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Abstract: Unmanned air vehicles (UAVs) or drones have gained popularity in recent years. However,
the US Federal Aviation Administration (FAA) is still hesitant to open up the national air space (NAS)
to UAVs due to safety concerns because UAVs have several orders of magnitude of more accidents
than manned aircraft. To limit the scope in this paper, we focus on large, heavy, and expensive UAVs
that can be used for cargo transfer and search and rescue operations, not small radio-controlled
toy drones. We first present a general architecture for enhancing the safety of UAVs. We then
illustrate how signal processing technologies can help enhance the safety of UAVs. In particular,
we provide a bird’s eye view of the application of signal processing algorithms on condition-based
maintenance, structural health monitoring, fault diagnostics, and fault mitigation, which all play
critical roles in UAV safety. Some practical applications are used to illustrate the importance of the
various algorithms.

Keywords: UAVs; safety; drones; signal processing; condition-based maintenance; structural health
monitoring; fault diagnostics; fault mitigation; contingency planning

1. Introduction

The use of unmanned aerial vehicles (UAV) in the military and industry today is
becoming more and more widespread. However, perhaps due to lower manufacturing
standards and budget limitations, the mishap rates in unmanned aerial vehicles (UAVs)
are several orders of magnitude greater than manned aviation [1]. Considering these high
mishap rates, the US Department of Transportation’s Federal Aviation Administration
(FAA) has initiated several programs and partnerships to enhance the safety and reliable
operation of UAVs [2].

In this paper, we focus on large, heavy, and expensive (millions of dollars) UAVs such
as cargo transport and search and rescue aircraft, not radio-controlled amateur drones.
In general, UAV safety can be improved from the following perspectives. First, the UAV
manufacturers need to use durable engines and communication equipment and strong
structural materials. Reliable communication equipment will ensure drone safety, as a
lost link between UAV and ground station is very dangerous [3]. Durable engines and
strong materials will ensure reliable flight in rough weather conditions. Second, advanced
conditioned-based maintenance (CBM) practice should be deployed [4–6]. Compared with
traditional periodic preventive maintenance, CBM can be cost-effective but may require
additional sensors to monitor some critical components such as the engine. Third, structural
health monitoring (SHM) [7,8], especially the non-destructive type of SHM, should be
frequently used to monitor cracks, loosened fasteners, etc.

The aforementioned ideas mostly require both hardware and software, and have been
routinely used in UAVs to maintain reliability and safety. In addition to the above safety
enhancement practices, we would like to emphasize that signal processing algorithms
also play important roles in other critical areas. Figure 1 shows the general architecture of
an integrated system that can enhance the safety of UAVs. Some monitoring operations
such as SHM, CBM, are done off-line on the ground. The off-line process involves data
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collection and processing. Others such as sensor and actuator fault diagnostic, fault-
tolerant control are done online. The sensor’s measurements (angles, speed, etc.) are all
collected in real-time and processed in real-time. Contingency planning is done off-line.
Moreover, as shown in Figure 1, we can clearly see the use of signal processing algorithms
in fault detection, fault isolation, fault magnitude reconstruction, and fault mitigation. First,
robust fault diagnosis algorithms [9–18] perform accurate fault detection and isolation.
Failures in sensors and actuators can cause system instability. Diagnosing those faults
will improve the overall safety of UAVs. Second, in fault mitigations, robust [19–23] and
fault-tolerant controllers [24–31] are also critical for UAV safety. Robust controllers can
tolerate some small perturbations in the UAVs due to aging or external disturbances.
Fault-tolerant controllers can perform control reconfiguration to directly address sensor
and actuator malfunctions during flight. Third, one critical aspect of fault mitigation is
contingency planning for engine failures, which is the last line of defense for UAV safety.
That is, all the aforementioned practices have been tried, but nothing works and the UAV
is eventually on its course to crash due to engine loss. Under such an emergency, the goal
of contingency planning is either to help UAV operators to glide the UAV or will make the
UAV autonomously land itself to a crashing/ditching site or local airport runway if there
is no reliable communication link available. In the case of an emergency due to full loss
of thrust, wind plays a critical role with respect to reachability to the emergency landing
site [32]. Upon full loss of thrust due to engine failure, because of the wind impact, the
UAV may not reach the designated landing site and crash into populated areas causing
loss of lives. Thus, the wind impact on reachability needs to be addressed in path planning
for engine loss contingencies. It is also important that in the event of an emergency that
might happen at high altitudes, the UAV should choose a forced landing path that does not
violate no-fly zones or stormy weather air zones not to further complicate the situation.
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Figure 1. Enhancing UAV safety from the perspectives of signal processing algorithms.

The contributions of our paper is as follows:

• We provide a bird’s eye view of the importance of signal processing algorithms in
enhancing the safety of UAVs.

• In each area, we highlight some recent advances in the literature.

Our paper is organized as follows. In Sections 2 and 3, we briefly mention CBM and
SHM practices. In Sections 4 and 5, we focus on fault diagnostics and fault magnitude
estimation. In Section 6, we address fault mitigation using robust and fault-tolerant
controllers. Section 7 discusses the last line of defense: contingency planning for an
emergency landing. Finally, some concluding remarks, limitations, and future directions
are given in Section 8.

2. Condition Based Maintenance (CBM)

Traditionally, mechanical components such as engines, bearings, and gearboxes are
maintained by using preventive maintenance, which performs periodic checks on the
components. For example, engine oil for cars is replaced with new oil every three thousand
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miles or every six months. Preventive maintenance is certainly effective and has been
widely used. However, one drawback is that it may not be cost-effective. When a car is not
being used frequently, periodic maintenance may be wasteful because the oil quality may
still be good.

In recent years, people have been advocating condition-based maintenance [33,34],
which means some maintenance decisions should be made based on the condition of the
component rather than time. Two survey papers [35,36] provided a good review of the
relevant works in this area. Some papers have proposed the use of wireless sensor networks
(WSN) for quantifying system conditions [37,38]. Figure 2 illustrates how WSN can be
used for induction motor monitoring.
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Figure 2. The use WSN for induction motor monitoring.

It should be noted the Internet of Things (IOT) is also a hot area that can be beneficial
to CBM. In [39], some discussions talked about the various applications of IOT in CBM.
IOT can also help online fault diagnosis as well.

3. Structural Health Monitoring (SHM)

As shown in Figure 3, Structural health monitoring (SHM) [7,8] is one way of nonde-
structive inspection (NDI). It can be done passively or actively. The purpose is to detect
structural defects such as cracks on the wing, loosened bolt, and fasteners, etc.
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In our opinion, SHM is also one form of CBM. To illustrate the basic idea of SHM, one
can refer to Figure 4, which shows an array of sensors/actuators to monitor an aircraft
wing panel. Ultrasonic pulses are generated from each sensor, and the rest of the array is
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receiving the transmitted signals. Once all the sensors are scanned, the collected signals
from all the elements will be fed into an algorithm for fault localization. In [8], a RAPID
algorithm was developed, which has been widely used in many papers.
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The interrogation methods in [7,8] are bulky. Recently, there are new and recent
advances in wireless sensing for SHM. As shown in Figure 5, passive low-power wireless
node can be installed onto structures. Details can be found in [40].
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4. Sensor and Actuator Fault Diagnostic Algorithms

Sensors and actuators are critical components in complex systems. For instance, in
an airplane, effective flight control is impossible if sensors and/or actuators are malfunc-
tioning [41,42]. Sensors and actuators can fail, and their failures have a significant impact
on the performance of a system. In the worst case, the failure even can affect the safe
operation of the system, leading to a catastrophic event. Sensor failures may include
precision degradation, drift, frozen reading, and complete failure [43]. Similarly, actuator
failures may include limited range of motion, e.g., valve stiction and complete failure [44].
It is a challenging task to detect sensor and actuator failures [41,42] because sensor outputs
contain information from a multitude of sources: normal system outputs, faulty sensor sig-
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nals, and signals due to noise and external disturbances. Isolating different signals requires
the utilization of the input-output relationship of the system. Conventional approaches to
increasing the reliability of aircraft systems include installing redundant sensors, which will
add more weights, costs, complexity, and most importantly, additional reliability problems.

Given a linear multi-input multi-output (MIMO) system, the inputs, internal states,
and outputs can be described by

xk+1 = Axk + Buk + BMu∆uk +ωk
yk = Cxk + Duk + DMu∆uk + My∆yk + εk

(1)

where uk, yk, and xk, are system inputs, outputs, and internal states, respectively. ∆uk, ∆yk
denote actuator and sensor faults. We would like to detect if the magnitude of ∆uk or ∆yk
is non-zero. If the answer is positive, we have to estimate the magnitude and identify the
failure direction matrix Mu or My. Finally, the magnitudes of failed sensors or actuators
will be reconstructed.

Sensor fault detection and diagnosis have been a research topic for decades, and
many articles have been published. Interested readers are referred to the survey paper
by Frank [45]. While fault detection is relatively easy, isolation of multiple faults is still a
challenge to many existing schemes. Recent advances in fault diagnosis use kernel partial
least square [46] and nonlinear techniques [47].

5. Sensor Magnitude Reconstruction

After the identification of faulty sensors/actuators, one has to estimate the fault
magnitudes. Detailed procedures can be found in [48]. With estimated fault magnitudes,
one can correct measurements of the faulty sensors. The measurements in faulty sensors are
affected both by the actuator fault ∆uk and sensor faults ∆yk. In order to get the corrected
measurements in faulty sensors, one can design a Kalman filter,

x̂k+1 = Ax̂k + Buk + K(yk − My∆ŷk − DMu∆ûk − Cx̂k − Duk)
ŷk = Cx̂k + Duk

(2)

where ŷk is the corrected measurement of faulty sensors. A, B, C, D are the system
matrices in the state-space model. K is the Kalman gain, Mu and My are the fault direction
matrices [48].

Nowadays, UAV formation (swarm) control practice uses the Real-time Kinematic
Global Navigation Satellite System-Inertial Navigation System (RTK-GNSS-INS) [49] for
routing and navigation. Moreover, inter-UAV sensors such as Automatic Dependent
Surveillance-Broadcast (ADS-B) [50], which provides altitude, aircraft flight ID, and vertical
airspeed, have been used in advanced systems. ADS-B reduces the risk of runway collisions,
even at night or during heavy rainfall. ADS-B applications being developed now will give
pilots indications or alerts of potential collisions. Such systems may be used to dissolve the
problem related to faulty sensors.

Here we describe some results of detecting GNSS sensor failure and how to use
reconstructed sensor information to control the formation of UAVs. We will illustrate the
effectiveness of a fault-tolerant formation control algorithm [30] using the rotary UAV
developed by UC Berkeley. Two types of formations are considered: mesh and triangle.
For each formation, we performed two types of flight: straight flight and 90-degree turning
flight. In each case, we assume a fault occurs to the fifth UAV at 10 s. A GNSS/INS
(Inertial Navigation System) combination is usually used in UAV navigation systems. In
the presence of GNSS failure, the position information provided by the INS will diverge due
to error accumulation. Motivated by this observation, the fault model under consideration
simulates slowly divergent position measurements. A fault isolation scheme was designed
to capture this GNSS failure. Then an observer was designed and used to estimate the
positions of the UAV. Figure 6 shows the results, which clearly demonstrated that the
reconstruction can still maintain the UAV formation.
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6. Robust and Fault-Tolerant Control

As shown in Figure 7, there can be quite a few actuators for controlling the aircraft.
For example, the rudder controls the yaw channel, elevators control the pitch channel, and
flaps control the roll channel. From Table 1, we can see that some actuators can be used as
secondary actuators for some channels. This shows that different combinations of actuators
can serve as backup actuators for different roll, pitch, and yaw channels. In general, fault
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tolerant control refers to the selection of substitute actuators when primary actuators fail
to function.
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Table 1. Primary, secondary and tertiary actuators for the roll, pitch, and yaw channels.

Primary Actuator Secondary Actuator Tertiary Actuator

Roll Channel Aileron
Rudder &
Asymmetric Engine
Thrust

N/A

Pitch Channel Tailplane Symmetric Aileron Symmetric Engine
Thrust

Yaw Channel Rudder Asymmetric Engine

A robust controller [19–23] can deal with parametric uncertainties to some extent.
However, when some faults such as sensor and actuator faults occur, robust controllers are
not strong enough to handle such situations. A fault-tolerant controller [24–31] is extremely
useful for guaranteeing closed-loop control performance.

Figure 8 shows a schematic diagram of how fault-tolerant control works. First, a fault
diagnosis system that performs on-line fault detection and isolation. Second, a controller
suite consists of a primary nominal control system used under normal operating conditions
(without faults) and a secondary adaptive fault-tolerant control system engaged only after
fault detection. Third, a reconfiguration supervisor makes decisions regarding control
system reconfiguration and control reallocation using the fault information provided by
the diagnostic module.

Here, we briefly summarize one application of our neural net (NN) controller. Our
controller suite includes the nominal controller and the NN-based adaptive fault-tolerant
controller. The nominal controller is used when the system is in a fault-free condition.
The NN adaptive controller is activated after a fault is detected to compensate for the
effect of the fault and to maintain acceptable control performance even in the presence
of a fault. The fault-tolerant controller performance was demonstrated by using a well-
known RCAM (Research Civil Aircraft Model) developed by the Group for Aeronautical
Research and technology in Europe (GARTEUR). The design of the nominal controller
is based on standard approximate dynamic inversion. Figure 9 illustrates the proposed
nonlinear adaptive control architecture: the aircraft (f ), the command filter to provide
desired handling qualities, approximate dynamic inverse ( f̂−1), a conventional linear
tracking controller as described above, and an online learning neural network to correct for
errors and uncertainty in association with the inversion model.
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Figure 9. Neural Network Augmented Model Inversion Control Architecture.

One of the key advantages of the proposed fault-tolerant control scheme is its capabil-
ity to handle any occurrences of new or unanticipated faults. The neural network-based
adaptive controller activated after fault detection is still capable of compensating for the
effect of the fault on-line and to maintain acceptable control performance before further
pilot intervention.

Figures 10 and 11 give the control performances of the nominal controller and nonlin-
ear adaptive controller engaged after a fault detection, respectively. We can clearly see the
benefit of controller reconfiguration using on-line diagnostic information.
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In recent years, there has been some new progress in fault-tolerant control. In [51], a hy-
brid fault-tolerant controller was proposed to handle control surface damages. Compared
to the nonlinear control approach in [18], the controller in [51] was based on linearized
models. In [52], a nonlinear sliding mode controller was proposed to deal with actuator
failure in quadrotor UAVs. The inner loop was the attitude control and the outer loop
was the position control. Sliding mode control was applied to both inner and outer loops.
The control is challenging because if one or two control actuators fail, the system is under-
actuated. A special form of sliding mode control was proposed based on back-stepping.
In [53], an observed-based fault-tolerant controller was proposed for carrier-based UAVs.
Some states in the UAVs are assumed to be unmeasurable and hence the control problem is
challenging. The controller was nonlinear and closed-loop stability was given.

7. Contingency Planning

This is the last defense for fault mitigation in UAVs. The UAV has lost its engine
and it is on its way to crash. Emergency landing via the parachute systems is part of the
contingency planning for some small-to-medium sized UAVs [54]. However, for big and
heavy drones like Global Hawk (12 tons) [55], parachute is not feasible. Can we still do
something to minimize the damage? In other words, for fixed wing UAVs, the hanging
time of some UAVs such as Global Hawk can still be 30 min or more due to its high flying
altitude and large wing span. Moreover, if one plans ahead, the UAVs can still glide to some
safe landing places such as airports, non-populated places such as beaches, waterways,
grassy areas, etc. A well-known example is the US Airways Flight 1549, which avoided a
crash landing by gliding onto the Hudson River.

In our recent papers [56–60], we have provided detailed procedures for contingency
planning for engine failures.

Figure 12 shows the workflow of contingency plan generation. It is an off-line process.
Given a UAV and its associated flying capabilities (wingspan, gliding speed, descending
rate, etc.) and also the theater of operations, we need the following two major steps:
preprocessing and contingency plan generation. We will summarize those two steps in the
next two sub-sections.

7.1. Preprocessing

There are multiple modules in the preprocessing step. First, landing place selection is
needed. Based on the UAV’s size and gliding speed, an appropriate landing site needs to
have enough length. Potential landing sites include airport runways, beaches, waterways,
etc. In [58], we developed a landing site selection algorithms based on Google maps.
Figure 13 shows a landing site.
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Figure 13. Landing site candidate-1 (green dotted line passes through the center of the landing site
along its length).

Second, for each landing site, we need to assign some waypoints such as Touch-
down point (TDPT), Initial Approach Fix (IAF), and Final Approach Fix (FAF). Detailed
procedures are provided in [56].
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7.2. Contingency Plan Generation

Given a primary flight plan containing hundreds or even thousands of waypoints, we
need to generate a contingency plan for each waypoint. An example of a contingency plan
is shown in Figure 14.
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Figure 14. Contingency plan example.

Suppose an engine failure occurs near a waypoint in the primary flight path, we will
apply A* path planning algorithm [56] to generate a contingency path between the contingency
point (CP) and the IAF. Some no-fly zones need to be bypassed. From Figure 14, the red line
section shows the A* generated plan. In the contingency plan, when the UAV reaches the
IAF, there may still be excessive altitude to lose. We have developed time-constrained path
generation algorithm to lose excessive altitude [57]. Wind speed needs to be taken into
account. Some extremal paths can be seen in Figure 15. RSR means right-straight-right;
RSL means right-straight-left.
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There are also some additional processing steps to deal with different excessive
altitudes. Details can be found in [56].
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One limitation of our contingency planning approach is that if the wind conditions
deviate too much from the forecast conditions, which can happen in practice, then the
pre-planned contingency paths may need to change on the fly. More research is needed in
this direction.

7.3. Emergency Landing in Hudson River

Here, we demonstrate how we generate a contingency plan for US Airways Flight
1549, which lost both engines due to a bird strike. The plane was on route from New
York City’s LaGuardia Airport to Seattle, Washington and ditched into Hudson River on
15 January, 2009. In the climb phase right after its takeoff, it struck a flock of Canada geese
and lost its engine power. The pilots Mr. Sullenberger and Mr. Skiles glided the plane to
a ditching in the Hudson River. At the time of the bird strike, Flight 1549’s airspeed was
about 200 knots. The highest altitude right before the plane started sinking was 3034 feet
(925 m). At this altitude, the plane was located at coordinates: Latitude: 40.861666 degrees,
Longitude: −73.879722 degrees. Time was 3:27:29 p.m. The wind amplitude was around
13.4 knots. The wind direction was 320 degrees. Assuming the coordinates at the highest
altitude corresponds to the coordinates of CP, we found the heading angle at CP using
the waypoint coordinates at the highest altitude, the waypoint right before that, and the
wind information.

We applied our contingency plan generation tool to this incident. Figures 16 and 17
show the top view and 3D view of the generated plan.

In the movie “Sully”, various flight simulator runs also showed that it was possible to
return to LaGuardia and Teterboro airports. Why did the pilots choose to land on Hudson
river? The reason is that the pilots need to follow some procedures to make sure both
engines were lost. During this period of checking, the plane has lost quite some altitude.
Consequently, there was not enough altitude to glide it back to the airports. Based on his
experience, the pilot, Sullenberger, made some rough calculations and decided to land on
Hudson Bay; the decision saved over 150 people onboard.
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8. Conclusions

UAVs are gaining popularity. However, the safety of UAVs is not on par with manned
aircraft. In this paper, we present safety enhancements of UAVs using signal processing
algorithms, which can help condition-based maintenance, structural health monitoring,
sensor and actuator fault diagnostics, fault magnitude reconstruction, fault-tolerant control,
and contingency plan generation. Some recent advances in the aforementioned areas are
also highlighted.

It is important to emphasize that UAV safety requires an integrated approach that
contains all of the above. More research and development effort is needed to produce
an integrated safety system for UAVs. For instance, the contingency plans are generated
off-line, and if wind conditions deviate a lot from the forecast data during actual flights, our
current system may not be able to handle that scenario. One potential future direction in
contingency planning is to deal with highly dynamic windy conditions. Another direction is
to devise some online contingency planning strategies to complement the off-line generated
contingency plans.
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