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Abstract

:

We consider the problem of vision-based detection and ranging of a target UAV using the video feed from a monocular camera onboard a pursuer UAV. Our previously published work in this area employed a cascade classifier algorithm to locate the target UAV, which was found to perform poorly in complex background scenes. We thus study the replacement of the cascade classifier algorithm with newer machine learning-based object detection algorithms. Five candidate algorithms are implemented and quantitatively tested in terms of their efficiency (measured as frames per second processing rate), accuracy (measured as the root mean squared error between ground truth and detected location), and consistency (measured as mean average precision) in a variety of flight patterns, backgrounds, and test conditions. Assigning relative weights of 20%, 40% and 40% to these three criteria, we find that when flying over a white background, the top three performers are YOLO v2 (76.73 out of 100), Faster RCNN v2 (63.65 out of 100), and Tiny YOLO (59.50 out of 100), while over a realistic background, the top three performers are Faster RCNN v2 (54.35 out of 100, SSD MobileNet v1 (51.68 out of 100) and SSD Inception v2 (50.72 out of 100), leading us to recommend Faster RCNN v2 as the recommended solution. We then provide a roadmap for further work in integrating the object detector into our vision-based UAV tracking system.
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1. Introduction


Human beings can easily detect and track objects using their eyes. The human brain can differentiate between various kinds of an object, e.g., different animal species. Studying how computers can mimic human perception can be traced as far back as 1966, when an undergraduate student at Massachusetts Institute of Technology was asked to program a computer to recognize what it saw from a camera [1]. Today, computer vision and perception is widely deployed in areas such as manufacturing, terrain surveying, robot navigation, and many others.



A well-known computer vision algorithm for object detection is the Cascade Classifier [2,3], originally developed to detect human faces in video streams. Due to its popularity, this algorithm is included in the OpenCV [4] library. The Cascade Classifier was notable for being one of the first algorithms to employ an offline training step prior to the online detection step. This algorithm was employed in [5] for the purpose of detecting and following a target UAV by a pursuing UAV equipped with an on-board monocular camera. While the system was experimentally validated to work, the Cascade Classifier was found to be poor at detecting objects in conditions different from the training dataset. For example, if the algorithm was trained using pictures of the drone hovering over a white background, it had difficulties detecting the same drone performing maneuvers involving large tilt angles or flying over complex (non-white) backgrounds.



A newer approach to vision-based object detection are machine learning-based neural networks, inspired by the structure of the human brain. A milestone event for this approach was AlexNet winning the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [6]. Machine learning methods are more powerful than classifier-based detection methods, e.g., while a classifier-based method can detect dogs in a picture, a machine learning method can additionally identify the species of each dog it detects. Machine learning training and detection each require performing enormous amounts of computations. Thanks to recent advances in computer hardware, specifically Graphics Processing Units (GPUs) enabling massive parallelization of calculations, it is now feasible to perform training using standard desktop-class computers and perform the detection process in real-time on video streams.



This article presents work performed on the implementation and benchmarking of various machine learning algorithms for the task of detection and ranging of a target UAV using the video feed from a monocular camera equipped onboard a pursuer UAV. We have deemed a vision-based sensing solution to be superior to conventional UAV detection technologies such as acoustic [7] or radar [8], since the latter are best suited for being installed on the ground due to their much higher weight and power draw relative to monocular cameras. The specific contribution is to provide a detailed set of benchmarks of the performance of these methods in a wide variety of flight patterns and under different test conditions, quantifying the ranging performance using an optical motion-capture system installed in our flight arena and making a recommendation about the choice of algorithm based on these results. While other studies have been published regarding testing and benchmarking of vision-based UAV detection and ranging, for instance [9,10,11], our study is unique in combining a broad choice of object detection algorithms (five candidates), having access to exact ground truth provided by an indoor motion capture system, and employing the commercial Parrot AR.Drone 2.0 UAV which brings about the challenges of its difficult-to-spot frontal profile due to its protective styrofoam hull and the low-resolution video from its onboard camera. We have chosen to focus exclusively on the case of the camera being carried onboard the pursuer UAV, as opposed to one or more camera on the ground, since this aligns with our lab’s focus on vision-based UAV-to-UAV pursuit as a multi-faceted research program blending techniques from computer vision, state estimation, and control systems.



The remainder of this paper is structured as follows. Section 2 provides a background for machine learning algorithms and current implementations, then covers our methodology for quantifying the performance of vision-based detection and ranging of the target UAV. Section 3 covers the training process of the object detection systems, where a series of manually labeled images of the UAV are used to train the system to perform detection on previously unseen images. Section 4 covers the benchmarking of the trained object detection systems under a set of different flight patterns and test conditions, quantifying the resulting performance in terms of efficiency, accuracy, and consistency, ending with a recommendation for the choice of object detection system based on the numbers obtained. Section 4.4 summarizes the paper and provides recommendations for further work.




2. Background and Methodology


Thanks to the ongoing development of Artificial Intelligence (AI), the method of machine learning has brought in new approaches to computer vision-based object detection such as artificial neural networks. Various machine learning frameworks are now publicly available including TensorFlow, Caffe, Keras, Darknet, etc. Good support and frequent updates from Google have made TensorFlow today’s most popular machine learning framework [12].



This section introduces specific object detection systems including Single Shot multibox Detector (SSD) and Faster Region-based Convolutional Neural Network (Faster RCNN) which run under TensorFlow and You Only Look Once (YOLO) which runs under Darknet. We then cover metrics used to quantify the precision of object detection, equations to range the target UAV from a monocular camera video feed, the process of camera calibration, and the testing methodology used in the following sections.



2.1. TensorFlow


TensorFlow is an open source software library for machine learning developed by Google based on DistBelief, a closed-source machine learning framework [13]. “Tensor” stands for multidimensional data and “Flow” stands for the manner of processing this data. TensorFlow runs a number of publicly available object detection systems. We will use and benchmark three of these: Single Shot multibox Detector (SSD) MobileNet v1, SSD inception v2, and Faster Region-based Convolutional Neural Network (Faster RCNN). Details of these are provided below.



2.1.1. Single Shot Multibox Detector (SSD)


Single Shot multibox Detector was proposed in [14]. SSD employs a base feed-forward convolutional network to produce an initial collection of bounding boxes and their associated detection probabilities, followed by a set of convolutional feature layers which progressively decrease in size and allow predictions at multiple scales.




2.1.2. Inception


Inception v1 is a detection architecture proposed in [15]. The original design, Inception v1, consists of two models: a “Naive” model and a dimension-reducing model. The “Naive” model contains three filters and a max pooling layer. However, this architecture was inefficient and required an excessive amount of computation power. Extra convolutions were thus added before the filters and after the max pooling layer. This reduces the dimension of the input to enhance computational efficiency [15].



In order to improve detection accuracy and speed, Inception v2 was introduced in [16]. The architecture consists of a series of convolution steps, followed by Inception modules and a pooling filter bank leading to classification. The overall architecture is 42 layers deep and provided superior performance relative to other architectures [16].




2.1.3. MobileNet


MobileNet is a CNN architecture proposed in [17] optimized for low-power mobile and embedded vision applications. MobileNet employs depthwise separable convolutions, consisting of a separate layer for filtering and a separate layer for combining. This approach reduces both computation and model size relative to a standard convolution, with negligible loss in accuracy [17].




2.1.4. Faster Region-Based Convolutional Neural Network (Faster RCNN)


Regions with CNN features (RCNN) was proposed in [18]. RCNN first extracts region proposals from the input image, extracts a feature vector from each region using a CNN, then scores each feature using its corresponding Support Vector Machine (SVM) [18]. This yields excellent accuracy but requires around 10 seconds to process an image [18], making it unusable for real-time video processing.



Fast RCNN [19] is an extension of RCNN. Instead of running each region proposal through a CNN, the input image is run through several convolutional and max pooling layers to produce a convolutional feature map. Then, for each region proposal a pooling layer extracts a feature from the feature map, meaning feature extraction is done only once. Each feature is then passed to a sequence of fully connected layers which yield classification probability and bounding box estimates using softmax layers for objects. Image processing speed for Fast RCNN was benchmarked to be 146 times faster than RCNN [19].



Faster RCNN was proposed in [20] with the goal of further optimizing the speed of Fast RCNN. Faster RCNN works by employing Region Proposal Networks (RPN), a CNN which produces region proposals, to replace selective search algorithm in Fast RCNN. In this way the region proposal step can be carried out in around   10  ms  , allowing real-time object detection for the overall pipeline. Runtime speed of Faster RCNN was found to be roughly ten times faster than Fast RCNN [20].





2.2. Darknet


Darknet is an open source machine learning framework written in C language and CUDA [21]. Darknet is faster than TensorFlow in specific tasks, for instance object detection, as shown in Section 4.1. This is important for running on single-board computers which have a limited power budget.



The object detection models You Only Look Once (YOLO) and Tiny YOLO are trained, tested, and benchmarked within Darknet.



You Only Look Once (YOLO)


You Only Look Once was introduced in [22]. YOLO employs an end-to-end single neural network to reframe the classification problem into a regression problem which predicts bounding boxes and their associated probabilities in one evaluation pass to avoid complex pipeline [22].



Tiny YOLO, also known as Fast YOLO, was also proposed in [22] and employs fewer convolutional layers (9 versus 24) and fewer filters within these layers to achieve faster performance, with an associated reduction in detection accuracy. The implementation details are otherwise identical to YOLO.



YOLO v2 is a newer version of YOLO which increases detection accuracy as well as efficiency [23]. YOLO v2 employs batch normalization, trains the classification network with higher-resolution images, uses anchor boxes to predict bounding boxes, finds good priors in the training dataset by using k-means clustering on the bounding boxes, predicts box location coordinates relative to grid cells, concatenates low and high resolution features for the detector, and trains the network with a range of input image dimensions to make it capable of using a wide range of input resolutions. These features contribute to an improvement in detection performance.





2.3. Detection Precision Metrics


The performance of object detection systems such as Faster RCNN and YOLO are measured using mean Average Precision (mAP). The calculation of mAP relies on recall and precision, which are discussed below.



2.3.1. Intersection over Union (IoU)


Intersection over Union (IoU) measures the quality of the bounding box of a detected object. An example of a detected UAV bounding box is shown in Figure 1.



The ground truth is the exact boundary of the object. The bounding box is the rectangle estimated by the detection system. IoU is then calculated as


  IoU =   Ground  Truth  Area ⋂ Bounding  Box  Area   Ground  Truth  Area ⋃ Bounding  Box  Area    











In this paper, bounding boxes with an IoU of 0.5 or more are considered to be a positive detection.




2.3.2. Recall and Precision


Recall describes the rate of detecting objects in an image. Precision describes the accuracy of these positive detections. Figure 2 illustrates the possible classifications of detected items.



Recall and precision are calculated as


    Recall    =  DC  DC + UC        Precision    =  DC  DC + DI       











The larger the recall and precision, the more accurate the detection.




2.3.3. Average Precision (AP) and Mean Average Precision (mAP)


Both recall and precision need to be considered when measuring the accuracy of a detection system. Average Precision (AP) is the area under the precision-recall curve. AP is calculated as


     AP =  ∑  i = 1  n  p  ( i )  Δ r  ( i )      








where   p ( i )   is the precision at each detection and   Δ r ( i )   is the recall difference between detection   i − 1   and i.



Mean Average Precision (mAP) takes an average over different detection sets and thus measures the overall accuracy of the object detection system. mAP is calculated as


     mAP =  1 n   ∑  i = 1  n  A P  ( i )      








where n is the number of detection sets, and   A P ( i )   is the average precision at each set.



Note mAP only reflects the rate of correctly detected objects in a set of data, and it does not quantify the difference in dimensions between a detected bounding box and the ground truth (the exact size of the bounding box). The dimensions of the bounding box are used to estimate the distance of the target UAV from the pursuer, as explained in Section 2.4.





2.4. Distance Estimation from a Monocular Camera


Depth-sensing cameras such as the Kinect [24] have the ability to directly measure 3D images. However, our UAV’s onboard camera is monocular and can only capture 2D images. In order to track a UAV, its 3D position relative to the follower must be estimated using the method described in this section. In order to verify the accuracy of the calculated depth, the estimated results will be compared against a ground truth provided by a Vicon motion capture system installed in our lab.



We model the monocular camera by the well-known pinhole camera model shown in Figure 3, which assumes the aperture of the lens approaches zero, such that the only ray from a point p passing to the image plane is the one through the optical center of the lens. The focal length   f > 0   is the distance from the lens to the imaging plane. Figure 3 introduces the camera lens-fixed reference frame C whose origin is placed at the optical center of the lens, as well as a frame I on the image plane whose origin lies at the intersection of the optical axis with the image plane.



Within Figure 3 let   ( X , Y , Z )   denote the coordinates of p w.r.t. frame C, and let   ( x , y )   denote the coordinates of the corresponding point image   p ′   w.r.t. frame I. Using similar triangles provides the relationships


  x = − f  X Z  ,  y = − f  Y Z  .  



(1)







The negative signs above reflect the fact that the image projected onto the image plane, which in a digital camera corresponds to the CCD sensor array, is an upside-down, mirror-flipped version of the scene in front of the camera. This is intrinsically compensated for in the firmware of the camera, such that the reported image correctly renders the scene. For this reason, we can remove the negative signs in (1). Using homogeneous coordinates, we thus express the mapping (1) from the 3D point   ( X , Y , Z )   to 2D point   ( x , y )   as


         x     y     1          =      f X / Z       f Y / Z      1     =  f Z      X     Y      Z / f      =  1 Z      f   0   0   0     0   f   0   0     0   0   1   0         X     Y     Z     1              =  1 Z        f   0   0     0   f   0     0   0   1     ︸   K f         1   0   0   0     0   1   0   0     0   0   1   0     ︸   Π 0       X     Y     Z     1         



(2)







The model above is entirely in SI units of length, namely   ( X , Y , Z )  , f, and   ( x , y )   are all given in units of m. However, since we are using a digital camera, we need to transform   ( x , y )   into coordinates   (  x ′  ,  y ′  )  , which are in units of pixels (px), and whose origin is at the top-left of the image. This transformation is done in two steps. First, the dimensions in m are transformed into px as


     x s     =  s x  x       y s     =  s y  y     








where   s x  ,   s y   in units of px/m are scaling factors; if    s x  =  s y    the pixels are square, but this is not always the case. The scaled coordinates are then transformed into the digital image frame as


     x ′     =  x s  +  c x        y ′     =  y s  +  c y      








where   (  c x  ,  c y  )   are the coordinates of the optical axis with respect to the digital image frame, in units of px. The two transformations combine to


       x ′       y ′      1     =        s x    0    c x      0    s y     c y      0   0   1     ︸   K s       x     y     1      











Returning to (2) and left-multiplying both sides by   K s   gives:


       x ′       y ′      1     =  1 Z          s x  f    0    c x      0     s y  f     c y      0   0   1     ︸  K        1   0   0   0     0   1   0   0     0   0   1   0     ︸   Π 0       X     Y     Z     1      



(3)




where K is known as the intrinsic camera matrix, whose entries are determined by the optics of the camera and are fixed. Note both    s x  f : =  f x    and    s y  f : =  f y    are in units of px. Matrix K is upper-triangular, and so it has an inverse since all of its diagonal entries are non-zero. Based on (3) we also define the projection matrix   P : = K  Π 0   , such that


  P =      f x    0    c x    0     0    f y     c y    0     0   0   1   0      



(4)







Estimating the target UAV’s position from monocular camera images can be done under the following assumptions:




	
The detection method provides accurate rectangular bounding boxes around the target UAV



	
The physical dimensions of the target UAV are precisely known



	
The target’s visible width and height do not change much during the experiment








The first two assumptions are reasonable. The third one is much more restrictive and requires the target UAV to maintain its yaw angle relative to the pursuer as close to zero and not to fly too much above or below the pursuer. For instance, our UAV has a width and depth of   52  cm   and a height of   13  cm  . When it faces away from the follower, its visible width and height are known to be   52  cm   by   13  cm  . However, if it yaws by   45 ∘  , its visible width changes to     (  52 2  +  52 2  )   1 / 2   = 73.5  cm  —a   41 %   increase—which violates the third assumption. One approach to removing this assumption would be to train the CNN to classify different orientations of the target UAV and use this information to dynamically assign a visible width and height.



Expanding (3) yields the following two relations:


     x ′     =  f x   X Z  +  c x        y ′     =  f y   Y Z  +  c y      



(5)







The CNN provides rectangular bounding boxes in the form of a vector   (  x  u l  ′  ,  y  u l  ′  ,  x  d r  ′  ,  y  d r  ′  )  , where   (  x  u l  ′  ,  y  u l  ′  )   are the digital image frame coordinates of the upper-left corner and   (  x  d r  ′  ,  y  d r  ′  )   are those of the lower-right, all in units of px. The width of the bounding box is thus    w ′  =  x  d r  ′  −  x  u l  ′   . Let   X  u l    and   X  d r    denote the camera lens-fixed frame C coordinates of the points in 3D space corresponding to the upper-left and bottom-right pixel of the bounding box, and let Z denote their common depth. Under the earlier assumption that the target has a near-zero yaw angle, Z physically represents the perpendicular distance between the follower’s camera and the target’s rear face. We have


     w ′     =  x  d r  ′  −  x  u l  ′           =  f x    X  d r   Z  +  c x  −   f x    X  u l   Z  +  c x         w ′     =   f x  Z    X  d r   −  X  u l        











However,    X  d r   −  X  u l   : = W   is the true visible width of the target UAV, which is known. Thus we can solve for the depth (of the rear surface of the UAV) as


   Z w  =    f x  W   w ′    



(6)







Note this   Z w   is calculated using only width information. Using the same procedure with height    h ′  =  y  d r  ′  −  y  u l  ′    of the bounding box, we have


     h ′     =  y  d r  ′  −  y  u l  ′           =  f y    Y  d r   Z  +  c y  −   f y    Y  u l   Z  +  c y         h ′     =   f y  Z    Y  d r   −  Y  u l        








and with    X  d r   −  X  u l   : = H   known as the true visible height of the target UAV, we get


   Z h  =    f y  H   h ′    



(7)







The results from (6) and (7) should be identical. In practice, errors in the bounding box estimated dimensions   w ′   and   h ′   will affect the computed Z. To mitigate this we take the average of the quantities as


  Z =    Z w  +  Z h   2  =    f x   h ′  W +  f y   w ′  H   2  w ′   h ′     



(8)







Knowing Z, we proceed as follows: inverting (5), we obtain


   X Z  =    x ′  −  c x    f x     Y Z  =    y ′  −  c y    f y    











We find the digital image frame coordinates of the midpoint of the bounding box as


   x m ′  =    x  u l  ′  +  x  d r  ′   2  ,   y m ′  =    y  u l  ′  +  y  d r  ′   2   











Since Z is the coordinate of a point on the rear surface of the target drone, we obtain


  X = Z    x m ′  −  c x    f x   ,  Y = Z    y m ′  −  c y    f y    



(9)







Such that   ( X , Y , Z )   denotes the coordinates of the midpoint of the target UAV’s rear face in frame C.




2.5. Camera Calibration


Equation (3) provides a mapping from the coordinates   ( X , Y , Z )   of a 3D point w.r.t. the camera lens-fixed frame to coordinates   (  x ′  ,  y ′  )   in the captured digital image. However, this model is idealized and does not account for the effect of distortion, which warps the captured image in a number of ways. For instance, viewing raw images captured by a wide-angle camera such as the one onboard our UAV, straight lines in the scene are captured with a visible “bowing”, an effect which is increasingly pronounced towards the edges of the image frame.



A number of models are available to remove distortion from an image. The default model used by the ROS image pipeline (which uses OpenCV libraries) is the plumb bob model, also known as the Brown–Conrady model [25], which inputs a distorted image in image plane frame I coordinates   (  x d  ,  y d  )   and outputs a corrected image in image plane frame I coordinates   ( x , y )   by the following calculations:


     r 2     =  x d 2  +  y d 2       k    = 1 +  k 1   r 2  +  k 2   r 4  +  k 3   r 6       x    = k  x d  + 2  p 1   x d   y d  +  p 2    r 2  + 2  x d 2        y    = k  y d  + 2  p 2   x d   y d  +  p 1    r 2  + 2  y d 2       



(10)




where    k 1  ,  k 2  ,  k 3    model the effect of radial distortion (e.g., bowing of straight lines) created by a wide-angle lens, while    p 1  ,  p 2    model tangential distortion created by the lens plane not being perfectly parallel to the imaging sensor plane. Remember that the distortion model (10) is formulated in I frame coordinates, so both   ( x , y )   and   (  x d  ,  y d  )   are in SI units.



The parameters of the intrinsic camera matrix K in (3),    f x  ,  f y  ,  c x  ,  c y   , as well as the parameters of the plumb-bob distortion model (10),    k 1  ,  k 2  ,  k 3  ,  p 1  ,  p 2   , can be found by performing a camera calibration, which involves printing a black-and-white checkerboard with precisely known dimensions and numbers of squares, taking a series of pictures of this checkerboard, then performing model fitting to obtain numerical values for these parameters. This process can be performed using a built-in camera calibration module in ROS. The output is a .yaml text file giving the parameter values of the camera model. Viewing the contents, we see the file contains four entities:




	
camera matrix K



	
distortion coefficients D



	
rectification matrix R



	
projection matrix P








The details of this pipeline are as follows: ROS starts with the raw (distorted) video reported by the camera. This is transformed through the inverse of the camera matrix, i.e.,   K  − 1   , to convert the distorted digital image coordinates   (  x d ′  ,  y d ′  )   into image plane frame I coordinates   (  x d  ,  y d  )  . This   (  x d  ,  y d  )   is run through the plumb bob model (10) with parameter values taken from D, resulting in corrected coordinates   ( x , y )   in image plane frame I. These are run through R, which is always identity for monocular cameras (unlike stereo cameras). Finally   ( x , y )   is run through the projection matrix P, which for monocular cameras is   P = [ K  0 ]  , c.f. (4) (for stereo cameras, the last column of P contains a translation vector between the two lenses). This yields   (  x ′  ,  y ′  )  , the undistorted version of the image captured by the onboard camera.



Note the camera calibration file actually contains two intrinsic camera matrices: the first one is the camera matrix K, which describes the intrinsic parameters of the camera if distortion is not removed; the second one is the left-hand subset of projection matrix P, which describes the intrinsic parameters of the camera once image correction has been applied. In light of the above discussion, we employ the following methodology: first the onboard camera is calibrated using ROS’ built-in module. These undistorted images are used to detect the drone in the image plane. Then the 3D position   ( X , Y , Z )   of the UAV is obtained from (8) and (9), using the parameters extracted from the intrinsic camera matrix K contaminated in the projection matrix P.




2.6. Experimental Testing Procedure


The performances of the studied object detection systems will be compared for efficiency, accuracy, and consistency. Pose data from Vicon Vero camera system will be used as the ground truth. A trial flight of the drone will be captured by the onboard camera of a second drone, while the poses of both UAVs are logged. The recorded video will then be fed through the different object detection systems, and the results are compared against the ground truth provided by the Vicon motion capture system. Efficiency will be tested by comparing the individual object detection systems’ training time and running speed. In order to obtain a fair comparison, all training will be conducted with the same set of images, and the detection systems will be run on the same hardware platform, whose specifications are provided in Table 1.





3. Object Detection System Training Results


3.1. Overview


In this section, the training efficiency of each object detection system, also referred to as Application Programming Interface (API), is tested and compared. In order to make the comparison fair, all of the object detection APIs are trained on the same set of 1750 images and on the same computer whose specifications were listed in Table 1. The images were taken from videos recorded by the hovering tracking UAV, while the target UAV was flown manually. The location of the target UAV is manually labelled by a bounding box in each frame for training purposes. The batch size configuration for each system is customized to maximize its training efficiency. Batch size is a setting that controls the size of the dataset being processed at each training step, which affects the overall efficiency of the training process [26]. Low batch sizes result in overly long training times, while overly high batch sizes may lead to training failure due to excessive demands on computational resources.



The TensorFlow object detection APIs, namely SSD MobileNet v1, SSD Inception v2 and Faster RCNN Inception v2 come with convolutional weights pretrained on the COCO (Common Objects in COntext) dataset [27], a large (328k) set of images of common objects together with corresponding classification, localization and segmentation information for each. However, despite the pretrained weights, the APIs were unable to detect our drone. For this reason, further training of the COCO-derived weights was required. Note that while training of the TensorFlow object detection APIs from scratch is possible in principle, this would require an enormous amount of computation time.



The Darknet framework object detection APIs, namely YOLO v2 and Tiny YOLO, came with pretrained weights obtained from the VOC dataset [28]. However, when YOLO v2 was trained to detect our drone starting from the pretrained weights, the resulting network was unable to detect the drone, likely due to overfitting problems. Tiny YOLO did not exhibit this problem and worked fine when training from the pretrained weights. For fairness of comparison between YOLO v2 and TensorFlow APIs, a fully customized dataset was used for training. Because YOLO v2 and Tiny YOLO are significantly faster compared to the TensorFlow-based APIs, the former can be trained from scratch. Annotations and training files are treated the same way for the VOC dataset, which are interchangeable with the COCO dataset and would give the same detection result if trained using COCO’s format from scratch as well. The same training dataset (1750 images) of our drone was used to train YOLO v2 and Tiny YOLO as well as SSD MobileNet v1, SSD Inception v2, and Faster RCNN Inception v2 in order to provide a consistent comparison.




3.2. TensorFlow APIs Training


The training process of SSD MobileNet v1 completed in 37 h and 40 min. Tensorboard was used to monitor the training process. Training went through 200k steps with a batch size of 42. Figure 4 shows the plot of the loss function of the training process, which has been smoothed using the built-in low-pass filter feature of Tensorboard. It can be seen that the total loss stabilizes and converges to a value of 2.



Table 2 lists the training parameters for SSD MobileNet v1, SSD Inception v2, and Faster RCNN Inception v2, as well as the converged value of the loss function. Faster RCNN Inception v2 is seen to have the lowest converged loss function value of 0.05, and thus can be expected to have the best detection performance among the three TensorFlow object detection APIs considered in this study.




3.3. Darknet APIs Training


The training process of YOLO v2 finished in 14 h and 30 min. The zoomed-in and smoothed total loss curve is shown in Figure 5, demonstrating that it converges to an approximate value of   0.55  . The training parameters and total loss curve convergence value of YOLO v2 and Tiny YOLO are given in Table 3.





4. Object Detection Results


In this section, the performances of each object detection API are evaluated. Three factors are used to evaluate the performance of an object detection system: running speed, accuracy, and consistency.



Running speed measures the rate of detection (in frames per second) of an object detection system. Notice that all the object detection APIs were run on a full-sized computer equipped with a GTX 1080 Ti GPU. The running speeds can vary dramatically depending on the model of the GPU, for instance YOLO v2 runs 71 fps on the GTX 1080 Ti but only around 25 fps on a GTX 1060. Lower frame rates can also be expected when running on a lower-power GPU such as the Nvidia Jetson TX2 with 256 CUDA cores (as opposed to 3584 for the 1080 Ti).



Accuracy is evaluated by taking the Root Mean Square (RMS) error between the location estimated by the object detection system and the ground truth location obtained from the Vicon motion-capture system along the side (x), height (y), and depth (z) directions. This is the most important part of the performance evaluation process. Accuracy is tied to the construction of an object detection API and cannot be easily optimized by upgrading hardware or tuning parameters.



Consistency of an object detection system is measured using the mean Average Precision (mAP) metric introduced in Section 2.3 and reflects the quality of the bounding box estimates provided by the API. Note that incorrect detections, which are more common when flying over a complex background than a plain one, will reduce the mAP value and thus the consistency of the object detection system.



Our testing does not include visual occlusions, which occur whenever the target UAV is partially or fully obscured from view in the pursuer UAV’s camera frame. This can be caused by the target UAVs flying behind static obstacles or a moving actor such as a human or a third UAV crossing the visual path from pursuer to target. Occlusions cause object detection to fail at successive video frames, until the target re-emerges into full view and detection is re-established. Handling occlusions requires the implementation of a tracking system, which estimates the position of the target UAV based on past measurements of velocity and an internal dynamics model; this is discussed at the end of Section 4.4.



4.1. Running Speed


The running speeds of different object detection systems are tested using the lab computer whose specifications were given in Table 1. Running speeds under both Linux and inside ROS were measured and are shown in Table 4. It can be seen that all the TensorFlow and Darknet APIs run faster on Linux than in ROS, which is as expected since ROS is a meta-operating system running on top of Linux. Note the ROS wrapper for TensorFlow was self-developed in Python, which greatly slows down its performance under ROS. If the wrapper were developed in C++, we expect the running speeds under ROS to be much closer to those under Linux, just like for YOLO and Tiny YOLO.




4.2. Accuracy


In this section, detection results for a target UAV obtained from SSD MobileNet v1, SSD Inception v2, Faster RCNN v2, YOLO v2, and Tiny YOLO are compared against the Vicon-derived ground truth along the side (x), height (y), and depth (z) directions. The Root Mean Square Error (RMSE) metric is used to assess performance of the detection. For each direction, the RMSE is calculated as


    RMSE    =    1 N   ∑  p = 1  N    (  Error p  )  2          Error p     = Detection   Data p  − Vicon   Data p      








where detection data is calculated from the estimated bounding boxes and the equations in Section 2.4, Vicon data is used as the ground truth, and N is the number of data points used in a given trial.



Eight trials were conducted to collect data. A white curtain was used to provide a best-case scenario for the object detection system. A complex background was also used to provide more challenging conditions. Sample video frames from each type of background are shown in Figure 6 and Figure 7, respectively, with the raw (unrectified) view on the left and the corrected (rectified) view on the right.



The TensorFlow-based APIs were trained using unrectified images recorded from the onboard camera. The Darknet-based YOLO v2 and Tiny YOLO were trained using both unrectified (i.e., same as the TensorFlow-based APIs) and rectified images to provide more comparisons in experimental testing and assess the importance of camera calibration for the performance of the detection system. Note the target UAV ranging calculations were performed under the standing assumptions listed in Section 2.4.



A sequence of flight experiments was performed. First, two trials of simple movements in the side and height directions were performed, since these movements can be directly measured from the onboard camera view. Next, two trials of back and forth movements in the depth direction were run. These are more challenging since the depth estimation relies entirely on the quality of the estimated bounding box, as shown in Section 2.4. Following this, two trials of UAV rotations were conducted. Due to the shape of the drone, rotation of the vehicle about the vertical axis causes the bounding box to change size. These two trials are thus intended to test the robustness of detection when the target changes yaw angle. Finally, two trials of complex flight patterns were conducted. These two operations are intended to replicate realistic flight scenarios.



4.2.1. Offset in Vicon Camera System


Within the Vicon motion-capture system, each of the two UAVs is modeled as a rigid body with a body-fixed frame at its geometric center, as illustrated in Figure 8. Relative distances are measured from the center of one rigid body representing a UAV to the center of the other one as shown in Figure 8.



The relative distance calculations from Section 2.4 based on the estimated bounding box actually provide the distance from the center of the lens of the pursuer UAV’s camera to the center of the rear surface of the target UAV. As shown in Figure 9, the relative side and height between the pursuer and target UAV is identical between the Vicon-based measurements and the camera-based estimates, but the relative depth between the two measurement methods will be different.



For consistency, all depth measurements will be reported in terms of the physical offset, the distance from the pursuer UAV’s camera lens to the back surface of the target UAV. The depth measurements obtained from the Vicon system are thus corrected as


   Depth Camera  =  Depth Vicon  − Offset  








where the value of Offset was directly measured to be   44.4  cm  .




4.2.2. Impact of Camera Calibration


Although the TensorFlow-based APIs were trained using a set of unrectified images, the object detection system can detect the UAV in both rectified and unrectified camera video feeds. The percentage differences between detection results in rectified and unrectified videos are shown in Table 5. Positive percentages indicate that more error is present in rectified videos.



Table 5 shows that all of the APIs performed worse on rectified videos. This is a direct result of training using only unrectified images. Faster RCNN Inception v2 has the most difference in the detection results.



Darknet-based APIs were trained using both rectified and unrectified images. The difference in detection performance between permutations of Rectified (R) and Unrectified (U) images used for Training (T) and onboard Video (V) are shown in Table 6 for YOLO v2. A positive percentage difference indicates the second setup has more error. For instance, employing unrectified training and unrectified detection images gives better results than unrectified training images and rectified detection images.



Table 6 shows that detection results are better with the UT/UV setup, which is as expected since the object detection system is more familiar with unrectified images. Similarly, RT/RV provides better results than RT/UV, due to the mismatch in the latter. The RT/RV is actually slightly worse than UT/UV, which indicates the camera rectification process is introducing errors into the detection results. This may be due to inaccuracies in the camera K and/or projection P matrices of the camera, as covered in Section 2.5, in which case the calibration should be redone. This issue may be aggravated by the relatively low resolution of the onboard camera video feed (  640 × 360  ), which causes the system to be very sensitive to small imperfections in the rectification parameters.



Unlike YOLO v2, Tiny YOLO is unable to detect the drone when trained with an unrectified training dataset. For a rectified training dataset, Tiny YOLO is able to detect the target UAV in both rectified and unrectified camera videos. When compared to detection on unrectified videos, detection on rectified videos is 5.01% worse along the side x axis, 9.66 % worse along the height y axis, and 1.5% better along the depth z axis. The average of the distance estimations along the x, y, and z axes are 1.53% worse with RV than with UV. The reasons are likely the same as those given in the previous paragraph.




4.2.3. Accuracy of Object Detection Systems


We will now compare the accuracies of the different object detection systems. Since all the tested object detection systems were trained with the same set of unrectified images, we will use the unrectified training/unrectified video setup to compare the accuracies of SSD MobileNet v1, SSD Inception v2, Faster RCNN Inception v2, and YOLO v2. Tiny YOLO does not detect anything with the UT/UV setup, thus YOLO v2 and Tiny YOLO are compared using the RT/RV setup.



The first set of flights involve the target drone moving in the side and height directions. The RMS errors along the x, y, and z directions are given in the tables below. Table 7 and Table 8 provide the RMS errors when the flights are conducted in front of a white background, while Table 9 and Table 10 list the RMS errors for flights over a complex background.



Table 7 shows that Faster RCNN Inception v2 has the lowest error in the x direction while YOLO v2 has the lowest error in the y and z directions. YOLO v2 has the lowest average error, making it the most accurate in these test flights.



Table 8 shows that Tiny YOLO has a larger side and depth error but a smaller height error than YOLO v2. Overall, YOLO v2 has a smaller average RMSE.



Table 9 and Table 10 show that SSD MobileNet v1 and SSD Inception v2 have lower RMS errors than Faster RCNN Inception v2 and YOLO v2, particularly along the depth direction. Tiny YOLO outperforms YOLO v2 along the side and height directions but not the depth direction.



The next set of experiments involves the target drone flying along the depth (z) direction over both a white and complex background. This flight pattern is used to test the accuracy of the distance estimation. Unlike the previous set of flights, the bounding box size changes substantially during these experiments. The resulting RMS errors are listed in Table 11 and Table 12 for the white background and Table 13 and Table 14 for a complex background.



Table 11 and Table 12 show that when testing over a white background, YOLO v2 has equal or better accuracy than the TensorFlow-based systems and approximately equal performance to TinyYOLO.



Table 13 shows that for a complex background, the TensorFlow-based detection systems outperform YOLO v2 along the side x and depth z directions, with a pronounced difference for the latter. SSD Inception v2 has the least RMS error along all three axes. Meanwhile Table 14 shows that Tiny YOLO greatly outperforms YOLO v2 along the side and height directions, while YOLO v2 outperforms Tiny YOLO along the depth direction. This same trend was previously observed in Table 10 for side and height flight patterns.



The next flight involves the target UAV performing   360 ∘   rotations about its vertical axis, in order to investigate the impact of changing the viewing angle on distance estimation (as discussed in Section 2.4). The corresponding RMSE results for the different object detection systems are given in Table 15, Table 16, Table 17 and Table 18.



Table 15 shows that over a white background, SSD MobileNet v1 performs worse than SSD Inception v2, Faster RCNN Inception v2, and YOLO v2, which in turn perform similarly to each other, with YOLO v2 having the best performance by a small margin. Table 16 shows that in these conditions, YOLO v2 greatly outperforms Tiny YOLO in depth estimation, while being slightly better along the side x and slightly worse along the height y direction.



When rotation flights are conducted over a complex background, Table 17 shows SSD MobileNet v1 and SSD Inception v2 have similar performances to each other and have clearly superior depth estimation as compared to Faster RCNN Inception v2 and YOLO v2, which have similar performance levels. Table 18 shows Tiny YOLO has a strong advantage over YOLO v2 along the side axis, a small advantage along the vertical axis and small disadvantage along the depth axis.



The final set of flight tests involves trajectories consisting of translations along all three axes as well as rotations. The resulting RMS errors are listed in Table 19, Table 20, Table 21 and Table 22.



For trajectory flights over a white background, Table 19 and Table 20 show that YOLO v2 has the best average performance over both the TensorFlow-based SSD MobileNet v1, SSD Inception v2 and Faster RCNN Inception v2, and the DarkNet-based Tiny YOLO. In particular, the depth estimation for YOLO v2 is noticeably better than for the other object detection systems.



Conversely, when flying over a complex background, Table 21 shows that YOLO v2 has a much larger depth estimation error than the TensorFlow-based object detection systems. However, it has middle of the pack performance along the side (x) direction and the best performance along the vertical (y) direction. Table 22 shows that YOLO v2 outperforms Tiny YOLO for depth estimation but is much worse along the remaining x and y directions.



To summarize the previous results, all five object detection systems are capable of finding the target UAV whether it is flying over a simple (white curtain) background or a complex one. In all tests, estimation along the depth (z) direction has a larger error than estimation along the side (x) and height (y) directions. This is due to a combination of factors, including errors in the camera calibration (c.f. Section 4.2.2) as well as imperfect detected bounding boxes (  IoU < 1  , c.f. Section 2.3). Table 23 and Table 24 show the average of the RMS errors attained in the various flight tests (side and height, depth, rotation and trajectory) for each of the object detection systems over both a white and complex background.



Table 23 shows that over a white background, YOLO v2 performs the best, followed closely by Faster RCNN Inception v2. Conversely, over a complex background, YOLO v2 and Faster RCNN Inception v2 are the lowest and second-lowest performers, respectively. Meanwhile, Table 23, which compares only the Darknet-based YOLO v2 and Tiny YOLO using the rectified training/rectified video setup shows that YOLO v2 performs better than Tiny YOLO over a white background, yet substantially worse over a complex background.



A consistent trend which can be observed throughout all the flight testing in this section is that for the Darknet-based object detection systems YOLO v2 and Tiny YOLO; the accuracy becomes substantially worse when the UAV is flown over a complex (realistic) background as opposed to a simple (plain white curtain) background. The reason for this is that the accuracy of the estimated bounding boxes by both these systems exhibits significant levels of misdetections and outliers in the complex background setup. Figure 10 visually illustrates a best-case scenario, where the bounding boxes are both accurate and tight around the target UAV. Figure 11 and Figure 12 visually illustrate two failure modes, loose bounding boxes and wrong bounding boxes respectively, both of which skew the target position estimation and thus increase the overall RMS error. While these failure modes are inevitable for all object detection systems, we see that the TensorFlow-based SSD MobileNet v1, SSD Inception v2, and Faster RCNN Inception v2 have more robust detection performance, meaning their RMSE numbers are closer to each other between the simple and complex background cases.





4.3. Consistency Results Discussion


For the third and final evaluation of the object detection systems, we compute their experimental consistency in terms of the mean Average Precision (mAP) metric introduced in Section 2.3. The IoU threshold settings for all of the detection systems was set to 0.5. This is already the default threshold for the TensorFlow-based SSD MobileNet v1, SSD Inception v2, and Faster RCNN v2. The default IoU thresholds of YOLO v2 and Tiny YOLO are 0.2, and so these were adjusted to 0.5 for fairness of comparison.



The mAP for the flight tests along the side and height directions are given in Table 25 and Table 26 for the unrectified training/unrectified video setup (used by the TensorFlow-based object detection systems plus YOLO v2) and rectified training/rectified video setup (used by the Darknet-based YOLO v2 and Tiny YOLO), respectively.



The mAP for the flight tests along the depth axis are given in Table 27 and Table 28.



The mAP for the flight tests involving rotations about the yaw axis are given in Table 29 and Table 30.



The mAP for the final set of tests involving flying a trajectory are given in Table 31 and Table 32.



The average of the mAP results from the four sets of flight tests are provided in Table 33 and Table 34.



From Table 33, we see that Faster RCNN Inception v2 has by far the best average consistency, both over a white and a complex background. The other two TensorFlow-based object detection systems, SSD MobileNet v1 and SSD Inception v2, both achieve lower mAP scores than Faster RCNN Inception v2, but their performance is fairly even between the white and complex background test environments. YOLO v2 is the most uneven, showing near-perfect results over a white background and very weak results over a complex background.



Comparing the two DarkNet-based object detection systems in Table 34, we see that YOLO v2 greatly outperforms TinyYOLO. We also see that the reduction in mAP is much less when moving from simple to complex background and actually increases in the case of Tiny YOLO.




4.4. Choice of Object Detection System


After testing the different object detection systems for efficiency, accuracy, and consistency, we will now assign an overall score to the performance of each object detection system over a white and a complex background. Efficiency is assigned a relatively low weight (20%) since it can be optimized by the implementation, for instance developing a ROS package in C++ rather than Python to interface with the TensorFlow API. Accuracy and consistency are both assigned a higher weight of 40% to recognize that they can be improved by training the object detection system with more images but at the cost of a big increase in required computational power for training, as well as the risk of overfitting.



Efficiency is scored based on running speed. The higher the frames per second (fps), the better. We use only the run speed within ROS, since this is the environment used to control the pursuer UAV, and assign the maximum possible score of 20 to 100 fps. The resulting scores for both white and complex backgrounds are identical and are listed in Table 35 and Table 36 under the column “E”.



Accuracy is scored based on the average of the RMS error across all flight trials. The lower the error, the better. In order to use the Unrectified Training/Unrectified Video (UT/UV) framework for all five object detection systems, we use the ratio between YOLO v2 and Tiny YOLO RMS errors under Rectified Training/Rectified Video (RT/RV) trials listed in Table 24 to extrapolate the performance of Tiny YOLO in UT/UV. Referring to Table 23 and defining that 0 cm RMSE scores 40 while 30 cm RMSE scores 0, the calculated values over a white background are listed in Table 35 and those over a complex background in Table 36 under column “A”.



Consistency is scored based on the average mAP across all flight trials. The larger the mAP, the better. Just like for accuracy, the values in Table 34 for YOLO v2 versus Tiny YOLO in a RT/RV setup are used to extrapolate the mAP values for Tiny YOLO in the UT/UV setup in Table 33. Using the values in this table and assigning a maximum score of 40 to a mAP of 1 yields the values in Table 35 for the white background and the values in Table 36 for the complex background, each under column “C”.



The total score for each of the object detection systems over white and complex backgrounds is the total of the Efficiency (E), Accuracy (A), and Consistency (C) columns in Table 35 and Table 36, respectively. From Table 35, we see that YOLO v2 is the clear winner when testing over a white background. Conversely, when testing over a complex background, Table 35 shows that YOLO v2 exhibits the lowest score. In this case Faster RCNN v2 has the highest score, and the remaining three object detection systems have similar performance.



Overall, based on the numbers in this section, we recommend Faster RCNN v2 for detecting a target UAV. This system has the best performance over complex backgrounds, which represent realistic test conditions. Even though YOLO v2 has the highest score over a white background, Faster RCNN v2 still comes in second, and this is primarily due to being penalized for its low runtime speed under ROS. This issue can be addressed by switching from a Python implementation to a C++ implementation under ROS. Finally, from a practical point of view, running the object detection system at frame rate is not absolutely necessary. A fast tracking algorithm such as Re3 [29] or a Kalman filter-based design [30] could be used to estimate the position of the target UAV, and the full-frame object detection could be run less frequently to update and correct the running estimates of the target UAV’s position. This is similar to classical GPS-aided navigation system design [31], where estimates of the position and attitude of the vehicle are obtained from numerical integration of high-rate IMU sensor readings, then periodically updated through a (much slower) Extended Kalman Filter using information from the onboard GPS receiver. Another benefit of this approach is that the tracking algorithm provides robustness against visual occlusions by maintaining an estimate of the target’s position, which continues being updated using the last known velocity of the target UAV until visual object detection is re-established.





5. Conclusions


This article tested and benchmarked a set of convolutional neural network (CNN)-based object detection systems, SSD MobileNet v1, SSD Inception v2, Faster RCNN Inception v2, YOLO v2, and Tiny YOLO, for the purpose of detecting and tracking a target UAV from the video feed of a pursuer UAV’s onboard monocular video camera. The object detection systems were run inside the popular open-source Robot Operating System (ROS), and the ground truth for benchmarking the accuracy of the system was provided by a Vicon motion-capture system installed in our indoor lab. Overall performance was benchmarked in terms of the overall efficiency, accuracy, and consistency of each system, tested using a common set of experimental trials. Based on the results, we recommend using Faster RCNN Inception v2.



In the future, we plan on performing further work on the implementation of the target UAV tracking system onboard the pursuer UAV. This will require implementing the interface to the TensorFlow-based Faster RCNN Inception v2 as a C++ package within ROS. Since the running speed of this API is slow, it needs to be integrated with a fast tracking algorithm such as Re3 [29] to provide target estimates at frame rate. Our plans are made easier by the availability of Nvidia’s family of Jetson single-board GPU computers such as the Xavier NX, which are perfectly suited for operating in the weight and power-limited environment onboard the UAV. Our designs can also be tested and benchmarked on UAV flight-specific public datasets such as [32] involving larger flight arenas and thus higher speeds than those achievable in our own testing. Finally, we plan on deploying and testing the resulting design in real-world scenarios.
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Figure 1. Ground Truth and Bounding Box. 
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Figure 2. Classification of Items in a Detection. 
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Figure 3. Pinhole camera model. 






Figure 3. Pinhole camera model.
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Figure 4. SSD MobileNet v1 Total Loss. 
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Figure 5. YOLO v2 Total Loss. 
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Figure 6. White curtain backdrop: unrectified (left), rectified (right). 
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Figure 7. Complex scene backdrop: unrectified (left), rectified (right). 
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Figure 8. Body-fixed frames defined within the Vicon motion capture system. 
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Figure 9. Relative depth estimation: Vicon versus camera-based calculations. 
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Figure 10. Examples of Accurate Bounding Box. 
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Figure 11. Examples of Loose Bounding Box. 
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Figure 12. Examples of Wrong Bounding Box. 
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Table 1. Processing Computer Specifications.






Table 1. Processing Computer Specifications.





	Component
	Specification





	CPU
	Intel I7-8700K @ 3.70 GHz



	RAM
	32 GB DDR4-2666 MHz



	GPU
	Nvidia GTX 1080 Ti



	Storage
	2TB HDD 7200 rpm
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Table 2. TensorFlow Object Detection API Training Settings.






Table 2. TensorFlow Object Detection API Training Settings.





	API Name
	Steps
	Batch Size
	Training Time (h)
	Converged Total Loss





	SSD MobileNet v1
	200 k
	42
	37.67
	2.00



	SSD Inception v2
	200 k
	24
	21.43
	2.00



	Faster RCNN Inception v2
	200 k
	1
	5.6
	0.05
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Table 3. Darknet Object Detection API Training Settings.






Table 3. Darknet Object Detection API Training Settings.





	API Name
	Steps
	Batch Size
	Sub Division
	Training Time (h)
	Converged Total Loss





	YOLO v2
	45000
	64
	8
	14.5
	0.55



	Tiny YOLO
	40200
	64
	4
	9.33
	0.93
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Table 4. Object Detection Systems Speed Comparison.
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	Object Detection API
	Speed in Linux (fps)
	Speed in ROS (fps)





	SSD MobileNet v1
	188.35
	2.72



	SSD Inception v2
	107.32
	1.98



	Faster RCNN v2
	21.25
	1.97



	YOLO v2
	71.11
	67.30



	Tiny YOLO
	140.51
	73.80
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Table 5. Difference of TensorFlow Detection Results on Rectified and Unrectified Videos.






Table 5. Difference of TensorFlow Detection Results on Rectified and Unrectified Videos.





	API
	x (%)
	y (%)
	z (%)
	Avg. (%)





	SSD MobileNet v1
	6.21
	18.42
	72.11
	36.30



	SSD Inception v2
	3.85
	25.74
	73.59
	35.70



	Faster RCNN Inception v2
	127
	14.95
	56.08
	68.24
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Table 6. Difference of YOLO v2 Performance for Rectified (R) and Unrectified (U) images in Training (T) and Video (V).






Table 6. Difference of YOLO v2 Performance for Rectified (R) and Unrectified (U) images in Training (T) and Video (V).





	Setup
	x (%)
	y (%)
	z (%)
	Avg. (%)





	UT/UV vs. UT/RV
	3.92
	18.83
	40.45
	24.8



	RT/ UV vs. RT/RV
	16.51
	28.68
	4.61
	15.09



	UT/UV vs. RT/RV
	−1.90
	18.05
	3.06
	6.40
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Table 7. RMS Errors for side and height flights over white background, UT/UV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	SSD MobileNet v1
	12.08
	9.84
	37.21
	19.71



	SSD Inception v2
	11.43
	8.00
	23.57
	14.33



	Faster RCNN Inception v2
	11.33
	7.76
	19.96
	13.02



	YOLO v2
	12.37
	6.48
	19.35
	12.73
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Table 8. RMS Errors for side and height flights over white background, RT/RV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	YOLO v2
	11.84
	7.06
	20.82
	13.24



	Tiny YOLO
	13.18
	5.64
	32.19
	17.00
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Table 9. RMS Errors for side and height flights over complex background, UT/UV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	SSD MobileNet v1
	11.69
	15.93
	18.88
	15.50



	SSD Inception v2
	10.62
	14.70
	8.58
	11.30



	Faster RCNN Inception v2
	16.81
	9.14
	32.41
	19.45



	YOLO v2
	15.01
	11.39
	40.19
	22.20
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Table 10. RMS Errors for side and height flights over complex background, RT/RV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	YOLO v2
	47.72
	19.82
	37.53
	35.02



	Tiny YOLO
	14.96
	10.15
	44.15
	23.09
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Table 11. RMS Errors for depth flights over white background, UT/UV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	SSD MobileNet v1
	12.86
	6.86
	30.44
	16.72



	SSD Inception v2
	12.52
	4.78
	21.02
	12.77



	Faster RCNN Inception v2
	11.61
	5.42
	17.23
	11.42



	YOLO v2
	12.45
	4.28
	17.25
	11.33
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Table 12. RMS Errors for depth flights over white background, RT/RV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	YOLO v2
	12.04
	4.95
	18.89
	11.96



	Tiny YOLO
	11.80
	3.75
	20.27
	11.94
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Table 13. RMS Errors for depth flights over complex background, UT/UV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	SSD MobileNet v1
	7.65
	16.18
	22.70
	15.51



	SSD Inception v2
	7.50
	13.10
	17.15
	12.58



	Faster RCNN Inception v2
	11.33
	7.21
	25.69
	14.75



	YOLO v2
	15.17
	10.20
	37.67
	21.01
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Table 14. RMS Errors for depth flights over complex background, RT/RV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	YOLO v2
	39.73
	24.05
	41.10
	34.96



	Tiny YOLO
	15.04
	12.23
	59.65
	29.98
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Table 15. RMS Errors for rotation flights over white background, UT/UV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	SSD MobileNet v1
	16.38
	7.02
	31.43
	18.28



	SSD Inception v2
	16.49
	5.21
	20.28
	14.00



	Faster RCNN Inception v2
	15.31
	4.92
	19.13
	13.12



	YOLO v2
	15.57
	4.31
	18.87
	12.92
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Table 16. RMS Errors for rotation flights over white background, RT/RV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	YOLO v2
	15.88
	4.70
	16.91
	12.50



	Tiny YOLO
	17.15
	4.08
	26.44
	15.89
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Table 17. RMS Errors for rotation flights over complex background, UT/UV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	SSD MobileNet v1
	14.62
	14.96
	15.22
	14.93



	SSD Inception v2
	13.70
	11.96
	19.45
	15.04



	Faster RCNN Inception v2
	18.90
	7.01
	33.84
	19.91



	YOLO v2
	20.84
	9.35
	37.28
	22.49
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Table 18. RMS Errors for rotation flights over complex background, RT/RV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	YOLO v2
	34.52
	11.80
	37.80
	28.04



	Tiny YOLO
	20.74
	9.20
	39.02
	22.99










[image: Table] 





Table 19. RMS Errors for trajectory flights over white background, UT/UV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	SSD MobileNet v1
	14.69
	5.67
	28.91
	16.42



	SSD Inception v2
	13.78
	5.12
	21.68
	13.53



	Faster RCNN Inception v2
	13.76
	5.94
	18.35
	12.68



	YOLO v2
	14.79
	3.92
	15.00
	11.24
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Table 20. RMS Errors for trajectory flights over white background, RT/RV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	YOLO v2
	14.46
	5.43
	14.96
	11.62



	Tiny YOLO
	14.74
	3.42
	19.32
	12.49
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Table 21. RMS Errors for trajectory flights over complex background, UT/UV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	SSD MobileNet v1
	13.62
	16.51
	18.92
	16.35



	SSD Inception v2
	13.18
	19.17
	30.49
	20.95



	Faster RCNN Inception v2
	17.68
	7.75
	34.25
	19.89



	YOLO v2
	15.89
	7.06
	52.38
	25.11
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Table 22. RMS Errors for trajectory flights over complex background, RT/RV setup.
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	Detection System
	x (cm)
	y (cm)
	z (cm)
	Avg. (cm)





	YOLO v2
	44.59
	29.99
	44.68
	39.75



	Tiny YOLO
	17.42
	10.42
	50.31
	26.05
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Table 23. Average of RMS Errors for Flights, UT/UV Setup.
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	Detection System
	Simple BG RMSE Avg. (cm)
	Complex BG RMSE Avg. (cm)





	SSD MobileNet v1
	17.78
	15.57



	SSD Inception v2
	13.66
	14.97



	Faster RCNN Inception v2
	12.56
	18.50



	YOLO v2
	12.50
	22.70
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Table 24. Average of RMS Errors for Flights, RT/RV Setup.
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	Detection System
	Simple BG RMSE Avg. (cm)
	Complex BG RMSE Avg. (cm)





	YOLO v2
	12.33
	34.44



	Tiny YOLO
	14.33
	25.27
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Table 25. mAP for Side and Height flights, UT/UV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	SSD MobileNet v1
	0.8442
	0.8226



	SSD Inception v2
	0.8045
	0.7259



	Faster RCNN Inception v2
	1.0000
	0.9555



	YOLO v2
	1.0000
	0.5151
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Table 26. mAP for Side and Height flights, RT/RV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	YOLO v2
	1.0000
	0.9525



	Tiny YOLO
	0.5559
	0.7097
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Table 27. mAP for Depth flights, UT/UV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	SSD MobileNet v1
	0.9277
	0.6229



	SSD Inception v2
	0.6485
	0.5726



	Faster RCNN Inception v2
	1.0000
	0.9739



	YOLO v2
	0.9945
	0.6578
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Table 28. mAP for Depth flights, RT/RV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	YOLO v2
	1.0000
	0.9738



	Tiny YOLO
	0.3933
	0.8603
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Table 29. mAP for Rotation flights, UT/UV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	SSD MobileNet v1
	0.9130
	0.9353



	SSD Inception v2
	0.8477
	0.8160



	Faster RCNN Inception v2
	1.0000
	0.9810



	YOLO v2
	1.0000
	0.4610
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Table 30. mAP for Rotation flights, RT/RV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	YOLO v2
	1.0000
	0.9726



	Tiny YOLO
	0.7626
	0.8270
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Table 31. mAP for Trajectory flights, UT/UV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	SSD MobileNet v1
	0.7921
	0.8088



	SSD Inception v2
	0.9040
	0.9137



	Faster RCNN Inception v2
	1.0000
	0.9520



	YOLO v2
	0.9992
	0.4643
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Table 32. mAP for Trajectory flights, RT/RV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	YOLO v2
	1.0000
	0.9302



	Tiny YOLO
	0.7034
	0.7274
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Table 33. Average mAP, UT/UV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	SSD MobileNet v1
	0.8693
	0.7974



	SSD Inception v2
	0.8012
	0.7571



	Faster RCNN Inception v2
	1.0000
	0.9656



	YOLO v2
	0.9984
	0.5246
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Table 34. Average mAP, RT/RV Setup.
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	Object Detection System
	Simple BG
	Complex BG





	YOLO v2
	1.0000
	0.9573



	Tiny YOLO
	0.6038
	0.7811
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Table 35. Object Detection System Scores over White Background: Efficiency (E), Accuracy (A), Consistency (C).






Table 35. Object Detection System Scores over White Background: Efficiency (E), Accuracy (A), Consistency (C).





	Object Detection API
	E
	A
	C
	Total





	SSD MobileNet v1
	0.54
	16.29
	34.77
	51.61



	SSD Inception v2
	0.40
	21.79
	32.05
	54.23



	Faster RCNN v2
	0.39
	23.25
	40.00
	63.65



	YOLO v2
	13.46
	23.33
	39.94
	76.73



	Tiny YOLO
	14.76
	20.63
	24.11
	59.50
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Table 36. Object Detection System Scores over Complex Background: Efficiency (E), Accuracy (A), Consistency (C).






Table 36. Object Detection System Scores over Complex Background: Efficiency (E), Accuracy (A), Consistency (C).





	Object Detection API
	E
	A
	C
	Total





	SSD MobileNet v1
	0.54
	19.24
	31.90
	51.68



	SSD Inception v2
	0.40
	20.04
	30.28
	50.72



	Faster RCNN v2
	0.39
	15.33
	38.62
	54.35



	YOLO v2
	13.46
	9.73
	20.98
	44.18



	Tiny YOLO
	14.76
	17.79
	17.12
	49.68
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