Non-Planar Movement (NPM): The implemented navigational policy makes use of
full three-dimensional movement strategies enabling the drone to navigate above or
below obstacles as well as around them.
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Table 3. The most cited entries in the research pool as of 18 March 2021 in the context of Expanded Navigation features.

Paper Year Citations PG ED NPM

A. Loquercio et al. [9] 2020 34 No No Yes
M. K. Al-Sharman et al. [10] 2020 11 No No No

S. Nezami et al. [11] 2020 8 No Yes No
H. Shiri et al. [12] 2020 6 Yes No No
K. Lee et al. [13] 2020 6 Yes No Yes

A. Anwar et al. [14] 2020 5 No No No
R. Chew et al. [15] 2020 4 No Yes No
D. Wofk et al. [16] 2019 55 No No No

E. Kaufmann et al. [17] 2019 50 Yes No Yes
D. Palossi et al. [7] 2019 43 No No No
Hossain et al. [18] 2019 19 No No No

Y. Y. Munaye et al. [19] 2019 11 No No No
S. Islam et al. [20] 2019 9 Yes No No

A. Alshehri et al. [21] 2019 8 No No No
A. Loquercio et al. [22] 2018 158 No No No
E. Kaufmann et al. [23] 2018 60 No No No

O. Csillik et al. [24] 2018 58 No Yes No
S. Jung et al. [25] 2018 57 No No Yes

A. A. Zhilenkov et al. [26] 2018 23 No Yes No
S. Lee et al. [27] 2018 14 No No Yes

S. Dionisio-Ortega et al. [28] 2018 14 No Yes No
D. Gandhi et al. [29] 2017 165 No No No
D. Falanga et al. [30] 2017 98 Yes No Yes
K. McGuire et al. [31] 2017 88 No No No
A. Zeggada et al. [32] 2017 43 No No No

Y. Zhao et al. [33] 2017 31 Yes No No
L. Von Stumberg et al. [34] 2017 25 No No No

P. Moriarty et al. [35] 2017 11 No Yes Yes
A. Giusti et al. [36] 2016 424 No No No
T. Zhang et al. [37] 2016 263 No No No
S. Daftry et al. [38] 2016 26 No No No

M. E. Antonio-Toledo et al. [39] 2016 3 Yes No Yes

3.4. Engineering

This group heading does not tie directly into Level 4 autonomous navigation, but cap-
tures additional challenges that apply to a portion of the covered research. It encompasses
any feature that advances the robustness of drone physical implementation or addresses
any common limitations related to drone hardware in the context of autonomous flight [7].
These feature mappings are visible in Table 4.

• On-Board Processing (OBO): The drone does not rely on external computation for
autonomous navigation. The on-board performance of navigation is performed with
an efficiency comparable to an external system.

• Extra Sensory (ES): The drone employs the use of sensors other than a camera and
rotor movement information such as the RPM or thrust. The presence of this feature
is not necessarily beneficial; however, the use of additional on-board sensors to aid
in autonomous navigation may be worth the weight penalty and computational
trade-off.

• Signal Independent (SI): Drone movement policies do not rely on streamed informa-
tion such as global position from a wireless/satellite network or other subsystems.
This is likely to be a limiting factor, as such a feature may greatly improve the precision
of an autonomous system.
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Table 4. The most cited entries in the research pool as of 18 March 2021 in the context of Engineering features.

Paper Year Citations OBO ES SI

A. Loquercio et al. [9] 2020 34 Yes No Yes
M. K. Al-Sharman et al. [10] 2020 11 No No No

S. Nezami et al. [11] 2020 8 No Yes No
H. Shiri et al. [12] 2020 6 No Yes No
K. Lee et al. [13] 2020 6 No No No

A. Anwar et al. [14] 2020 5 No No No
R. Chew et al. [15] 2020 4 No No No
D. Wofk et al. [16] 2019 55 Yes No Yes

E. Kaufmann et al. [17] 2019 50 Yes No Yes
D. Palossi et al. [7] 2019 43 Yes No Yes
Hossain et al. [18] 2019 19 Yes No Yes

Y. Y. Munaye et al. [19] 2019 11 No No No
S. Islam et al. [20] 2019 9 No Yes No

A. Alshehri et al. [21] 2019 8 No No No
A. Loquercio et al. [22] 2018 158 No No No
E. Kaufmann et al. [23] 2018 60 Yes No Yes

O. Csillik et al. [24] 2018 58 No No No
S. Jung et al. [25] 2018 57 Yes No Yes

A. A. Zhilenkov et al. [26] 2018 23 Yes No Yes
S. Lee et al. [27] 2018 14 Yes No Yes

S. Dionisio-Ortega et al. [28] 2018 14 No No No
D. Gandhi et al. [29] 2017 165 No No No
D. Falanga et al. [30] 2017 98 Yes Yes Yes
K. McGuire et al. [31] 2017 88 Yes Yes Yes
A. Zeggada et al. [32] 2017 43 No No No

Y. Zhao et al. [33] 2017 31 No Yes No
L. Von Stumberg et al. [34] 2017 25 No Yes No

P. Moriarty et al. [35] 2017 11 No No No
A. Giusti et al. [36] 2016 424 No No No
T. Zhang et al. [37] 2016 263 Yes No No
S. Daftry et al. [38] 2016 26 No Yes No

M. E. Antonio-Toledo et al. [39] 2016 3 No No No

3.5. Comparative Results

Figure 4 indicates the focus of functional features in the research space based on how
the relative frequency of features appearing in the research pool. This is a potentially useful
indicator of which areas are lacking in research attention, versus research areas that are
heavily covered. This information is discussed in detail in Section 4.

Figure 4. The average occurrence frequency of a given feature across the research pool as a percentage
of the total entries in the research pool.
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4. Discussion

Through analysis of the results across the feature headers, and the comparative
results between the papers in the research pool, it is shown that there are areas which are
significantly more developed in the current research space. Conversely, this analysis also
identifies underdeveloped areas where opportunity exists for further research.

4.1. Common Learning Models

Three particular Deep Learning models appear most frequently in the research pool
in support of autonomous decision making. Firstly, “VGG-16” [40] is a CNN image
classifier that has been trained on the “ImageNet” dataset [41] of over 14 million images
matched to thousands of labels. VGG-16 supports wide-ranging image classification or
can serve as a base for transfer learning with fine-tuning using images specific to a target
drone environment. The majority of research works that adopt it or the object detection
model “YoloV3” [42] in the research pool use it as a base for collision avoidance or object
detection/distinction. The “ResNet” architecture [43] originates from a CNN-based paper
discussing the optimisation of the “AlexNet” architecture [44] through the utilisation
of residual layer “shortcuts” that can approximate the activity of entire neural layers.
Similar to VGG-16, ResNet is trained on the ImageNet dataset. The benefit of ResNet’s
shortcuts architecture is a considerable reduction of processing overhead, resulting in
efficient models with low response times but maintaining comparable accuracy. This is
favourable for drone operations that require a low CPU overhead. “DroNet” is more
specific to the area of autonomous drone navigation and applies manually labelled car
and bicycle footage as training data for navigation in an urban environment. Outputs for
DroNet from a single image are specific to the purposes of drone navigation, providing
a steering angle, to keep the drone navigating while avoiding obstacles, and a collision
probability, to let the UAV recognize dangerous situations and promptly react to them.
As a purpose-built autonomous drone network, the DroNet work [22] is highly cited and
used as a base network for several other papers in the research pool.

4.2. Areas of Concentrated Research Effort

The most common project archetype seen throughout the research pool follows DNN-
based autonomous movement with a quad rotor drone trained from bespoke data [7]
or transfer-learned from a pretrained network [25]. The most frequent focus of research
work within the research pool was for basic autonomous movements. Though the quality
of various implementations and methods of acquiring results differ, solutions trended
towards the same structure of approximately 75–95% navigational accuracy inside the
project’s use case. Whilst this is a wide range of navigational accuracy achievement and
exact tasks will differ across individual research works, the high levels of accuracy for
DNN-based navigation policies indicate that they are effective in the environments that
they are trained for. Most projects took the approach of reducing complexity either by not
relying on subsystems such as GPS or network access, and/or by partially or fully focusing
on optimising network efficiency for on-board operation. Most projects also avoided the
use of any additional sensors, instead relying on a single camera system. No papers in
the research pool considered the use of dual cameras for spatial awareness, which defied
author expectations.

4.3. Areas of Opportunity

A surprising result from the comparative analysis shows that there were few research
projects with the environmental distinction feature. Of those that do, no project attempted
to distinguish explicitly between two or more environments. Several projects did test their
given implementations in various environs [22,29,38], but did not qualify as addressing
the environmental distinction feature, as their approach did not provide consideration for
the differences in those environments to be represented in the solution itself. There is no
architecture modification to consider different environments, and there are no datasets
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used in the research pool with distinct environment labels. This area is of considerable
potential, as the recognition of different environments could drastically affect the accuracy
and efficiency of the solution, and provides a level of transparency within autonomous
navigation that may be necessary for future regulatory compliance. Certain papers, such
as Rodriguez et al. [45], used an interesting approach to training datasets by training their
model on simulated data. However, such an approach can result in a significant trade-off
in accuracy under realistic test conditions. However, it was noted that the visual fidelity of
such simulations was poor compared to what is achievable in modern rendering engines,
and some reduction in this trade-off can be seen when simulations are run through modern
video-game engines [46], such as the Unity or Unreal engines. It is pertinent to note that
a drone-specific simulation software known as Gazebo has been used in some projects,
which demonstrates the validity of simulation [47].

4.4. Issues

Most research works explain their approach to model training and testing, explaining
the chosen ground truth, labels and descriptions of how the navigation system interfaces
with the CNN model. One issue to highlight, however, is a lack of uniformity of metrics in
the domain. Some papers evaluate their approach using environment-specific metrics, such
as the number of successful laps [46] and performance at different speeds [23]. In the DNN
research space, the inclusion of visual descriptions of architectures and evaluation results
comparing similar architectural or function-level approaches is crucial to the explainabil-
ity of the project. The use of research work-specific metrics, when displayed without
connection to a more common metric such as accuracy, makes it difficult to compare the
performance of autonomous navigation approaches across the domain.

Another typical issue found in the research pool is various computer and electronic en-
gineering hurdles not attempted too be overcome, not addressed, or the solutions carefully
designed to work inside the boundaries of such hurdles. This reduces the robustness of
the implementation and potentially limits the use cases in which the solution can operate.
Power consumption, data processing, latency, sensor design and communication are all
areas affected by this issue. We suggest that drone autonomy research projects could benefit
greatly from interdisciplinary interaction.

Supplementary Materials: Table S1: Drone Autonomy Research Overview Rubric Sorted by Number
of Citations/Year; Table S2: Abbreviation legend for Autonomous Features are available online at
https://www.mdpi.com/article/10.3390/drones5020052/s1.
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Appendix A. Research Pool—2020 Section

Table A1. All papers in the research pool published in the year 2020, tabulated by F1 score, accuracy and efficiency
(processing time in milliseconds) where found.

Paper Year Citations F1 Score Accuracy Efficiency

A. Loquercio et al. [9] 2020 34 - - -
M. K. Al-Sharman et al. [10] 2020 11 - - -

S. Nezami et al. [11] 2020 8 - 0.983 -
H. Shiri et al. [12] 2020 6 - - -
K. Lee et al. [13] 2020 6 - - 80 ms

A. Anwar et al. [14] 2020 5 - - -
R. Chew et al. [15] 2020 4 0.86 0.86 -
I. Roldan et al. [48] 2020 4 - 0.9948 -

Y. Liao et al. [49] 2020 3 - 0.978 -
Y. Wang et al. [50] 2020 1 - - -
I. Bozcan et al. [51] 2020 1 0.9907 - -

L. Messina et al. [52] 2020 1 - - -
B. Li et al. [53] 2020 0 - 0.9 -
J. Tan et al. [54] 2020 0 0.8886 0.9 -

M. Gao et al. [55] 2020 0 - - -
R. Yang et al. [56] 2020 0 - 0.96 -

K. Menfoukh et al. [57] 2020 0 0.85 0.91 -
V. Sadhu et al. [58] 2020 0 - - -
R. Raman et al. [59] 2020 0 - - -

B. Hosseiny et al. [60] 2020 0 0.855 0.909 -
R. I. Marasigan et al. [61] 2020 0 - - -

M. Irfan et al. [47] 2020 0 - - -
V. A. Bakale et al. [62] 2020 0 - - 92 ms

L. O. Rojas-Perez et al. [63] 2020 0 - - 25.4 ms

Appendix B. Research Pool—2019 Section

Table A2. All papers in the research pool published in the year 2019, tabulated by F1 score, accuracy and efficiency
(processing time in milliseconds) where found.

Paper Year Citations F1 Score Accuracy Efficiency

D. Wofk et al. [16] 2019 55 - 0.771 37 ms
E. Kaufmann et al. [17] 2019 50 - - 100 ms

D. Palossi et al. [7] 2019 43 0.821 0.891 55.5 ms
Hossain et al. [18] 2019 19 - - -

Y. Y. Munaye et al. [19] 2019 11 - 0.98 -
S. Islam et al. [20] 2019 9 - 0.8 -

A. Alshehri et al. [21] 2019 8 - 0.8017 -
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Table A2. Cont.

Paper Year Citations F1 Score Accuracy Efficiency

M. A. Akhloufi et al. [64] 2019 8 - - 33 ms
A. G. Perera et al. [65] 2019 6 - 0.7592 -

X. Han et al. [66] 2019 4 - 0.88 -
D. R. Hartawan et al. [67] 2019 4 - 1 330 ms

G. Muñoz et al. [68] 2019 4 - - -
Mohammadi et al. [69] 2019 4 - - -

A. Garcia et al. [70] 2019 3 - 0.98 45 ms
S. Shin et al. [71] 2019 3 - - -

S. Y. Shin et al. [71] 2019 2 - - -
A. Garcia et al. [72] 2019 1 - - -

L. Liu et al. [73] 2019 1 - - -
J. A. Cocoma-Ortega et al. [74] 2019 0 - 0.95 -

M. T. Matthews et al. [75] 2019 0 - - -
J. Morais et al. [76] 2019 0 - - -
A. Garrell et al. [77] 2019 0 - 0.7581 -
E. Cetin et al. [78] 2019 0 - - -

Appendix C. Research Pool—2018 Section

Table A3. All papers in the research pool published in the year 2018, tabulated by F1 score, accuracy and efficiency
(processing time in milliseconds) where found.

Paper Year Citations F1 Score Accuracy Efficiency

A. Loquercio et al. [22] 2018 158 0.901 0.954 50 ms
E. Kaufmann et al. [23] 2018 60 - - 100 ms

O. Csillik et al. [24] 2018 58 0.9624 0.9624 -
S. Jung et al. [25] 2018 57 - 0.755 34 ms

A. A. Zhilenkov et al. [26] 2018 23 - - -
S. Lee et al. [27] 2018 14 - - -

S. Dionisio-Ortega et al. [28] 2018 14 - - -
Y. Feng et al. [79] 2018 13 - - -

N. Mohajerin et al. [80] 2018 13 - - -
A. Carrio et al. [46] 2018 13 - 0.98 50 ms

A. Rodriguez-Ramos et al. [45] 2018 12 - 0.7864 -
M. Jafari et al. [81] 2018 11 - - -

M. A. Anwar et al. [14] 2018 11 - - -
A. Khan et al. [82] 2018 10 - 0.78 -

Y. Xu et al. [83] 2018 7 - - -
I. A. Sulistijono et al. [84] 2018 6 - 0.841 450 ms

J. Shin et al. [71] 2018 6 - - -
S. P. Yong et al. [85] 2018 5 0.731 0.9732 -

C. Beleznai et al. [86] 2018 3 - - 50 ms
H. U. Dike et al. [87] 2018 3 - 0.865 86.6 ms

X. Guan et al. [88] 2018 3 - - -
Y. Liu et al. [73] 2018 3 - - -
X. Dai et al. [89] 2018 1 - - -

J. M. S Lagmay et al. [90] 2018 1 - - -
X. Chen et al. [91] 2018 0 - 0.95 50 ms
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Appendix D. Research Pool—2017 Section

Table A4. All papers in the research pool published in the year 2017, tabulated by F1 score, accuracy and efficiency
(processing time in milliseconds) where found.

Paper Year Citations F1 Score Accuracy Efficiency

D. Gandhi et al. [29] 2017 165 - - -
D. Falanga et al. [30] 2017 98 - 0.8 0.24 ms
K. McGuire et al. [31] 2017 88 - - -
A. Zeggada et al. [32] 2017 43 - 0.827 39 ms

Y. Zhao et al. [33] 2017 31 - - -
L. Von et al. [34] 2017 25 - - -

P. Moriarty et al. [35] 2017 11 - 0.985 -
Y. F. Teng et al. [92] 2017 11 - - -
Y. Zhou et al. [93] 2017 3 - - -

A. Garcia et al. [94] 2017 3 - 0.9 -
Y. Choi et al. [95] 2017 1 - 0.989 -

Y. Zhang et al. [96] 2017 1 - 0.83 -
S. Andropov et al. [97] 2017 0 - - -

Appendix E. Research Pool—2016 Section

Table A5. All papers in the research pool published in the year 2016, tabulated by F1 score, accuracy and efficiency
(processing time in milliseconds) where found.

Paper Year Citations F1 Score Accuracy Efficiency

A. Giusti et al. [36] 2016 424 - - -
T. Zhang et al. [37] 2016 263 - - -
S. Daftry et al. [38] 2016 26 - 0.78 -

M. E. Antonio-Toledo et al. [39] 2016 3 - - -
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