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Abstract: Plant diseases can impact crop yield. Thus, the detection of plant diseases using sensors
that can be mounted on aerial vehicles is in the interest of farmers to support decision-making in
integrated pest management and to breeders for selecting tolerant or resistant genotypes. This paper
investigated the detection of Cercospora leaf spot (CLS), caused by Cercospora beticola in sugar beet
using RGB imagery. We proposed an approach to tackle the CLS detection problem using fully
convolutional neural networks, which operate directly on RGB images captured by a UAV. This
efficient approach does not require complex multi- or hyper-spectral sensors, but provides reliable
results and high sensitivity. We provided a detection pipeline for pixel-wise semantic segmentation
of CLS symptoms, healthy vegetation, and background so that our approach can automatically
quantify the grade of infestation. We thoroughly evaluated our system using multiple UAV datasets
recorded from different sugar beet trial fields. The dataset consisted of a training and a test dataset
and originated from different fields. We used it to evaluate our approach under realistic conditions
and analyzed its generalization capabilities to unseen environments. The obtained results correlated
to visual estimation by human experts significantly. The presented study underlined the potential of
high-resolution RGB imaging and convolutional neural networks for plant disease detection under
field conditions. The demonstrated procedure is particularly interesting for applications under
practical conditions, as no complex and cost-intensive measuring system is required.

Keywords: UAV-based monitoring; agricultural robotics; plant disease detection; RGB images;
Cercospora leaf spot; CNNs; semantic segmentation; phenotyping

1. Introduction

Our society relies on sustainable crop production for obtaining food, feed, and other
resources [1]. Plant diseases can have strong negative effects on the achievable yield,
heavily influencing the efficiency of farmlands. To address this problem in the short term,
farmers need to detect the occurrence and spread of diseases in time to take adequate coun-
termeasures. This is known as the concept of integrated pest management. To tackle the
problem in the long run, plant breeders aim at developing new, more tolerant, or resistant
varieties concerning yield-affecting plant diseases. Besides preventing the adverse effects
on crop yield, cultivating these innovative crop varieties allows reducing the application
of chemical plant protection products, resulting in benefits for the environment. Plant
breeding considers the performance of varieties in diverse environments [2]. Therefore,
the selection of preferable genotypes is time and cost intensive, often referred to as the
so-called phenotyping bottleneck [3].
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UAVs have been applied to many fields in recent years, and examples of these are
cinematography [4], wind field estimation [5], and remote cameras [6]. Furthermore, UAVs
are attractive platforms for monitoring agricultural fields and breeding plots as they allow
for flexible image-based monitoring and enable the in-depth analysis of such image data
retrospectively [7,8]. Therefore, UAVs represent a valuable tool for farmers and breeders to
minimize the effort needed to detect and quantify diseases in crop fields.

An exemplary disease impacting yield in sugar beet is Cercospora leaf spot, caused by
the fungal pathogen Cercospora beticola (Sacc.). Causing yield losses approaching 40%, CLS
is the most important foliar disease in sugar beet production. The first symptoms caused
by the perthotrophic pathogen C. beticola are leaf spots with a reddish-brown margin of
typically 2 to 5 mm in diameter [9]; see the bottom left of Figure 1. Later, the disease
spreads, and the spots merge into a more extensive symptom distributed across entire
leaves, as visible in Figure 1, bottom-right.

RGB orthomosaic with 2 mm GSD CLS occurrence. Red = high and blue = low
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Figure 1. We aimed at predicting the occurrence of Cercospora leaf spot (CLS) for the entire field
trial. We first separated the RGB orthomosaic into small plots that corresponded to the breeder’s plot
structure for variety testing. These plots were divided into eight strips, which are numbered in red.
For each plot, we performed a pixel-wise classification into the classes CLS (pink), healthy vegetation
(green), and background (no color). Finally, we illustrate the plot-based infection level for the entire
field in semantic maps, where a red plot refers to high infection and blue refers to no infection. We
flew a DJI M600 equipped with a Phase One IMX 100 megapixel RGB camera.

Finding new sugar beet varieties with CLS tolerance or resistance poses multiple
challenges to the breeder. It requires a time-intensive observation of the breeding plots—a
task that offers a great potential for UAV-based monitoring support. For the breeder,
it is essential to know when and where outbreaks of the disease occur in the trial sites
consisting of hundreds or thousands of trial plots and how each individual genotype is
affected by the plant disease regarding several epidemiological parameters. In many cases,
the disease starts from a primary inoculum in the soil and afterward spreads radially,
generating so-called CLS nests [10]. Therefore, it is important to automize the detection
and quantification of CLS among a vast amount of tested genotypes to capture the gradual
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change of CLS resistance, as well as the detection of nests in breeding trials. Furthermore,
early detection and identification in an automated and easy-to-execute way are key for the
successful adoption of disease control in agricultural practice.

We addressed the problem of CLS occurrence detection and quantification in a breed-
ing trial by analyzing UAV imagery. UAVs equipped with RGB cameras serve as an
excellent platform to obtain fast and spatially detailed information of field environments
such as the breeding trials we analyzed. An example is illustrated in Figure 1. We focused
on detection at the pixel level to estimate the amount of CLS and provided this information
in concise semantic maps to breeders. We aimed at dealing with different environmental
conditions and agronomic diversity regarding plant appearances, soil conditions, and light
conditions during capturing. Furthermore, our goal was to provide high performance also
in unseen conditions, which can occur in unknown field sites and trials. To correlate our
method with the approaches currently used for plant disease monitoring, we compared
the predictions of our approach to the infection scores estimated by plant experts as the
ground truth.

The main scientific contribution of this work was a novel, vision-based classification
approach that uses fully convolutional neural networks (FCNs) that operate on RGB images
to determine the occurrence of CLS in real fields. We proposed a detection pipeline that
performs the pixel-wise classification of the RGB images into the classes CLS, healthy
vegetation, and background. The FCN, on which our method was based, uses an encoder-
decoder structure for the semantic segmentation of the images. We trained it end-to-end:
the input to the network were raw images of the plots, and the loss was computed directly
on the semantic maps. It neither relies on a certain pre-segmentation of the vegetation,
nor any pre-extraction of handcrafted features. In contrast to Jay et al. [11], who targeted
a leaf spot-level evaluation, we aimed at detecting CLS symptoms at the pixel scale to
help breeders detect the infection earlier, allowing an improved evaluation of the temporal
and spatial dynamics of the spread in breeding trials. Our approach was also intended
for growers to quantify CLS at different levels to identify management thresholds in the
context of integrated pest management. An exemplary output of our approach is illustrated
in the center of Figure 1.

In sum, we make the following three key claims about our work. First, our approach
can detect CLS with high-performance results when testing on data captured under similar
field conditions, i.e., when trained and tested on images coming from the same agricultural
field under similar conditions during a single flight. Second, our approach generalizes
to unseen data when trained on datasets captured in different fields and under changing
light and environmental field conditions. Third, we show that our proposed classification
system’s results correlate well to field experts’ scoring results assessing CLS disease severity
visually. This paper used several UAV datasets from diverse experimental field trials to
explicitly evaluate our approach under these claims.

2. Related Work

In general, semantic segmentation can be applied in different fields of applications.
These are, for instance, autonomous driving [12], medical analysis [13,14], video analy-
sis [15], segmentation of 3D environments [16], joint semantic-instance segmentation [17],
and many other domains.

Regarding classification approaches, Lottes et al. [18] proposed an FCN that can
determine the localization of plant stems and a pixel-wise semantic map of crops and weeds
at the same time. The difference from our approach is that we used UAV imagery instead
of ground vehicle-captured images. In addition to this, another proposed network by
Lottes et al. [19] sought to improve the previously presented crop and weed segmentation
by performing a generalization.

Milioto et al. [20] proposed a CNN, which can classify sugar beet plants, weeds, and
background in real time. They used images taken from a ground robot and did not tackle
diseases. Another proposed approach by Mortensen et al. [21] aimed to classify several crop
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species within overloaded data. This task was also performed by semantic segmentation
based on FCNs.

Various classification systems have been proposed to detect plant diseases such as
CLS on sugar beet in the past. Most of these systems perform the classification task using
classical machine learning methods such as clustering [22], spectral indices [23], or support
vector machines (SVMs) [24–28]. More recently, the wide adoption of neural networks has
led to classification approaches based on convolutional neural networks (CNNs) [11,29–34].

Jay et al. [11] proposed an approach focusing on comparing the capability of UGVs
and UAVs to determine a CLS scoring, which refers to the infection of a plot by C. beticola.
Therefore, spatially high-resolution RGB images for UGV and spatially coarser resolved
multi-spectral images for UAV find use. In contrast to our approach, they used multi-
spectral images captured by a UAV instead of the RGB imagery. For the assessment, the
parameters disease incidence (occurrence of single symptoms on a specific unit) and disease
severity are relevant. In Jay et al., both of these were addressed and were represented by
the canopy cover (green fraction), as well as the spot density [11]. They found that using
high-resolution RGB imagery by UGV capturing led to a good extraction of low and high
CLS scoring values. In contrast, the spatially coarser multi-spectral imagery used in UAV
capturing is only applicable for high scoring values [11].

Facing the problem of powdery mildew on cucumber leaves, Lin et al. [35] proposed
a CNN for semantic segmentation, which enables the pixel-wise segmentation and de-
termination of powdery mildew on leaf images. This related approach differs from ours
because we used RGB images, which are not previously segmented as the network’s input.
Moreover, we used imagery captured by a UAV instead of images captured from a close
point of view. Besides disease detection, also nutrient deficiencies can be identified using
RGB data and deep learning as shown by Yi et al. [36]. This information can then be used
to provide targeted fertilization and optimize field management.

In contrast to the aforementioned prior work, our network can detect CLS and dif-
ferentiate symptomatic pixels from healthy sugar beet plants and background with high-
performance results. Second, our method generalizes well to unseen data, using RGB
images of various field conditions. To the best of our knowledge, we are therefore the
first to propose an end-to-end learned semantic segmentation approach determining the
occurrence of CLS within breeders’ real fields.

3. Classification System for Plant Disease Detection

The primary objective of our work was to detect and quantify CLS in sugar beet trials
robustly. With our approach, we can provide breeders with information about the disease
severity within their fields on a plot basis. We developed a semantic segmentation pipeline
that explicitly distinguishes between the classes CLS, healthy sugar beet, and background,
i.e., mostly soil.

Our approach was designed to process three-channel RGB images as the input. The
output is a pixel-wise pseudo probability distribution over the class labels mentioned
above. We picked per pixel the class label with the highest probability and obtained the
final class map with the same resolution as the original image.

Our fully convolutional network was based on the architecture that we proposed in
our previous work [18] for semantic segmentation and stem detection. Fully convolutional
DenseNets, proposed by Jégou et al. [37], inspired the architectural design for our semantic
segmentation approach. Their FC-DenseNet architecture was based on DenseNet, which
was introduced by Huang et al. [38].

In general, the architecture of our approach is structured into three different parts: pre-
processing, image encoding, and feature decoding. Figure 2 illustrates our FCN approach’s
general processing pipeline.
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Figure 2. Overview of the approach, developed with precision farming applications in mind. It
briefly illustrates the FCN approach for the classification of CLS based on RGB images only.

3.1. Preprocessing

Our pipeline begins with an automatic preprocessing step of the network’s input.
By aligning the distributions of the training and test data, preprocessing the network’s
inputs can improve the classification system’s generalization capabilities. It includes
transforming the pixel values, typically ranging between [0, 255], into the range of [0, 1].
This transformation is carried out by subtracting each channel’s mean value and dividing
this result by each channel’s standard deviation, i.e., a standardization. Afterward, we zero
centered the data to [−0.5, 0.5].

3.2. Encoder Structure

The preprocessing step is followed by the encoder, which serves as a feature extractor.
Our encoder incorporates five fully convolutional dense building blocks for the densely
compressed feature extraction of the network’s input. The basic building block in our
FCN’s encoder structure follows the idea of the so-called fully convolutional DenseNet
(FC-DenseNet) [37]. It combines the recently proposed densely connected CNNs, which are
organized as dense blocks [38], with fully convolutional networks (FCN) [39]. The dense
connectivity pattern iteratively concatenates all computed feature maps of subsequent
convolutional layers in a feed-forward fashion. These dense connections encourage deeper
layers to reuse features that were produced by earlier layers. Additionally, it supports
the gradient flow in the backward pass and thus a stable training. After passing the RGB
input images through the encoder, they are transformed into a more compressed and
high-level representation.

3.3. Decoder Structure

Our decoder structure closely follows the previously described encoder. It is used
to bring the compressed feature representation of the input volume back to the original
resolution. The decoder achieves this by applying learned transposed convolutions to the
dense feature representations until the resolution of the original input image is matched.
Additionally, we included skip connections between the encoder and decoder, supporting
the restoration of the spatial information, which might get lost within the encoder structure.
Each pixel contains, within the original-sized output, assignment probabilities of belonging
to each possible class after passing through a final softmax layer.

The resulting output is a semantic map in which the pixel-wise final class labels are
stated. The final class label assignment is based on choosing the class having the highest
assignment probability.

4. Experimental Evaluation

Our experiments were designed to show our method’s capabilities and support our
key claims, which were: (i) our approach can detect CLS with high performance when
testing under similar field conditions; (ii) our approach generalizes well to changing
conditions; (iii) the classification system’s results of our proposed approach correlate well
to field experts’ scoring results. Hence, our classification system can robustly classify CLS
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and is a valuable tool for the evaluation of genotypes in the breeding process or plant
varieties in registration or recommendation trials.

4.1. Experimental Setup

Data assessment was performed in official breeding trials all over Germany. At each
experimental site, several sugar beet genotypes are cultivated in a randomized plot design,
and each plot consists of 3 rows. The data set was from different time points during the
vegetation period, and all characteristic phases of CLS infection from healthy to severe
were observed. Reference ground truth data for calibration in Experiment 3 were assessed
at one trial side in North-Rhine-Westphalia in September. We show an illustration for one
of these plots in Figure 1.

In the trials that we analyzed, the infection by Cercospora beticola was not inoculated,
but appeared naturally as the plants grew on fields that are prone to this disease.

The manually labeled portion of the datasets consisted of around 80 sugar beet plots.
Various visual appearances of infested and healthy sugar beets, changing light conditions,
and environmental conditions were present in the datasets. In total, we recorded and
manually labeled the datasets among 16 different locations across Germany.

The images were captured by a Phase One IMX 100 megapixel RGB camera attached
to a M600 drone manufactured by DJI. This drone has a payload of 6 kg, so it can easily
carry the employed camera.

4.2. Parameters

In our experiments, we trained all networks from scratch using previously generated
random image patches with a resolution of 320× 320 pixels. During training, we considered
K = 2 pairs (mŷ, my) within each batch. Hereby, mŷ denotes the predicted semantic map,
and my represents the ground truth labels of the image patches, each represented as a
vector. Moreover, we applied randomized augmentations to the training image patches to
reduce overfitting of the model.

We used a positive weighted cross-entropy loss function to evaluate the difference
between the predicted semantic map and the ground truth semantic map. It is calculated
as follows:

LCE(y, ŷ) =
1
K

K

∑
k=1

C=3

∑
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(
1− yk

c

)
· ŷk

c+(
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c

)
·(

log
(

1 + exp−|ŷ
k
c |
)
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(
−ŷk

c , 0
))

,

where k represents the current image. Additionally, ωc denotes the weight of class c; ŷk
c

is the predicted semantic map of image k; and yk
c represents the provided ground truth

semantic map of image k. The weights ωc depend on the occurrence of each class within
the training dataset. We assigned 10, 1, and 1 for the respective classes of CLS, healthy
vegetation, and background.

We trained our network through 150 epochs and chose 0.005 as the initial learning
rate. We also introduced a learning rate schedule that improved convergence by decreasing
the learning rate after a predefined number of epochs. To improve generalization, we
used a dropout rate of 0.33. As our parameter initialization values, we sampled a random
set from a uniform distribution with a lower boundary of 0.05 and an upper boundary
of 0.15. For gradient-based parameter optimization, we used the Adam algorithm by
Kingma et al. [40].

4.3. Performance under Similar Field Conditions

In this first experiment, we evaluated our network’s performance results in detecting
CLS within every single plot when testing on data captured in the same agricultural field
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(but in a different area) where the training data were acquired. In addition, we ensured
that the used images were captured under similar light and environmental field conditions.
Therefore, we used a dataset that contained 38 plot images recorded in the same sugar
beet field within one flight. Exemplary images used within this experimental setup are
visualized in Figure 3.

Figure 3. A single plots’ RGB and corresponding ground truth information. The pixels labeled as
Cercospora leaf spot (CLS) are in pink, whereas healthy vegetation is represented by green pixels.
Note that this is a single plot from the field illustrated in Figure 1, but rotated 90◦.

We captured these plot images in the field shown in Figure 1. We split the total amount
of 38 RGB images into a training and test dataset with a ratio of 50/50. Thus, we used 19
plot images for training and 19 pictures solely for testing. As previously mentioned, these
performance results can be seen as the upper boundary of the experimental setup explained
in Section 4.4, as the training and test data came from a rather similar distribution.

In Table 1, we show exemplary output results of our first experimental setup.
Visually, the performance results under similar conditions led to rather good classifica-

tion results for the class CLS. We came to this view because, as depicted in Table 1, almost
all pixels labeled as CLS within the ground truth were correctly predicted by our network
as CLS. Hence, the class CLS’s recall value should be high, which was confirmed by a
corresponding value of around 85%. The performance results of this experimental setup
are summarized in Table 2. As can be seen in Table 2, the high recall of 85% contrasts with
a rather low precision value of around 33%. The reason for the low precision value is also
visible in Table 1. Our network predicted the class CLS at more pixel locations within the
prediction map than were actually labeled as infected in the ground truth. This is especially
recognizable in the upper left corner of the test image in the last row of Table 1, where
there are much more CLS-labeled pixels in the predicted semantic map in comparison to
the ground truth. In the table, it can be seen that the network correctly predicted leaves
that were totally damaged, while it tended to overestimate the spread of the infection in
leaves that were only partially affected.

In general, the classification of the class background worked highly satisfactorily,
recognizable by very the high-performance results in terms of the intersection over union
(IoU), precision, and recall. This observation was confirmed both visually and with num-
bers, such as an IoU of 90%, a precision of around 98%, and a recall of around 91%. In
contrast, the class vegetation only showed high-performance results when facing a pre-
cision value of 96%. That means almost all pixels predicted as vegetation were labeled
within the ground truth as vegetation as well. The IoU value of 73%, as well as the recall of
around 76% were not as good as the corresponding values for the class background, but
this was because most pixels wrongly classified as CLS actually belonged to the vegetation
class. The wrongly assigned pixels resulted in a low IoU and recall for the vegetation class.
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Table 1. Visualization of the resulting output of the CLS classification. In the first image from the left,
we show the original RGB image. In the rightmost image, we visualize the agreement between the
pixel-wise labels of the predicted semantic map (third image from the left) and the pixel-wise labels
of the ground truth semantic map (second image from the left) using green pixels (agreement) and
red pixels (disagreement). Within the semantic maps, we represent the class CLS as red pixels and
the class healthy vegetation as green pixels, and all remaining pixels belong to the class background.

Image Patch Ground Truth Prediction Agreement

Table 2. Class-wise evaluation of the pixel-wise classification performance of the classes CLS, healthy
vegetation, and background. Classification performance for the first experiment under similar field
conditions. We evaluated using the IoU, precision, recall, and F1 scores. All presented results are
given in %.

Class-Wise Evaluation under Similar Field Conditions

Classes IoU Precision Recall F1 Score

CLS 31.39 33.27 84.75 47.78
healthy vegetation 73.44 96.32 75.57 84.69

background 90.00 98.43 91.31 94.74

∅ 64.94 76.00 83.87 75.74

4.4. Performance under Changing Conditions

Within the second experiment, we examined whether our trained classification model
achieved a good performance in detecting the CLS disease, which developed on a subset of
the plants, even under changing light and environmental conditions during the capturing
process. Hence, we aimed to reach a certain generalization capability of our network to
different environment variables. The symptom development of CLS is dynamic. Early
symptoms differ in size, color, and shape from a late symptoms [41]. Furthermore, different
leaf stages (young or old leaves) can be diseased preferably. This poses a big challenge to
the classifier by itself. Moreover, different lightning and points of view in the analyzed
images made the classification problem even harder. Therefore, we used image data
captured at 16 different locations at different times of the day to ensure a broad spectrum
of environmental conditions during the capturing process. Figure 4 in comparison to
Figure 3 shows one exemplary plot image, which illustrates that in differently located sugar
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beet fields, the light and environmental conditions, as well as plant appearances and soil
conditions could vary dramatically.

Figure 4. The images show an exemplary plot at another location in comparison to the breeder’s
field visualized in Figure 1 and Table 1. In different sugar beet field locations, the conditions can
strongly differ from one another.

Within this experiment, we used 38 plot images, captured at 15 different locations,
for training. We then used 38 plots from another location as the testing dataset. By this
data partitioning, we aimed at providing enough training information from different
perspectives to the network. We, therefore, expected our approach to generalize well
enough to correctly classify the test set acquired under unseen conditions.

In Table 3, we show exemplary output results of our second experimental setup.

Table 3. Visualization of the resulting output of the CLS classification. In the first image from the left,
we show the original RGB image. In the rightmost image, we visualize the agreement between the
pixel-wise labels of the predicted semantic map (third image from the left) and the pixel-wise labels
of the ground truth semantic map (second image from the left) using green pixels (agreement) and
red pixels (disagreement). Within the semantic maps, we represent the class CLS as red pixels and
the class healthy vegetation as green pixels, and all remaining pixels belong to the class background.

Image Patch Ground Truth Prediction Agreement

The visual evaluation of these results showed that, generally, the classification of
CLS-labeled pixels was characterized by a good performance regarding the recall. This
was in line with the previous experiment, and we saw a certain generalization. As is
visible in the top and bottom row of Table 3, almost all occurring CLS-labeled pixels were
classified correctly by our network. Only a few false-negative pixels classified as CLS
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were recognizable. This generally happened only when the network predicted a small part
of the damaged leaf instead of the entire infected surface. In the bottom row of Table 3,
the network extended its CLS prediction to the background in some parts, especially in
the upper left corner of the image. We imputed this to very similar colors of the soil and
rotten leaves.

We can confirm this observation by considering the performance results regarding the
IoU, precision, recall, and F1 score [42]. We show these results in Table 4. Concerning the
class CLS, the pixels labeled with this specific class were recognized with a recall of about
67%. However, the precision was 33%, as in the first experiment. This was in line with our
observations in Table 3, in which the predicted semantic map included most CLS-labeled
pixels of the ground truth semantic map, but extended this prediction to certain soil and
vegetation areas.

The classes healthy vegetation and background showed high-performance results
with respect to the IoU, precision, and recall. Especially the class background with an IoU
of around 89%, a precision of around 98%, and a recall value of around 90% was classified
well. Furthermore, the class vegetation showed satisfying results with an IoU of 79%, a
precision of around 93%, and a recall of 84%.

Table 4. Class-wise evaluation of the pixel-wise classification performance of the classes CLS, healthy
vegetation, and background. Classification performance for the second experiment under changing
field conditions. We evaluated using the IoU, precision, recall and F1 scores. All presented results are
given in %.

Class-Wise Evaluation under Changing Field Conditions

Classes IoU Precision Recall F1 Score

CLS 28.60 33.37 66.69 44.48
healthy vegetation 78.99 92.58 84.33 88.26

background 88.50 98.47 89.73 93.90

∅ 65.36 74.81 80.25 75.55

In general, the achieved recall for the class CLS of around 67% was acceptable, but
compared to the remaining two classes, the performance results were less precise. Consid-
ering the fact that the test images were captured under light conditions, as well as plant
and soil appearances never seen by the network, the resulting recall value of the class CLS
was quite good. This was especially true when considering the upper boundary, which
we determined in our first experimental setup in Section 4.3. Regarding the precision, the
performance results of the generalized network were identical to the upper bound value.

Regarding the classes healthy vegetation and background, both networks’ resulting
performances did not strongly differ from one another. That means the generalization of
soil and vegetation did not seem to be challenging for our approach.

In conclusion, the performance results of the first two experimental setups, the clas-
sification of CLS, led to quite satisfying performance results regarding the recall. When
considering the precision instead, the classification did not perform as well. In this regard,
it should be noted that the detection of CLS is a difficult problem also for an expert human
operator. Especially in early disease stages, symptoms are hard to detect accurately as they
result in an appearance that is only slightly different from a healthy leaf. We, therefore,
performed a third experiment, presented in the next section, to show that the performance
of our approach led to a quantification of the spread of CLS, which was comparable to the
one obtained by experts examining the plants visually on site.

4.5. Comparison of the Estimated Level of Infection and the Experts’ Scoring Results

To correlate our network output with the experts’ scoring results in the third experi-
ment, we needed to derive a value that was comparable to the scoring values used by them.
We further refer to these derived values as infection levels. They describe the severity of
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infection by CLS on sugar beet plants within the individual plots via an ordinal rating
scale. For this evaluation, an expert went into the field to determine the infection level
of the plots. Therefore, the determination of the infection level is a time-consuming and
expensive task for farmers and breeders. Since the fields were organized into plots, each of
these single plots was assigned a score. This single number represented the infection level
of CLS on the sugar beet plants within this certain plot. The infection level was a number
in the range between 1 and 9. No infection or a very small infection was set as 1; 5 meant a
mediocre infection; and 9 represented very heavily infested plants [43].

The ground truth data were provided by the breeding company Strube Research and
were based on the experts’ scoring of the infection level of CLS for 336 plots. The trial was
comprised of 84 entries, which were laid out over 2 strips. The entries of the trial were
replicated 4 times. Two of those replicates were treated with fungicide (Strips 3-4 and 5-6),
and the other two were not treated with fungicide (Strips 1-2 and 7-8). We expected high
infection levels in the strips where no fungicide was applied and lower scores for the other
strips. The eight strips with 42 entries each are numbered in Figure 1. The data used in this
experiment were collected by two experts with 12 and 25 years of experience, respectively.
They used an evaluation scheme developed by Strube and used for 20 years to ensure a
consistent interpretation of the symptoms.

In order to compare the classification system’s results, we first needed to derive
comparable values. Therefore, we analyzed the classified image pixels’ distribution within
the predicted semantic map, which we obtained after applying the previously trained
classifier. We focused on the resulting semantic map we obtained using the classifier trained
under similar conditions (Section 4.3) and the one obtained under changing conditions
(Section 4.4).

In the infection level estimation process, we only considered the pixels that were
predicted as CLS, since healthy vegetation and background were not relevant for this
task. To convert the number of pixels predicted as CLS into the infection level score, we
first defined the lower and upper boundaries. For the first boundary, we calculated the
average occurrence of CLS pixels within all plots that were rated as Infection Level 1 in
the ground truth defined by the experts. We then defined as 1 the infection level off all
plots with a number of pixels classified as infected that was lower than or equal to the
calculated average. We used this averaging instead of simply assigning the lowest value
to the first score, which was more in line with the expert evaluation. The same procedure
was applied by us to find the amount of CLS pixels relative to Infection Level 8, taking
into consideration the most infected plots instead. We here used the score of 8 instead
of the maximum possible infection level of 9 since the ground truth data contained only
infection levels in the range between 1 and 8. This allowed us to actually define the plots
with the lowest-rated infection level as 1 instead of interpolating them to a higher score.
Based on our predicted infection levels’ lower and upper boundary, we performed linear
interpolation to find the occurrence frequencies of CLS corresponding to the different
scores. By finding the score corresponding to an occurrence frequency that was closest to
the one of a given plot, we could assign this score to the plot. This resulted in an estimated
infection level for every single plot. Now, we could compare these predictions with the
corresponding expert’s ground truth scoring values.

Figure 5 contains the results obtained from the images of both the classifier trained
under similar, as well as the one trained under changing conditions. In the leftmost image
in the upper row, we see a histogram showing the difference between the ground truth
value and the corresponding predicted infection level. Here, the estimated infection levels
were based on the semantic maps predicted using the classifier, which was trained under
similar field conditions (Section 4.3). Underneath, in the bottom row’s leftmost figure, we
show the histogram of the differences between the ground truth and the prediction based
on the semantic maps obtained using the classifier trained under changing field conditions
(Section 4.4). In the upper row’s central figure, we present the difference between the
ground truth and the predicted infection level for each plot, based on the output of the
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classifier trained under similar conditions. Below this plot, we show the counterpart
based on the classifier trained under changing field conditions. We visualize the predicted
infection level of the plots based on the two classifiers on the right-hand side.

Figure 5. Results of the infection level (IL) determination of CLS based on the predicted semantic
maps. The upper line contains the results based on the semantic maps we obtained using the classifier
trained under similar conditions, whereas the lower line consists of the results based on using the
classifier trained under changing conditions.

As clearly visible within both histograms, the most occurring difference between
the ground truth and the prediction was 0, equaling 29.8%. In addition, regarding the
differences ±1 often occurring within the histograms, they could be observed in 51.5% of
the plots. This led to the insight that the estimation of the infection levels based on our
networks’ semantic maps correlated well to the experts’ scoring values. We came to this
conclusion because in practice, the infection level determination is highly subjective and
depends on each expert [44,45]. This led to the fact that, sometimes, an expert evaluates
an area with a different scoring value than another expert would have done. Therefore, a
deviation of ±1 of the experts’ scores seemed reasonable. The resulting accuracy with a ±1
tolerance was 81.2%.

The plots on the right-hand side correlate to the ground truth data distribution we
explained at the beginning of this section. Both classifiers predicted rather high infection
levels for the first two rows of the breeder’s field, small scores for Rows 3 to 6, and high
CLS infection in Rows 7 and 8.

5. Conclusions

In this paper, we showed that we could determine Cercospora leaf spot (CLS) with
a high recall, but a rather low precision, in the presence of mostly healthy sugar beet
plants when using data that were captured under similar field conditions as the testing
data. Additionally, we could classify healthy vegetation and background with F1 scores
higher than 80%. Moreover, we demonstrated that we achieved a certain generalization
regarding various light and environmental conditions during the data acquisition while
classifying CLS’s occurrence, underlined by a recall of around 66% for the class CLS. This
generalization was also observable when considering the F1 score values of the classes
healthy vegetation and background, which were higher than 88%. Considering the fact
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that this work was a proof-of-concept, the resulting performance of CLS detection was
acceptable and showed that this approach is worth being studied further. Most of the
false negatives were classified as healthy vegetation, which in our opinion were derived
mostly from the difficulty of visually determining the CLS symptoms, which made it
almost impossible to label the data with very high accuracy. Here also the resolution of the
images played a big role. We showed that this approach is already valuable by verifying
that estimated infection levels derived from the semantic map predicted by our network
correlated well with the experts’ scoring values. Still, there is room for improvement by
using a bigger dataset, and experts could be involved in the labeling process to obtain a
better ground truth. Furthermore, an increased resolution of the RGB images would most
likely improve the result, especially regarding the detection of early symptoms.
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