
drones

Article

UAVs Trajectory Optimization for Data Pick Up and Delivery
with Time Window

Ines Khoufi 1, Anis Laouiti 1,*, Cedric Adjih 2 and Mohamed Hadded 3

����������
�������

Citation: Khoufi, I.; Laouiti, A.;

Adjih, C.; Hadded, M. UAVs

Trajectory Optimization for Data Pick

Up and Delivery with Time Window.

Drones 2021, 5, 27. https://doi.org/

10.3390/drones5020027

Academic Editor: Diego

González-Aguilera

Received: 25 February 2021

Accepted: 13 April 2021

Published: 16 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 9 rue Charles Fourier, 91011 Evry, France;
ines.khoufi@telecom-sudparis.eu

2 Inria, Saclay Ile-de-France Research Centre, 91120 Palaiseau, France; cedric.adjih@inria.fr
3 REVECOM Team, Institute VEDECOM, 23 bis allee des Marronniers, 78000 Versailles, France;

mohamed.elhadad@vedecom.fr
* Correspondence: anis.laouiti@telecom-sudparis.eu

Abstract: Unmanned Aerial Vehicles (UAVs), also known as drones, are a class of aircraft without
the presence of pilots on board. UAVs have the ability to reduce the time and cost of deliveries and
to respond to emergency situations. Currently, UAVs are extensively used for data delivery and/or
collection to/from dangerous or inaccessible sites. However, trajectory planning is one of the major
UAV issues that needs to be solved. To address this question, we focus in this paper on determining
the optimized routes to be followed by the drones for data pickup and delivery with a time window
with an intermittent connectivity network, while also having the possibility to recharge the drones’
batteries on the way to their destinations. To do so, we formulated the problem as a multi-objective
optimization problem, and we showed how to use the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) to solve this problem. Several experiments were conducted to validate the proposed
algorithm by considering different scenarios.

Keywords: UAVs; pickup and delivery; time window; multi-objective optimization; intermittent
connectivity; MOEA; NSGA-II

1. Introduction, Context, and Motivation

In recent years, Unmanned Aerial Vehicles (UAVs) have been proposed for various
applications, including inventive delivery methods. In this article, we focus on the spe-
cific problem of data delivery with UAVs when radio communication is used and the
connectivity is intermittent.

In such networks, UAVs act as data mules in an environment where the communica-
tion range is limited, and thus, connectivity is intermittent. UAVs are in charge of collecting
data (e.g., messages, videos, images, medical messages, high-resolution photographs [1])
from a source site and carrying them to a destination site. The use of UAVs is ideally
adapted to such scenarios as they provide considerable time savings compared to other
types of transport. Nevertheless, these flying vehicles have to operate with limited energy
due to their modest size and constrained weight, and they also have limited storage ca-
pacity. In addition, for the applications under consideration, data exchanges are subject to
time constraints: the UAVs have a time limit for delivering data to destinations. All these
constraints have to be taken into account when computing optimized trajectories for UAVs
that act as data mules in a collaborative fashion.

The literature is rich with several methods designed to optimize the itineraries of
mobile vehicles for predefined delivery missions operating under a set of constraints.
Among them, the Pickup and Delivery optimization Problem (PDP) [2] models the scenario
in which a fleet of vehicles must collaboratively achieve a set of transportation tasks.
In this model, customers advertise their transportation needs by sending their requests
to a headquarter specifying the pickup and/or delivery locations. The aim is then to

Drones 2021, 5, 27. https://doi.org/10.3390/drones5020027 https://www.mdpi.com/journal/drones

https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-3924-5374
https://doi.org/10.3390/drones5020027
https://doi.org/10.3390/drones5020027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/drones5020027
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones5020027?type=check_update&version=2

Drones 2021, 5, 27 2 of 22

find a routing solution where vehicles service all requests, satisfying the time windows
and vehicle capacity constraints while optimizing a certain objective function such as
total distance traveled. Another model is the Pickup and Delivery Problem with a Time
Window (PDPTW), which is a generalization of the well-known Vehicle Routing Problem
(VRP) [3] and was originally designed for terrestrial vehicles. The PDPTW optimization
problem has inspired much research and has been well studied in the literature in the
case of terrestrial vehicles. PDP and PDPTW, as most routing problems, are NP-hard
problems [4]. These classes of problems can only be optimally solved for small instances,
and for larger instance, various heuristics are commonly applied. For example, the authors
in [5] proposed a tabu search heuristic to solve the PDP with a time window where vehicles
have to transport goods from the origin position to the destination while satisfying load
capacity and time constraints. A similar study was proposed in [6] where the authors
considered multiple depots and adopted a genetic algorithm to solve the PDPTW. The
work carried out in [7] also considered multiple depots and proposed three exact solutions
to solve the PDPTW optimization problem. A new variant of the PDP called VRP with
Simultaneous Delivery and Pickup and Time Windows (VRPSDPTW) was proposed in [8].
In this variant, the authors introduced five objectives and designed two meta-heuristics,
namely Multi-Objective Local Search (MOLS) and the Multi-Objective Memetic Algorithm
(MOMA), to solve the proposed optimization problem. Unlike PDPTW for terrestrial
vehicles, only a few papers have focused on the PDP optimization problem for flying
aerial vehicles. For example, the authors in [9] focused on data delivery using UAVs. They
proposed a SMARTheuristic based on the cluster-first, route-second algorithm to determine
UAV routes while minimizing the time needed to satisfy all requests (i.e., pickup data
from a source and deliver it to a target). The study in [10] proposed a pickup and delivery
service using both terrestrial and aerial vehicles. The authors developed two algorithms,
the vehicle-driven and drone-driven routing heuristics, in order to optimize the planning
of the vehicle-drone delivery service. For more details on the extended variants of routing
optimization problems for UAV path optimization, the reader can refer to the survey in [11].

In our study, we focus on the Multi-Objective Evolutionary Algorithm (MOEA) tech-
nique to solve the PDPTW using multiple UAVs. We propose to use the elitist Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [12] to find a set of UAV routes mini-
mizing three objective functions described as follows:

• Distance traveled: the sum of the distances traveled by all UAVs deployed.
• Schedule duration: the total time of all UAVs’ tours. This time starts when a given

UAV leaves the depot and ends when it returns. The schedule duration includes the
UAV’s flying time to visit the different sites of its tour, the service time at each site,
and the refueling time (time to recharge the UAV’s battery), if needed.

• The number of vehicles: the total number of UAVs used to perform all tasks.

The solutions sought include not only solutions that minimize one of the objective
functions, but also solutions that dominate others over a combination of objectives (e.g., in
the sense of Pareto optimality, according to the NSGA-II design). Genetic algorithms, in
general, including the NSGA-II, have been applied to several variants of routing problems,
such as the Multiple Objective Dial a Ride Problem (MO-DRP) [13], the bi-objective pickup
and delivery problem [14], or the Pickup and Delivery Problem with Time Windows and
Demands (PDPTW-D) [15].

In [15], the PDPTW-D optimization problem was proposed for terrestrial vehicles
and was formulated as a multi-objective optimization problem. The solutions were then
found by an application and adaption of the NSGA-II. To illustrate the efficiency of the
proposed NSGA-II algorithm, the authors conducted simulation experiments based on
PDPTW test instances created by [16]. The instances’ definitions and best-known solutions
of the PDPTW benchmark problems are available in [17]. In [13], the problem was the Dial
A Ride Problem (DARP) motivated by the real example of tourist transportation companies
in Portugal: a set of drivers are picking up and dropping off customers with minibus
vehicles. The multi-objective cost functions that should be minimized are respectively

Drones 2021, 5, 27 3 of 22

the total distance traveled by the vehicles, the wage difference of the drivers, and the
total number of empty seats. The individuals in their NSGA-II variant are vectors that
map every customer to a vehicle index. In [14], the problem was a PDP with just one
vehicle (helicopter) and with two objective functions: a total cost that is equivalent to the
total distance traveled and the weighted sum of arrival times, where weights give more
importance to more urgent requests (unlike our case, which has time windows). The NSGA-
II was used as well, and an individual was a single ordered list of sites, corresponding to
the pickup site and the delivery site of each task.

The contributions of our study are as follows:

• A new formulation of the PDPTW adapted to the UAV context. The new optimization
problem is called the PDPTW-UAV.

• A new solution of the PDPTW-UAV adapting and applying the NSGA-II algorithm.
Our solution is different from the ones proposed in the literature [13–15] because
the problem is different. For instance, compared to [15], our study considers UAVs’
constraints (PDPTW-UAV), whereas their variant was PDPTW-D for vehicles.

• A validation of our NSGA-II solution based on the test instances with 100 nodes
provided in [16].

• A performance evaluation of our PDPTW-UAV with UAVs’ constraints (such as refueling).
• Provide benchmark results for the new PDPTW problem with UAV constraints.

The remainder of our article is organized as follows: In Section 2, we introduce and
precisely define the PDPTW-UAV. In Section 3, we formalize it as a corresponding mathe-
matical optimization problem. In Section 4, we describe our adaptation and application
of the NSGA-II algorithm, a multi-objective version of a genetic algorithm, to solve the
PDPTW-UAV problem. In Section 5, we first validate the improved NSGA-II, and then, we
provide new benchmark PDPTW results for UAVs, useful for researchers in the field. In
Section 6, we discuss some of the sources of uncertainty from the real-world context that
can affect our problem solving and how to deal with these issues. Finally, we conclude in
Section 7.

2. Use Case: Data Exchange Using UAVs

During natural disasters such as earthquakes, floods, landslides, or hurricanes, road
and telecommunications infrastructures can suffer significant damage that renders them
unusable. For instance, communication and network connectivity may be lost, or roads
may become impassable and prevent emergency vehicles from reaching damaged areas,
which we call critical sites. These sites therefore need the rapid deployment of a temporary
solution to communicate with the other critical sites and with the emergency headquarters
management center, also known as the central entity. In such a scenario, flying nodes such
as UAVs can be used to provide intermittent communication between critical sites and the
central entity, as shown in Figure 1. It illustrates a scenario in which several UAVs leave a
truck, operating as a depot, to pick up data at given sites, deliver them to other sites while
satisfying data latency, UAV load capacity, and UAV autonomy (i.e., UAV energy), and
finally, fly back to the depot.

2.1. PDPTW-UAV: Definitions and Terminology

The Pickup and Delivery optimization Problem with a Time Window for UAVs
(PDPTW-UAV) is an extended variant of the PDPTW originally designed for terrestrial
vehicles. The PDPTW-UAV takes into account energy consumption and the limit of avail-
able energy and allows UAVs to recharge their batteries at any site if necessary during
their services.

To better describe our optimization problem, we propose below the different termi-
nologies used in the PDPTW-UAV.

Drones 2021, 5, 27 4 of 22

Figure 1. Illustrated example: UAVs tours.

• Data: Information to be carried from one site to another. These data can be of different
types, such as text, photos, or videos. This information does not have a latency
constraint (the data are carried by the use of the store-carry-forward mechanism). The
size of the data is variable and can range from small to large.

• Task: It can be a pickup or delivery task. When one site has data to transmit to another,
the UAV has to satisfy both types of tasks. It has to visit the source site to pick up data,
then deliver them to the destination site. As described in [16], each task contains the
following fields:

– Task ID,
– Site position (x,y),
– Demand: data size,
– Earliest pickup or delivery time,
– Latest pickup or delivery time,
– Service time,
– Pickup task ID: if it is equal to zero, then this task is for data pickup,
– Delivery task ID: if it is equal to zero, then this task is for data delivery.

• Central entity, also called the depot: This represents the point of departure and arrival
of each UAV route. It is in charge of computing the next UAV tour based on the
task list.

• Unmanned Aerial Vehicles (UAVs), also called drones: In our study, UAVs serve as
data mules to provide temporary connectivity. They pick up data from sites and
deliver them to other sites. UAVs have limited energy and storage capacity.

• Site: This is an access point that acts as a drop box. It contains data to be sent to
other sites.

Objective, Constraints, and Assumptions

The PDPTW-UAV is a multi-objective optimization problem designed to minimize
three objectives under a set of constraints, described as follows.

• Objectives:

– Minimize the flying distance.
– Minimize the schedule duration (including the refueling time if it is needed).
– Minimize the number of UAVs used.

• Constraints:

– Every UAV’s tour starts and ends at the depot.
– Every task is served exactly once: data are picked up or delivered once.

Drones 2021, 5, 27 5 of 22

– The pickup task is completed before the associated delivery task.
– Pickup and delivery tasks for the same data are served by the same UAV. The

tasks are then denoted paired tasks (or associated or corresponding).
– The service time window is satisfied. To start service at any site, a UAV has to

reach that site before the latest pickup time. If a UAV arrives at a site before the
earliest time, it has to wait until the earliest time in order to service that site.

– The UAV cannot carry more than its data storage capacity.
– At each site, the remaining energy of the UAV must be sufficient to reach the next

site. Otherwise, a full refueling is required.

• Assumptions:

– There is one depot/central entity.
– There are several disconnected sites.
– The number of available UAVs is large enough for the needs of the model and

does not represent a constraint.
– All UAVs have the same storage capacity and autonomy.
– When a UAV leaves the depot, its energy is full.
– Any site may be a pickup or a delivery location. Note that it can be both the

pickup location and a delivery location for two different tasks.
– UAV refueling can take place at any site.
– When a UAV does not have enough energy to reach the next site, its battery will

always be fully recharged at the local site.
– If a UAV needs to recharge its battery to reach the next site, refueling begins as

soon as it arrives at the current site, and it can be carried out during the waiting
time and the service time.

3. PDPTW-UAV: Problem Statement

In our study, we adopted the following notations for the formulation of the proposed
PDPTW-UAV. Insights into the mathematical formulation of the variants of the pickup and
delivery problems can be found for instance in [4]. The general case is that each site can be
a pickup or delivery site for an arbitrary number of tasks. Our formulation assumes that a
site is either the pickup site or the delivery site of exactly one task: this does not lose any of
its generality since as many virtual sites can be created at the same location as there are
tasks to be picked up or delivered at a site.

• N: the set of vertices or sites (any site is either a pickup or a delivery location); it is
partitioned as N = P ∪ D defined below.

• n: the number of pickup sites.
• p: the number of delivery sites; we consider only the case of paired pickups and

deliveries; hence, p = n.
• P: the set of pickup vertices P = {1, . . . , n}.
• D: the set of delivery vertices D = {n + 1, . . . , 2n}.
• 0: the depot or central entity location.
• K: the set of UAVs.
• qi: the demand/supply at vertex i; q0 = 0.
• di: the service duration at vertex i; d0 = 0.
• ck

ij: the cost in terms of the duration of the travel of UAV k from vertex i to vertex j.
• eij: the energy consumed by the UAV from vertex i to vertex j.
• [earliesti, latesti]: the time window for pickup or delivery at vertex i.
• wi: the waiting time at vertex i if a UAV reaches i before earliesti.
• E: the energy capacity of each UAV.
• C: the storage capacity of each UAV.
• R: the refueling duration necessary for refueling or changing the battery.

Drones 2021, 5, 27 6 of 22

Without loss of generality and for the ease of mathematical formulation, we also
assume a numbering such that the pickup task at vertex i ∈ P is paired with a delivery task
at vertex j ∈ D with exactly j = n + i.

3.1. Binary Variables

In our PDPTW-UAV, we define two binary variables:

• xk
ij ∈ {0, 1}: one if the kth UAV goes straight from vertex i to vertex j.

• yk
i ∈ {0, 1}: one if the kth UAV refuels its battery at vertex i.

3.2. Fractional Variables

Let Q, B and E be three fractional variables used in our problem model for UAV load,
UAV service time, and UAV energy, respectively.

• Qk
i : the load of UAV k when leaving vertex i

• Bk
i : the time of the beginning of the service of UAV k at vertex i

• Ek
i : the remaining energy of UAV k after visiting vertex i.

• βk
i : the additional refueling time of UAV k before leaving vertex i.

3.3. Problem Model

The PDPTW-UAV model can be written by minimizing the following objec-
tive functions:

min ∑
k∈K

∑
(i,j)∈N×N

ck
ijx

k
ij (1)

min ∑
k∈K

∑
(i,j)∈N×N

(ck
ij + wj + dj)xk

ij + ∑
k∈K

∑
i∈N

βk
i yk

i (2)

min ∑
k∈K

xk
i0 (3)

subject to:

∑
k∈K

∑
(i,j)∈N×N

xk
ij = 1 ∀k ∈ K (4)

∑
j∈N

xk
0j = 1 ∀k ∈ K (5)

∑
i∈N

xk
i0 = 1 ∀k ∈ K (6)

∑
j∈N

xk
ji − ∑

j∈N
xk

ij = 0 ∀i ∈ N, k ∈ K (7)

βk
i = max(R− (wk

i + di), 0) ∀i ∈ N, k ∈ K (8)

Bk
i < Bk

i+n ∀i ∈ P, k ∈ K (9)

∑
j∈N

xk
ij − ∑

j∈N
xk

i+n,j = 0 ∀i ∈ N, k ∈ K. (10)

xk
ij = 1 =⇒ Bk

i + di + βk
i + ck

ij ≤ Bk
j ∀(i, j) ∈ N × N, i 6= j, k ∈ K (11)

xk
ij = 1 =⇒ earliestj ≤ Bk

j ≤ latestj ∀(i, j) ∈ N × N, k ∈ K (12)

xk
ij = 1 =⇒ Qk

j = Qk
i + qj ∀(i, j) ∈ N × N, k ∈ K (13)

Qk
i ≤ min{C, C + qi} ∀i ∈ N, k ∈ K (14)

eijxk
ij ≤ Ek

i ≤ E ∀(i, j) ∈ N × N, k ∈ K (15)

xk
ij = 1 and yk

i = 1 =⇒ Ek
i = E ∀(i, j) ∈ N × N, k ∈ K (16)

Drones 2021, 5, 27 7 of 22

The objective function (1) minimizes the total flight time of UAVs to satisfy all tasks:
we assume a constant speed, which is equivalent to minimizing the total flight distance.
The objective function (2) minimizes the total schedule duration, which is the sum of the
flight time, waiting time, service time, and refueling duration if needed for all the UAV
routes. The last objective function (3) minimizes the number of UAVs used.

The model constraint (4) ensures that each task is served exactly once. The constraints
(5)–(7) guarantee that every UAV leaves the depot and returns to it only once during its
tour and that the same UAV that enters a node leaves the node. The constraint (8) is to
check the additional schedule time due to the refueling operation. The constraint (9) is the
precedence constraint to check that the pickup task is satisfied before its corresponding
delivery task, and the constraint (10) ensures that both tasks are serviced by the same UAV.
The constraints (11) are the schedule time constraints. Constraints (12) are the time window
constraints in which a service time cannot be started after the latest time, and if a UAV
arrives before the earliest time, it has to wait until the earliest time to start the service.
Constraints (13) and (14) aim at satisfying the storage capacity of each UAV. Finally, the
constraints (15) and (16) consist of first checking the remaining UAV energy, then indicating
whether refueling is necessary.

4. Solving the PDPTW-UAV Using the NSGA-II

Version 2 of the Non-dominated Sorting Genetic Algorithm [12] (NSGA-II) is designed
to solve multi-objective optimization problems. In our study, we applied the NSGA-
II, as illustrated in Algorithm 1, to solve our PDPTW-UAV. The proposed use of the
NSGA-II algorithm starts by generating an initial P population of N individuals. Then,
at each iteration, the NSGA-II randomly selects two individuals called parents from the
P population, applies a crossover operator (Section 4.1.2) to them to obtain two new
individuals called children, which will be mutated (Section 4.1.3) before being added in the
new offspring Q population. Both parents and offspring populations are merged into a
single set called R. Based on the non-dominated sorting approach and crowding distance
sorting [12], only the best solutions passing the selection step are kept and included in
the population of the next iteration Pt+1, while the other individuals are removed. Let
Pt+1 = F1, F2, F3, . . . , Fi, where Fi is the set of solutions in the Pareto front of level i.

If only a few solutions of the last front Fi should be kept in Pt+1, these solutions are
chosen to have the best crowding distance. Therefore, N − T solutions will be chosen from
the last front set Fi, where N is the size of the population and T is the sum of the size of sets
F1, F2, ..., Fi−1. Figure 2 illustrates the non-dominated sorting genetic algorithm process.

The principles of the NSGA-II are based on non-dominating sorting techniques, crowd-
ing distance techniques, and elitist techniques. The NSGA-II is characterized by the fact
that it first provides solutions close to the Pareto-optimal ones, then it allows for a diversity
of solutions, and finally, it preserves the best solution at each iteration for the next iteration.

Although the NSGA-II is an excellent algorithm for solving multi-objective optimiza-
tion problems, it may require a large number of iterations and a long runtime to converge
to the best solutions found. To speed up the convergence of the NSGA-II, we propose to
generate good individuals for the initial population, as illustrated in Algorithm 2, and also
to improve each individual of the offspring population.

Drones 2021, 5, 27 8 of 22

Algorithm 1 NSGA-II for PDPTW-UAV.

1: N: {Population size}

2: P0: {Initial population}

3: P: {Parent population}

4: Q: {Offspring population}

5: for i = 1 to N do

6: P0 ← P0 ∪ Generate Individual {After improvement}

7: end for

8: Pt ← P0

9: while t < Max_Iterations do

10: for s = 1 to N/2 do

11: (Parent1, Parent2)← randomly selected from Pt

12: (Child1, Child2)← Crossover (Parent1, Parent2)

13: Mutate (Child1, Child2)

14: Improve (Child1, Child2) {As explained in Section 4.2}

15: Compute fitness values of (Child1, Child2)

16: Add (Child1, Child2) to Qt

17: end for

18: Rt ← Pt ∪Qt {Combing parent and offspring population}

19: F1, F2, . . . Fk ← result of a fast non-dominated sort of Rt

20: Pt+1 ← ∅

21: i← 1

22: while (|Pt+1|+ |Fi| < N) do

23: Pt+1 ← Pt+1 ∪ Fi

24: i← i + 1

25: end while

26: {i now corresponds to the first set Fi, which cannot be entirely included in Pt+1}

27: Compute the crowding distance in Fi

28: Pt+1 ← Pt+1 ∪ {(N − |Pt+1|) first solutions in Fi}
29: t← t + 1

30: end while

Figure 2. The NSGA-II.

Drones 2021, 5, 27 9 of 22

Algorithm 2 Generate individual.

1: L : {list of all tasks}

2: li : {list of tasks served by UAVi}

3: t : {task}

4: tp : {pickup task}

5: td : {delivery task}

6: i← 1; {indicates the number of UAVs}

7: while L is not empty do

8: li ← empty list

9: Select paired tasks (tp, td) randomly from L

10: Append (tp, td) to li
11: Remove (tp, td) from L

12: repeat

13: T ← the list of paired tasks of L that could be added to li without violating

constraints (including refueling)

14: if T is not empty then

15: Select the (t
′
p, t
′
d) in T that minimizes the total flying distance increase, when

added to li
16: Append (t

′
p, t
′
d) to li

17: Remove (t
′
p, t
′
d) from L

18: end if

19: until T is empty

20: i← i + 1

21: Evaluate fitness functions

22: end while

4.1. Genetic Operations

In this section, we specify the terminologies used for the NSGA-II [12] and the main
elements of the genetic algorithm (individual or chromosome, crossover, and mutation).

4.1.1. Individual Representation

In genetic algorithms, a population is defined as a set of individuals called chromo-
somes, where each of them could be seen as a solution to the problem to be solved. Each
individual is made up of a set of variables known as genes that form the chromosome. In
our optimization problem, an individual is a vector of UAV IDs. The size of this vector
is equal to the number of tasks to be performed. Each position in the vector refers to a
task ID. Then, each UAV is a gene, and it occupies a cell of the vector. In our individual
representation, a UAV should appear in at least two cells, reflecting the fact that the pickup
task and the corresponding delivery task are served by the same UAV.

Consider the example of a pickup and delivery problem with 10 tasks specified in Table 1:
each of the tasks, identified by a task ID, is paired with another corresponding task with a
different task ID and with the opposite action. The numbering in the problem definition
can be arbitrary (contrary to the mathematical formulation), and in the implementation,
the “Action” column can be deduced from the action of the associated task.

Drones 2021, 5, 27 10 of 22

Table 1. Task table example.

Task ID Action
Associated Task (Task ID)

Pickup Delivery

1 pickup - 4

2 pickup - 3

3 delivery 2 -

4 delivery 1 -

5 pickup - 6

6 delivery 5 -

7 delivery 9 -

8 pickup - 10

9 pickup - 7

10 delivery 8 -

Figure 3 illustrates an example of an “individual” solution to satisfy the problem.
In this solution, three UAVs are used, denoted: A, B, and C. The UAV A is associated

with tasks with the identifiers 1, 2, 3, and 4; the UAV B with Tasks 5 and 6; and the UAV C
with Tasks 7, 8, 9, and 10. A possible corresponding tour of the UAV could be represented
as in Figure 1. Although the tour of each UAV starts and ends at the depot, the depot is not
considered as a task to be served and does not appear in the individual representation. The
order of the tour itself is determined as described in Section 4.2.1.

A A A A B B C C C CUAV ID
Task ID 1 2 3 4 5 6 7 8 9 10

Figure 3. Individual representation.

We define a valid individual as a solution for which the assignment of tasks to UAVs
(represented by the gene vector) satisfies the constraints defined above. In our problem,
we generate each initial individual as described in Algorithm 2 to get an initial population
of valid individuals and to speed up the convergence of the NSGA II. The random aspect
of the generation of individuals comes from the random selection of the first task assigned
to a UAV tour.

Then, a greedy selection of the other tasks assigned to the UAV is made as follows. The
algorithm iteratively selects the “best” task, i.e., the one that minimizes the distance traveled
by the UAV while satisfying the previously mentioned constraints (refueling constraints,
capacity constraints, visit time constraints, and maximum travel time constraints). This
process is carried out until it is no longer possible to add new tasks to the current UAV
tour, in which case, the next UAV tour is generated (if necessary). Thanks to this greedy
initialization, the initial individuals not only satisfy the constraints, and are therefore valid
individuals, but they already perform well in terms of the objective functions (1) and (3).

4.1.2. Crossover Operation

The crossover operation is the action of generating an offspring population from
a valid population. It consists of exchanging genes between two parents and creating
new children inheriting characteristics of both parents. In our problem, the offspring
population is obtained based on the two-point crossover operation [18]. In this operation,
two individuals are selected, and the vector corresponding to each of them is fragmented
into three parts on the basis of two randomly chosen vector positions. The first child vector
is a recombination of two fragments from Parent 2 and one fragment from Parent 1, and the
second child vector is created from the remaining fragments of both parents, as illustrated
in Figure 4.

Drones 2021, 5, 27 11 of 22

Figure 4. Crossover operation.

To obtain an offspring population composed of valid individuals, we make some
modifications to the genes of the children to satisfy the constraints of our problem.

4.1.3. Mutation Operation

In genetic algorithms, a mutation is a random alteration of certain genes. In our opti-
mization problem, a mutation operation consists of, on the one hand, randomly selecting
a site belonging to the tour of one UAV and, on the other hand, injecting this site into
the tour of another UAV. This operation is repeated k times. k is randomly selected. The
individual resulting from the mutation operation may need a few corrections to become
a valid individual, as in the case of the crossover operation. The mutation operation is
illustrated in Figure 5.

Figure 5. Mutation operation.

4.1.4. Selection Operation

The solutions are first sorted using a non-dominated sorting method in ascending
order (F1, F2, F3, Fn), and in each Pareto rank, the points are sorted according to crowding
distance in descending order. If only a few solutions of the last front Fj need to be added to
Pt+1, these solutions are chosen to have the best crowding distance.

To select the best solutions from the Fj set that can ensure the preservation diversity, a
measure of solution density in the objective space is used. As defined in [12], we used the
crowding distance to estimate the density of solutions surrounding a particular solution in
a non-dominated Fj set. As shown in Figure 6, the crowding distance of the ith solution
corresponds to the semi-perimeter of the cuboid whose vertices are the closest neighbors
of the solution i.

Drones 2021, 5, 27 12 of 22

Figure 6. Crowding distance.

4.2. Heuristic Algorithms

In this section, we describe the different heuristics used in the NSGA II algorithm to
improve the PDPTW solutions and to speed up its convergence.

4.2.1. Refinement UAV Task List Algorithm

The order in which a UAV visits the set of tasks to be served is very important. It
decides the order of the UAV’s tour, its length, its duration, and the number of times the
UAV needs to refuel. In our study, we propose a branch and bound algorithm to refine
each UAV task list according to the following constraints:

• The visiting time for each task must be satisfied. Thus, the UAV must start the task
service between its earliest and latest times.

• The pickup task must be served before the corresponding delivery task. Note that a
UAV can serve several tasks between a pickup and its corresponding delivery task if
the UAV’s capacity constraint is fulfilled.

• UAV capacity constraints must be met.
• The refueling requirement rules must be applied.

The objective is to minimize the travel distance (or equivalently, the duration of the
flight). The travel distances of the best candidate solutions, already visited and valid,
can be used as the upper bounds in the branch-and-bound search. This allows quickly
discarding some branches that would correspond to necessarily worse candidate solutions.
This refinement algorithm provides a near-optimal, but not absolutely optimal solution
since we do not enumerate all refueling possibilities. In the solutions considered, a UAV
only refuels when its remaining energy is not sufficient to reach the next site.

4.2.2. Individual Improvement Algorithm

A valid individual could be improved by reducing the total flight distance of UAVs
and the number of UAVs deployed. For this, we first propose a greedy algorithm that,
iteratively for each task, tries to place it in the best UAV task list, so that the total flight
distance is reduced. Then, we propose an additional greedy algorithm that reduces the
number of UAVs used to serve all tasks.

In this algorithm, we reduced the number of UAVs by eliminating the smallest tours if
possible. To do this, we sorted the UAV’ tours according to their number of tasks. Then,
we tried to insert all the tasks from the smallest UAV tour into the other UAV tour as long
as no other changes were made to the individual.

4.2.3. Individual Correction Algorithm

Crossover or mutation operations are very important in genetic algorithms. While
the crossover operation enables generating new offspring and finding new solutions that
converge to a local minimum, the mutation is a divergence operation that tends to add new

Drones 2021, 5, 27 13 of 22

genetic characteristics in order to perform a global search on the space of solutions and to
avoid the local minimum. After the application of the crossover or mutation operations,
the resulting individual may not be valid, as described in Sections 4.1.2 and 4.1.3.

In order to obtain a valid individual after applying the crossover or mutation opera-
tions, we proceed as follow:

• For each UAV’s tour:

– We first check the constraint (10), which indicates that a pickup task and a corre-
sponding delivery task must be performed by the same UAV. If this constraint is
not satisfied for some tasks, we apply the following rule: a delivery task must
follow its corresponding pickup task. Thus, for each of the paired tasks that
violate (10), the delivery task of the pair is moved to the UAV task list of the
corresponding pickup task (and consequently removed from its previous UAV
task list).

– Next, the UAV task lists are sorted as explained previously in Section 4.2.1.
– If the sorted list does not satisfy the constraints (10) to (16), then we reformat a

valid UAV tour for this UAV task list based on Algorithm 2 (more precisely, the
sub-algorithm in Lines 8 to 19, with L = UAV task list).

• Tasks not used in the newly generated UAV tour will either be added to other UAV
tours or used to generate one or more new UAV tours.

4.3. Refueling Constraints’ Verification Algorithm

In the previously defined algorithms, the constraints must be checked to ensure the
validity of the individuals. Each of them is associated with sub-algorithms. For the specific
case of refueling constraints, an algorithm is defined in this section. In order to avoid
obtaining an invalid individual, the algorithm checks the refueling constraints each time
the individual is modified (generation, mutation, crossover, individual improvement).

Note that energy limitation is one of the major constraints for UAVs. In our study,
we assumed that each UAV can refuel during its tour at any site it visits. The refueling
process can have an impact on the schedule times. Indeed, the UAV must travel to the
site to serve during a time window delimited by the earliest and latest time of the given
problem instance. As a result of the refueling process, the UAV may be delayed and be
forced to reach a site after the last authorized time. For this purpose, we designed the
refueling constraints’ verification algorithm that actually tries to compute the schedule
while considering refueling time.

This algorithm is called for each task list of the individual’s UAV. It determines if
the individual is valid or not, and if so, it obtains the total schedule time. Algorithm 3
illustrates the steps of calculating the schedule times with refueling.

Algorithm 3 considers two cases to calculate the refueling time: the first one is when a
UAV arrives at a site before its earliest time, and the second case is when it arrives after its
earliest time and before its latest time. After some initialization (Lines 1–12), the algorithm
starts by checking whether the UAV reaches a site before or after its earliest time (Line 13).
If the UAV reaches a site before its earliest time, then the algorithm computes a waiting
time (Line 14) that could be considered when performing the UAV’s refueling (Line 15). In
Lines 15 to 27, the algorithm checks whether the UAV’s refueling is needed or not. If this
is the case, then the refueling operation will start at the waiting time, and it can last until
the service time (Line 19) or even exceed it (Line 25). Line 28 of the algorithm is executed
when the UAV reaches a site after its earliest time and before its latest time. The refueling
is performed if the UAV does not have enough energy to serve the current site and reaches
the next site (Lines 32–34). Additional time is added to the scheduled time, if the refueling
time exceeds the service time (Lines 38–39).

Drones 2021, 5, 27 14 of 22

Algorithm 3 Refueling algorithm for a UAV tour/.

1: E ← UAV maximum autonomy; {E is the remaining UAV energy expressed in flight
duration}

2: W ← 0; {Waiting time}
3: l ← UAV task list
4: ScheduleTime← 0
5: ti: {time to travel from the previous task site to the site of the i-th task of the task list l}
6: earliesti: {earliest time}
7: latesti: {latest time}
8: servicei: {service time}
9: FRT: {Full refueling time (constant)}

10: for i = 1 to |l| do
11: ScheduleTime← ScheduleTime + ti
12: E← E− ti
13: if ScheduleTime ≤ earliesti then
14: W ← earliesti − ScheduleTime
15: if E > (W + servicei + ti+1) then
16: ScheduleTime← earliesti + servicei
17: E← E− (W + servicei)
18: else
19: {need refueling during the service time and the waiting time}
20: E← UAV maximum autonomy
21: if (W + servicei) > FRT then
22: ScheduleTime← earliesti + servicei
23: E← E− (W + servicei − FRT)
24: else
25: ScheduleTime← ScheduleTime + FRT
26: end if
27: end if
28: else if ScheduleTime ≤ latesti then
29: if E > (service + ti+1) then
30: ScheduleTime← ScheduleTime + servicei
31: E← E− servicei
32: else
33: {need refueling during the service time}
34: E← UAV maximum autonomy
35: if servicei > FRT then
36: ScheduleTime← ScheduleTime + servicei
37: E← E− (servicei − FRT)
38: else
39: ScheduleTime← ScheduleTime + FRT
40: end if
41: end if
42: else
43: {Refueling not possible; the individual is not valid}
44: end if
45: end for

5. Performance Evaluation

In this study, we conducted a set of experiments to, firstly, validate our improved
version of the NSGA-II against those proposed in [15,16] based on the well-known Lim
benchmark [17] and, secondly, to solve the PDPTW-UAV. To the best of our knowledge,
our study is the first to give results for the Lim benchmark [17] in the context of UAVs,
so the results will be available for researchers to compare the performance of different
future approaches.

Drones 2021, 5, 27 15 of 22

5.1. Simulation Parameters

We conducted a series of experiments using the first nine instances of those proposed
in [17]. Each instance included 100 pickup and delivery tasks. Since we added some
heuristics to improve the NSGA-II and help it converge quickly, we generated only 10
individual populations for 100 generations. Table 2 illustrates the simulation parameters
used in this study.

Table 2. Simulation parameters.

Problem Parameters Values

Instances 9 test instances from [17]
Task’s number 100 per instance

Maximum UAV number 25
Maximum capacity 200

Velocity 1 (not used in the instances)

UAV autonomy 500
Refueling duration 60, 90, 120

Genetic algorithm parameters Values

Population size 10
Generation size 100

We conducted 15 simulation runs, for each of the nine benchmark instances. These
15 runs were actually based on 15 different initial populations that were generated using
Algorithm 2. For each initial population, we applied separately the NSGA-II to generate
the next generation (based on crossover and mutation operators) and selected the best 10
individuals resulting from the non-dominated sorting algorithm, as illustrated in Figure 2.
This process was repeated 100 times (which was the number of generations, also called
iterations). The final result of this simulation run was the Pareto front of one run. In this
manner, we could collect 15 different Pareto fronts from the 15 separate runs. Our final step
was the extraction of the non-dominated individuals from all the 15 Pareto fronts, selecting
the ones that minimized the three initial objectives considered in our study. This yielded a
final, global, Pareto front.

Notice that the results shown in the benchmark do not have any known unit for the
time, distance, or speed; hence, we followed the same assumption to be compliant with
that study.

5.2. Solving PDPTW Using Our NSGA-II

In this section, we present the simulation results of the improved NSGA-II without
considering refueling using the instances from [17]. The aim was to prove the efficiency of
the proposed NSGA-II by comparing the simulation results obtained with those presented
in the literature [15,16]. Table 3 summarizes the comparative evaluation of our study with
two other studies. Notice that in our work, we optimized three objective functions: number
of vehicles, distance traveled, and schedule times. However, the studies proposed in the
literature only focused on minimizing the number of vehicles and the distance traveled.
For our MOEA proposalm, we included all the solutions obtained in the Pareto front. We
solved the first nine instances of 100 tasks from [17] using our NSGA-II proposal. The
results obtained were the same as those of [15,16] and differed only for two instances
(e.g., instances lc103and lc109), wuth a slight difference. The Pareto front of some instances
where several non-dominated solutions were found is represented in Figure 7.

Based on these very satisfactory results, we concluded that the proposed NSGA-II
gave good results when applied to the PDPTW. We could now rely on our NSGA-II to
solve the PDPTW-UAV while considering the energy constraints of UAVs.

Drones 2021, 5, 27 16 of 22

Instance Lc103

8

8.5

9

9.5

10

UAV

10

8

9.2k

9.4k

9.6k

9.8k

time

9.96141k

9.18715k

1000

1200

1400

distance

1,501.76

829.56

Instance Lc104

9

9.2

9.4

9.6

9.8

10

UAV

10

9

10.05k

10.1k

10.15k

10.2k

time

10.20528k

10.01587k

850

900

950

distance

954.05

818.6

Instance Lc109

9

9.5

10

10.5

11

UAV

11

9

9.76k

9.78k

9.8k

9.82k

9.84k

time

9.84181k

9.74334k

840

860

880

900

920

940

distance

956.35

830.81

Figure 7. Pareto front of instances with multiple non-dominated solutions.

Table 3. Instance validation.

Best Known [17] EMOA [15] Our Proposed MOEA

Instance # veh Dist # veh Dist # veh Dist S.Time W.Time

lc101 10 828.94 10 828.94 10 828.94 9828.94 0.00

lc102 10 828.94 10 828.94 10 828.94 9828.94 0.00

lc103 9 1035.35 10 827.86 10 829.56 9961.41 131.85
10 883.74 9930.89 47.15
9 1344.41 9704.38 709.97
8 1501.76 9187.15 1385.39

lc104 9 860.01 9 917.70 9 954.05 10205.28 431.23
10 818.60 10015.87 197.27

lc105 10 828.94 10 828.94 10 828.94 9828.94 0.00

lc106 10 828.94 10 828.94 10 828.94 9828.94 0.00

lc107 10 828.94 10 828.94 10 828.94 9828.94 0.00

lc108 10 826.44 10 828.94 10 826.44 9826.94 0.00

lc109 9 1000.60 9 1068.59 10 830.81 9841.81 11.00
10 827.82 10 956.35 9743.34 1226.99

5.3. Convergence of Our NSGA-II Algorithm

In this section, we study the convergence of our algorithm. For that, we illustrate in
Table 4 the Pareto front of each instance, from the first iteration to the iteration where the
optimal solution appeared for the first time. Note that simulation runs were conducted
using a desktop computer Fourth-Generation Intel(R) Core i7 Processors with 2.9 GHz and
8 Gb of cache memory. The convergence of our algorithm for instances lc101,lc102, lc105,
lc106, lc107, lc108, and lc109 was very rapid since the optimal solutions were obtained
during the first three iterations. However, instances lc103 and lc104 took longer to converge
compared to the previously mentioned instances. Due to the different heuristics used to
improve the individual, our NSGA-II algorithm converged to the optimal solution in only
a few iterations and in a short simulation time, as shown in Table 4.

In our study, we assumed that a UAV must start refueling, if necessary, when it reaches
a site. Hence, the refueling was always performed during the service time. It can also be
performed earlier during the waiting time if the UAV has arrived before the earliest time of
the site visit. The refueling time could then be totally covered by the waiting and service
time. In such a case, the refueling operation had no impact on the UAV’s tour. However,
when the refueling time exceeded the service time, the UAV tour was not the same as for
the original PDPTW optimization problem. Due to the additional refueling time, the UAV

Drones 2021, 5, 27 17 of 22

may reach a site after the latest time of that site visit. In this case, the UAV tour is invalid,
and the individual is corrected based on the algorithms described in Section 4.2.

Table 4. Convergence table including the Pareto front for each instance at each iteration.

Iteration Sim. Time (min) Number of Vehicles Distance Schedule Time

lc101 1 5.50 10 828.94 9828.94

lc102 1 5.23 10 828.94 9828.94

lc103 1 3.89 10 922.06 10,312.80
10 1170.13 10,362.34

2 9.15 10 883.74 9930.89

14 36.77 10 883.75 9930.89
9 2034.00 10,687.14

16 38.33 10 883.75 9930.89
9 1903.89 10,703.33

39 78.75 10 883.74 9930.89
9 1750.61 9870.77

40 80.50 10 883.74 9930.89
9 1669.33 9828.81

42 83.45 10 883.74 9930.89
9 1669.33 9828.81
10 860.95 10,242.13

43 85.36 10 883.74 9930.89
9 1669.33 9828.81
10 829.56 9961.41

lc104 1 10.15 9 1128.16 10,320.64
9 1163.18 10,306.54
10 1037.35 10,795.21

2 22.64 9 1099.38 10,348.29
9 1125.95 10,269.31
10 1037.35 10,795.21
10 1054.54 10,528.29

3 32.34 9 1099.38 10,348.29
10 974.34 10,477.76
9 974.34 10,402.67

4 106.06 10 872.80 10,070.08
9 954.05 10,205.28

7 141.74 10 818.60 10,015.87
9 954.05 10,205.28

lc105 1 3.68 10 828.94 9828.94

lc106 1 2.83 11 948.02 10,616.47

2 9.57 11 948.02 10,616.47
11 924.63 10,728.95
10 957.02 10,128.62

3 12.81 10 828.94 9828.94

lc107 1 8.04 10 832.63 9971.26
10 919.93 9919.93

2 16.70 10 828.94 9828.94

lc108 1 4.77 10 866.1 9970.99

2 7.50 10 826.44 9826.44

lc109 1 7.65 10 956.35 9743.34
10 830.81 9841.81

In this section, we solve our PDPTW-UAV using the proposed NSGA-II algorithm. We
conducted a series of experiments using the same nine instances from [17] as in the previous
section. As the refueling time had a significant impact on the UAV tour, we present all the
solutions obtained in the Pareto front for a refueling duration equal to 120, 90, and 60, as

Drones 2021, 5, 27 18 of 22

illustrated in Tables 5–7, respectively. Moreover, for more clarity, we visualize the Pareto
fronts in Figure 8 corresponding to the solutions of Table 5.

Table 5. Our solution with refueling = 120.

Instance UAV’s Number Distance Schedule Time Refueling Time Refueling
Times/Number

lc101 11 1266.22 11217.61 285.00 15
12 1182.28 11485.72 316.29 14

lc102 14 1172.25 12,964.84 326.00 17
12 1462.26 11,673.71 331.49 14
13 1233.02 12,211.52 271.49 14
12 1242.50 11,778.76 346.89 15
13 1225.03 12,228.82 274.55 15
12 1134.90 11,367.10 345.00 15
10 1266.22 10,142.39 210.00 11

lc103 9 1247.76 10,127.65 300.00 14
10 1104.99 10,987.30 351.83 14
11 962.47 11,586.83 381.83 17
9 1276.77 10,003.61 240.00 13

11 964.32 11,063.51 381.83 15
10 1130.96 10,299.71 240.00 13
11 961.18 11,675.98 381.83 17

lc104 9 1018.93 10,552.24 480.00 17
10 824.06 10,515.49 360.00 14

lc105 10 834.45 10,324.26 330.00 12
10 834.92 10,251.70 390.00 13

lc106 11 946.71 10,992.46 390.00 14
11 1039.85 10,938.36 330.00 14

lc107 10 832.62 10,361.26 390.00 13

lc108 10 834.12 10,221.94 330.00 11
9 1789.18 9936.07 300.00 11

lc109 10 964.77 10,256.11 360.00 13
11 866.80 10,363.12 390.00 13
10 894.65 10,321.41 420.00 14
10 876.32 10,325.29 360.00 13

Table 6. Our solution with refueling = 90 (the refueling time is 0.00 because the refueling operation is
performed during the service time).

Instance UAV’s Number Distance Schedule Time Refueling Time Refueling
Times/Number

lc101 10 828.94 9828.94 0.00 12

lc102 10 828.94 9828.94 0.00 12

lc103 10 829.56 9961.41 0.00 13
9 1099.77 9820.78 0.00 17

10 829.45 10,212.06 0.00 15

lc104 10 950.67 10,212.56 0.00 13
9 989.79 10,295.67 0.00 15
9 914.25 10,338.50 0.00 16
9 1059.70 10,273.97 0.00 17
9 1048.72 10,288.33 0.00 17
9 1078.03 10,107.50 0.00 14

lc105 9 1055.55 9206.83 0.00 11
10 828.94 9828.94 0.00 12

lc106 10 828.94 9828.94 0.00 12

lc107 10 828.94 9828.94 0.00 12

lc108 10 826.44 9826.44 0.00 11

lc109 10 869.53 9878.88 0.00 12

Drones 2021, 5, 27 19 of 22

Table 7. Our solution with refueling = 60 (the refueling time is 0.00 because the refueling operation is
performed during the service time).

Instance UAV’s Number Distance Schedule Time Refueling Time Refueling
Times/Number

lc101 10 828.94 9828.94 0.00 14

lc102 10 828.94 9828.94 0.00 14

lc103 10 835.05 9966.91 0.00 16
7 1238.57 8589.78 0.00 14
8 1136.98 8963.44 0.00 16

10 829.45 10,212.06 0.00 15

lc104 9 957.54 10,060.65 0.00 16
10 818.60 10,015.87 0.00 16

lc105 10 828.94 9828.94 0.00 14

lc106 10 828.94 9828.94 0.00 14

lc107 10 828.94 9828.94 0.00 14

lc108 10 826.44 9826.44 0.00 13

lc109 9 1256.52 9456.03 0.00 15
10 830.81 9841.81 0.00 14

lc101

11

11.2

11.4

11.6

11.8

12

UAV's number

12

11

11.25k

11.3k

11.35k

11.4k

11.45k

Time

11.48572k

11.21761k

1200

1220

1240

1260

Distance

1,266.22

1,182.28

lc102

10

11

12

13

14

UAV's number

14

10

10.5k

11k

11.5k

12k

12.5k

Time

12.9648k

10.1424k

1200

1300

1400

Distance

1,462.26

1,134.9

lc103

9

9.5

10

10.5

11

UAV's number

11

9

10.5k

11k

11.5k

Time

11.676k

10.0036k

1000

1100

1200

Distance

1,276.77

961.18

lc104

9

9.2

9.4

9.6

9.8

10

UAV's number

10

9

10.52k

10.53k

10.54k

10.55k

Time

10.55224k

10.51549k

850

900

950

1000

Distance

1,018.93

824.06

lc105

9

9.5

10

10.5

11

UAV's number

11

9

10.26k

10.28k

10.3k

10.32k

Time

10.32426k

10.2517k

834.5

834.6

834.7

834.8

834.9

Distance

834.92

834.45

lc106

10

10.5

11

11.5

12

UAV's number

12.1

9.9

10.94k

10.95k

10.96k

10.97k

10.98k

10.99k

Time

10.99246k

10.93836k

960

980

1000

1020

Distance

1,039.85

946.71

lc107

9

9.5

10

10.5

11

UAV's number

11

9

9.5k

10k

10.5k

11k

Time

11.3974k

9.3251k

750

800

850

900

Distance

915.88

749.36

lc108

9

9.2

9.4

9.6

9.8

10

UAV's number

10

9

9.95k

10k

10.05k

10.1k

10.15k

10.2k

Time

10.22194k

9.93607k

1000

1200

1400

1600

Distance

1,789.18

834.12

lc109

10

10.2

10.4

10.6

10.8

11

UAV's number

11

10

10.26k

10.28k

10.3k

10.32k

10.34k

10.36k

Time

10.36312k

10.25611k

880

900

920

940

960

Distance

964.77

866.8

Figure 8. Pareto front of instances with multiple non-dominated solutions, with refueling time 120.

5.4. Solving the PDPTW-UAV Using Our NSGA-II

In Tables 5–7, we present for each instance the number of UAVs deployed, the cumu-
lated flight distance, the schedule time, the cumulated additional refueling time, and the
number of times the UAVs needed to refuel. Refueling time is the additional time that a

Drones 2021, 5, 27 20 of 22

UAV spends refueling after the service time has expired. The refueling time is equal to zero
if it is covered by the waiting time and/or service time.

When the refueling time was longer than the service time for all instances, we obtained
solutions totally different from those presented in Table 3. This was due to the impact of
the additional refueling time on the UAV’s tours. In the new solutions shown in Table 5,
we can observe an increase in flight distance and schedule time compared to the results
obtained in Table 3.

However, when the refueling time was less than or equal to the service time in
most instances, the additional refueling time was always equal to zero, as shown in
Tables 6 and 7, and the results obtained were very close to the results of Table 3. This can
be explained by the fact that a UAV recharges its battery during the service time, and then,
there is no additional time to consider for refueling. As the service time is computed in the
schedule time, the refueling time is considered as zero.

6. Coping with Uncertainties and a Real-World Scenario

In this article, we considered the PDPTW-UAV, which can be mathematically and
exactly formulated as in Section 3, Equations (1)–(16). We proposed the NSGA-II algorithm
to solve it. However, when considering the problem in the real world, the formulation is
no longer accurate.The goal of this section is to give an overview and relevant references to
solve the problem when uncertainties exist. Indeed, each constraint, such as the battery
capacity, is known up to a certain approximation and, in addition, can be subject to random
events, for instance the travel time from Point A to Point B; think of a situation with strong
wind. In a case where the constraints are not really strict constraints, it is possible to
solve the problem with the expected values, to consider the most pessimistic scenarios,
or to include margins of error, for example to add 20% to the travel time to account for
the uncertainties.

However, more methodologically sound approaches have been adopted: many re-
searchers have properly formalized new variants of the considered problems that explicitly
take into account randomness and uncertainty. One example of such variants is the
“stochastic vehicle routing problem(s)” extending the “vehicle routing problem” with
several options, and some related surveys can be found in [19] or [20], for instance.

Following [19], there exist two main approaches to cope with uncertainties. The first
one is to write a Chance-Constrained Program (CCP) where the constraints can be satisfied
with identified probabilities due to stochasticity; a solution still has to optimize an objective
function, but now, the probability that it fails is bounded by an additional parameter. The
second is to actually take into account the probability of failing to satisfy a constraint
during the plan execution, then being able to react through recourse: these are Stochastic
Programs with Recourse (SPRs). In the last case, the recourse might be pre-planned and
its cost integrated in the objective function, or alternately, the solution might be updated
dynamically during plan execution, or the problem might be solved online [20]. In all cases,
effort is required, as the problem becomes more complex: for instance, for the CCP, the
simple calculation of the objective function of a given candidate solution may require the
resolution of another optimization problem. Numerous approaches have been proposed;
recently, machine learning has been used for solving the class of VRP problems (see [21]);
for intractable settings, it is an example of how stochastic constraints or demands may be
incorporated (see Appendix [C.6] in [21].

In the following, we list some examples of sources of uncertainties that may affect the
problem solving of our UAV planning mission:

• general reliability of the drone with respect to the mission (mean time to failure),
• external incident (like physical attacks on drones, eagle hunting, etc.),
• travel time that can be subject to weather conditions,
• consumed energy that can be subject to weather conditions or rotor engine conditions,
• energy capacity, which can be affected by battery aging,
• service duration, which depends on the actual throughput to transfer data

Drones 2021, 5, 27 21 of 22

• positioning precision, which depends on the precision of the embedded localization system

The uncertainties may have an impact both on the variables and on the methodology
that would be used. For real deployments of the PDPTW-UAV, in general, arguably one
of the most important issues is the ability to recover the UAVs; hence, we would suggest
formulating an extended version problem with the family of stochastic programs with
recourse so that it includes a plan to recover the drone. Our proposal would constitute a
baseline and benchmark for such extended approaches.

Real-world context:

Another problem from a real-world scenario that is worth discussing is that of gath-
ering information about the requests of nodes in a network that does not provide full
connectivity, in order to compute UAV tours by our algorithm in a centralized manner.

A real-world example could be that of nodes that are capturing images, videos, or
time series from sensors with a high sample rate, therefore accumulating large volumes
of data. One would make requests for the UAV transport of the data. The requests are
considered as small packets and could be collected through a Low-Power Wide-Area
Network (LPWAN) with very wide coverage, such as Long Range (LoRa) technology.
The LPWAN network would be insufficient to transmit all the raw data (range of several
kilometers for a LoRaWAN gateway, but with only a few bytes/seconds available per node
with LoRa in practice). Instead, based on the requests, the proposed NSGA-II algorithm
will compute the drones’ tour where the large volumes of data can be carried out by these
flying vehicles. Another option is to collect requests during the UAVs’ tour while they
are serving sites. The collected requests will be used by the NSGA-II to calculate the next
tours. Machine learning could also be used to predict and optimize the computation of the
upcoming UAVs’ tour.

7. Conclusions

In this paper, we applied the NSGA-II to solve the pickup and delivery optimization
problem with a time window with an intermittent connectivity network using UAVs, called
PDPTW-UAV.

One of the main differences from previous studies is that we were able to introduce
UAV constraints (such as refueling) in our variant of the NSGA-II. We were able to add
a refueling constraint verification algorithm to our variant of the NSGA-II, because it is
modular. The refueling constraint verification can be modified arbitrarily, to compute
the most realistic energy consumption model, etc., without modifying other parts of
the algorithm.

For this purpose, we introduced a new representation of individuals (genes), as well as
a number of associated heuristics and algorithms for generation, crossover, and mutation.
Several experiments were conducted with and without the consideration of a refueling
constraint. The results presented in this paper clearly show that NSAG-II is capable of
achieving excellent results when applied to the PDPTW-UAV problem.

In our future work, we plan to optimize the management of the refueling operations,
and we will also propose a formula to make the refueling time proportional to the amount
of energy required by the UAV.

Author Contributions: Conceptualization, I.K. and A.L.; methodology, I.K. and A.L.; software, I.K.
and M.H.; validation, I.K., A.L. and C.A.; writing—original draft preparation, I.K., A.L. and C.A.;
writing—review and editing, I.K., A.L. and C.A.; funding acquisition, A.L. and C.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Labex DigiCosmeGrant Number ANR-11-LABEX-0045-
DIGICOSME. This research was partially supported by Labex DigiCosme (Project ANR-11-LABEX-
0045-DIGICOSME) operated by ANR as part of the program “Investissement d’Avenir” Idex Paris-
Saclay (ANR-11-IDEX-0003-02).

Conflicts of Interest: The authors declare no conflict of interest.

Drones 2021, 5, 27 22 of 22

References
1. Hernandez-Lopez, D.; Felipe-Garcia, B.; Gonzalez-Aguilera, D.; Arias-Perez, B. An automatic approach to UAV flight planning

and control for photogrammetric applications. Photogramm. Eng. Remote Sens. 2013, 79, 87–98. [CrossRef]
2. Lau, H.C.; Liang, Z. Pickup and delivery with time windows: algorithms and test case generation. In Proceedings of the 13th

IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001, Dallas, TX, USA, 7–9 November 2001; pp. 333–340.
[CrossRef]

3. Cao, W.; Yang, W. A Survey of Vehicle Routing Problem. MATEC Web Conf. 2017, 100, 1006. [CrossRef]
4. Parragh, S.N.; Doerner, K.F.; Hartl, R.F. A survey on pickup and delivery problems. J. für Betriebswirtschaft 2008, 58, 21–51.

[CrossRef]
5. Lau, H.C.; Liang, Z. Pickup and delivery with time windows: Algorithms and test case generation. Int. J. Artif. Intell. Tools 2002,

11, 455–472. [CrossRef]
6. Ben Alaia, E.; Dridi, I.H.; Bouchriha, H.; Borne, P. Optimization of the multi-depot Multi-vehicle pickup and delivery problem

with time windows using genetic algorithm. In Proceedings of the 2013 International Conference on Control, Decision and
Information Technologies (CoDIT), Hammamet, Tunisia, 6–8 May 2013; pp. 343–348. [CrossRef]

7. Gansterer, M.; Hartl, R.F.; Salzmann, P.E.H. Exact solutions for the collaborative pickup and delivery problem. Cent. Eur. J. Oper.
Res. 2018, 26, 357–371. [CrossRef] [PubMed]

8. Wang, J.; Zhou, Y.; Wang, Y.; Zhang, J.; Chen, C.L.P.; Zheng, Z. Multiobjective Vehicle Routing Problems With Simultaneous
Delivery and Pickup and Time Windows: Formulation, Instances, and Algorithms. IEEE Trans. Cybern. 2016, 46, 582–594.
[CrossRef] [PubMed]

9. Sabo, C.; Cohen, K. SMART Heuristic for Pickup and Delivery Problem (PDP) with Cooperative UAVs; InInfotech@ Aerospace: San
Juan, PR, USA, 2011. [CrossRef]

10. Karak, A.; Abdelghany, K. The hybrid vehicle-drone routing problem for pick-up and delivery services. Transp. Res. Part C Emerg.
Technol. 2019, 102, 427–449. [CrossRef]

11. Khoufi, I.; Laouiti, A.; Adjih, C. A Survey of Recent Extended Variants of the Traveling Salesman and Vehicle Routing Problems
for Unmanned Aerial Vehicles. Drones 2019, 3, 66. [CrossRef]

12. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

13. Guerreiro, P.M.M.; Cardoso, P.J.S.; Fernandes, H.C.L. Applying NSGA-II to a Multiple Objective Dial a Ride Problem. In
Proceedings of the Computational Science—ICCS 2019, Faro, Portugal, 12–14 June 2019; Rodrigues, J.M.F., Cardoso, P.J.S.,
Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 55–69.

14. Velasco, N.; Dejax, P.; Guéret, C.; Prins, C. A non-dominated sorting genetic algorithm for a bi-objective pick-up and delivery
problem. Eng. Optim. 2012, 44, 305–325. [CrossRef]

15. Phan, D.H.; Suzuki, J. Evolutionary Multiobjective Optimization for the Pickup and Delivery Problem with Time Windows and
Demands. Mob. Netw. Appl. 2016, 21, 175–190. [CrossRef]

16. Li, H.; Lim, A. A Metaheuristic for the Pickup and Delivery Problem with Time Windows. Int. J. Artif. Intell. Tools 2001, 12,
160–167. [CrossRef]

17. Li & Lim Benchmark. Available online: https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/ (accessed on 25
December 2019).

18. Kora, P.; Yadlapalli, P. Crossover Operators in Genetic Algorithms: A Review. Int. J. Comput. Appl. 2017, 162, 34–36. [CrossRef]
19. Oyola, J.; Arntzen, H.; Woodruff, D.L. The stochastic vehicle routing problem, a literature review, part I: models. EURO J. Transp.

Logist. 2018, 7, 193–221. [CrossRef]
20. Ritzinger, U.; Puchinger, J.; Hartl, R.F. A survey on dynamic and stochastic vehicle routing problems. Int. J. Prod. Res. 2016,

54, 215–231. [CrossRef]
21. Nazari, M.; Oroojlooy, A.; Snyder, L.; Takac, M. Reinforcement Learning for Solving the Vehicle Routing Problem. In Proceedings

of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Montreal, QC, Canada, 2018; Volume 31.

http://doi.org/10.14358/PERS.79.1.87
http://dx.doi.org/10.1109/ICTAI.2001.974481
http://dx.doi.org/10.1051/matecconf/201710001006
http://dx.doi.org/10.1007/s11301-008-0033-7
http://dx.doi.org/10.1142/S0218213002000988
http://dx.doi.org/10.1109/CoDIT.2013.6689568
http://dx.doi.org/10.1007/s10100-017-0503-x
http://www.ncbi.nlm.nih.gov/pubmed/29773966
http://dx.doi.org/10.1109/TCYB.2015.2409837
http://www.ncbi.nlm.nih.gov/pubmed/25794408
http://dx.doi.org/10.2514/6.2011-1464
http://dx.doi.org/10.1016/j.trc.2019.03.021
http://dx.doi.org/10.3390/drones3030066
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1080/0305215X.2011.639368
http://dx.doi.org/10.1007/s11036-016-0709-5
http://dx.doi.org/10.1109/ICTAI.2001.974461
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
http://dx.doi.org/10.5120/ijca2017913370
http://dx.doi.org/10.1007/s13676-016-0100-5
http://dx.doi.org/10.1080/00207543.2015.1043403

	Introduction, Context, and Motivation
	Use Case: Data Exchange Using UAVs
	PDPTW-UAV: Definitions and Terminology

	PDPTW-UAV: Problem Statement
	Binary Variables
	Fractional Variables
	Problem Model

	Solving the PDPTW-UAV Using the NSGA-II
	Genetic Operations
	Individual Representation
	Crossover Operation
	Mutation Operation
	Selection Operation

	Heuristic Algorithms
	Refinement UAV Task List Algorithm
	Individual Improvement Algorithm
	Individual Correction Algorithm

	Refueling Constraints' Verification Algorithm

	Performance Evaluation
	Simulation Parameters
	Solving PDPTW Using Our NSGA-II
	Convergence of Our NSGA-II Algorithm
	Solving the PDPTW-UAV Using Our NSGA-II

	Coping with Uncertainties and a Real-World Scenario
	Conclusions
	References

