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Abstract: Wildfires represent a significant natural risk causing economic losses, human death and
environmental damage. In recent years, the world has seen an increase in fire intensity and frequency.
Research has been conducted towards the development of dedicated solutions for wildland fire
assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These
systems have shown improvements in the area of efficient data collection and fire characterization
within small-scale environments. However, wildland fires cover large areas making some of the
proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, unmanned
aerial vehicles (UAV) and unmanned aerial systems (UAS) were proposed. UAVs have proven to be
useful due to their maneuverability, allowing for the implementation of remote sensing, allocation
strategies and task planning. They can provide a low-cost alternative for the prevention, detection
and real-time support of firefighting. In this paper, previous works related to the use of UAV in
wildland fires are reviewed. Onboard sensor instruments, fire perception algorithms and coordination
strategies are considered. In addition, some of the recent frameworks proposing the use of both aerial
vehicles and unmanned ground vehicles (UGV) for a more efficient wildland firefighting strategy at
a larger scale are presented.

Keywords: unmanned aerial systems; UAV; autonomous systems; wildland fire; forest fires; fire detection

1. Introduction

Wildland fires are an important threat in rural and protected areas. Their control
and mitigation are difficult as they can quickly spread to their surroundings, potentially
burning large land areas and getting close to urban areas and cities. The occurrence of
wildland fires results into substantial costs to the economy, ecosystems and climate [1].
Nevertheless, their frequency is on the rise. In fact, there has been an increase in the
intensity and frequency of wildland fires in comparison to the past 10,000 years [2]. In
the western U.S. alone, wildland fires increased by 400% in the last decades [3,4]. In 2018,
8.8 million acres (35,612.34 km2) were burned by more than 58,083 wildland fires in the
U.S. [5]. In Northern California, a single fire, known as “Camp Fire”, ended up killing
85 people. This fire was the most destructive in California history burning 153,336 acres
(620.53 km2) and destroying 18,733 structures. Losses were estimated to $16.5 billion [3].
Experts estimate that wildland fires will increase in the coming years mainly as a result of
climate change [6].

With wildland fires being a multifaceted issue, many different elements are relevant
to the efforts to reduce their impact. Aspects such as meteorology, drought monitoring,
vegetation status monitoring can help the prevention and the preparation to wildland
fires. Other aspects such as fire suppression actions and post-fire recovery strategies must
also be taken into account after the appearance of fire. Many of these aspects have been
studied with unmanned aerial vehicles (UAVs). However, in the literature, two elements
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seem more prominent in relation to UAVs. First, the time span between the start of a fire
and the arrival of firefighters. This response time needs to be reduced to a minimum in
order to decrease the chances of the fire spreading to unmanageable levels. The second key
element is the evaluation of the extent of the event and the monitoring of the emergency
response. As manual wildland fire assessment is rendered difficult by several factors (e.g.,
limited visibility), the consideration of this aspect is necessary in order to elaborate better
fighting strategies. These two key elements can only be properly addressed through the
development of reliable and efficient systems for early stage fire detection and monitoring.
As a result of this need, interest has grown in the research community and led to a large
number of publications on the subject.

Remote sensing has been widely researched in the field as it allows the observation of
wildland fire events without unnecessarily exposing humans to dangerous activities. For
instance, satellite images have been used to report the fire risks [7] and the detection of
active fires [8,9]. Wireless sensor networks (WSNs) have also been proposed for wildland
fire detection [10], monitoring [11] and risk assessment [12]. However, both types of systems
have practical limitations. Satellite imagery has limited resolution. Therefore, the data
relevant to an area are often averaged and constrained to a single-pixel making it difficult to
detect small fires [13]. Furthermore, satellites have limited ground coverage and necessitate
a significant amount of time before being able to resurvey the same region. Limited precision
and the lack of real-time data reporting are therefore rendering satellite imagery unsuitable
for continuous monitoring. As for WSNs, they operate as an infrastructure that needs
to be deployed beforehand. As the sensors are installed in the forest, their coverage and
resolution are proportional to the investment that is made in their acquisition and deployment.
Moreover, in the event of a fire, the sensors are destroyed, leading to additional replacement
costs. Maintenance difficulties, the lack of power independence and the fact that they are
not scalable due to their static nature are all factors known to limit their coverage and
effectiveness [14]. As a result of the previous systems’ shortcomings, unmanned aerial
vehicles (UAVs) have been proposed as a more convenient technology for this task. Their
maneuverability, autonomy, easy deployment and relatively low cost are all attributes that
made UAV the technology of choice for future wildland fire management efforts.

UAV technologies have seen an important progression in the last decade and they
are now used in a wide range of applications. UAV has become smaller, more affordable
and now have better computation capabilities than in the past making them reliable tools
for remote sensing missions in hostile environments [15]. Furthermore, UAVs can fly
or hover over specific zones to retrieve relevant data in real time with cameras or other
airborne sensors. As a result, research has shown their benefits for surveillance and
monitoring of wildland fire as well as tasks related to post-fire damage evaluation [16–20].
Additionally, UAVs have exhibited a positive economic balance in favor of their use in
wildland fire emergencies [21,22]. This makes UAVs both a practical and an economical
solution. Therefore, research efforts have been oriented towards the development of
frameworks and techniques using UAVs with the goal of delivering optimal fire detection,
coverage and firefighting.

The subject of this paper is a summarization of the literature pertaining to use of UAVs
in the context of wildland fires. Research in this area revolve more predominantly around
fire detection and monitoring, therefore the core of this review will be concentrated on
technologies and approaches aimed at tackling these challenges. However, this paper also
touches on other subjects when relevant such as fire prognosis and firefighting but less ex-
tensively as fewer works are available on the subject in the literature. The only other related
works believed to exist are the work of Yuan et al. [19] and Bailon-Ruiz and Lacroix [23].
Yuan et al. [19] touch on subjects such as UAV wildland fire monitoring, detection, fighting,
diagnosis and prognosis, image vibration elimination and cooperative control of UAVs.
While the subject of this work overlaps with ours, it was performed 5 years ago and since
then a lot of research has been produced on the subject. In fact, most of the papers reviewed
have been published in 2015 or after and are not present in Yuan et al. [19]. Therefore,
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this work is much more current than Yuan et al. [19]. Bailon-Ruiz and Lacroix [23] have
been published in 2020, and are therefore much more current. The authors discuss two
components of the field of UAV wildfire remote sensing: system architecture (single UAV
or multiple UAV) and autonomy level. The reviewed works are characterized by similar
attributes (mission types, decision level, collaboration level, fielded) and include unique
attributes such as information processing and airframe, while this paper also analyzes
unique attributes such as sensing mode and coordination. Attributes such as information
processing and airframe indicate that Bailon-Ruiz and Lacroix [23] put more focus on the
type of UAV and the software that runs on it while this paper is focusing on sensing and
communication. The most notable difference between both works is the depth of analysis
of the reviewed works and the extent of the reviewed literature. While Bailon-Ruiz and
Lacroix [23] discusses system architecture and autonomy level only, this paper discusses
these topics as well as sensing instruments, fire detection and segmentation, available
fire datasets, fire geolocation and modeling and UAV-unmanned ground vehicles (UGV)
systems for wildfires. This paper also reviews more recent works (16 vs. 10 published in
2015 or after), more works in total (27 vs. 19), and this paper’s reference count is more than
three times higher (121 vs. 35) indicating a more in-depth discussion of concepts related to
the reviewed works which in turn requires more referencing. Following these observations,
it is believed that this paper is a significant contribution and is very relevant to the field.

The final goal of this review is to provide insight into the field towards the devel-
opment of cooperative autonomous systems for wildland fires. Observations made after
evolving for many years in the field indicate that the research community has provided
many pieces of the solution to the problems that are wildland fires. However, these pieces,
especially recent ones, often fail to come together in a unified framework to form a multi-
faceted solution to the underlying issue. A lot more could be accomplished by combining
fire detection, monitoring, prognosis and firefighting under the same system. Therefore,
this paper reviews fire assistance components, sensing modalities, fire perception ap-
proaches, relevant datasets and UAV/UGV coordination and cooperation strategies. In
fact, this paper’s review approach is to break apart the reviewed works in these categories
instead of discussing all the aspects of a reviewed work in the same paragraph. The idea is
to bring existing approaches into light in such a way that it would be easier in the future to
combine them into more complete systems instead of seeing them as individual systems.
These subjects lead to the last section of this paper where cooperative autonomous systems
are discussed and where all previously discussed technologies come together under the
umbrella of a single framework.

2. Fire Assistance

Remote sensing with aerial systems presents multiple advantages in the context of
emergency assistance. Their high maneuverability allows them to dynamically survey a
region, follow a defined path or navigate autonomously. The wide range of sensors that
can be loaded onboard allows the capture of important data which can be used to monitor
the situation of interest and plan an emergency response. The ability to remotely control
UAVs helps reduce the risk for humans and remove them from life-threatening tasks. The
automation of maneuvers, planning and other mission-related tasks through a computer
interface improves distant surveillance and monitoring. Advances in these aspects have a
direct impact on the firefighting resource management.

UAV fire assistance systems in the literature can be characterized using four attributes:
sensing modalities and instruments, type of task performed, coordination strategies with
multiple UAVs or with the ground control station (GCS) and the approach to experimental
validation. Figure 1 is a visual representation of these characteristics and their implemen-
tation in the reviewed works. These components are designed to perform one or more
tasks related to fire emergencies. Within the reviewed works, the most prevalent tasks are
the fire detection and monitoring. Fire prognosis and firefighting are also present in some
works, but have received less interest from researchers. Fire detection and monitoring
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is based on recognition techniques, a field of research that has seen significant advances
in the last decades. Meanwhile, fire prognosis and fighting has practical limitations that
hinder research on the subject hence the imbalance in the research interest. Prognosis
requires complex mathematical models that must be fed with data that can be difficult
to acquire in real time and in unknown environments. Fire fighting, on the other hand,
requires expensive combat equipment that is even more expensive for large wildland fires.
Moreover, close proximity with fires can pose a significant risk for the vehicle integrity and
lead to its loss. However, some initial research has been done to design a UAV capable
of fighting fires [24–26] and more recently some drone manufacturers have steeped in to
tackle this problem as well [27]. It is clear that more work remains to be done for these
vehicles to be affordable and technically viable.

Fire assistance
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Figure 1. Characteristics of the reviewed works.

One key component of an airborne fire assistance system is the type of UAV used.
UAVs have different sizes, maneuverability and endurance capacities. These characteristics
in themselves have a strong influence on the overall architecture of the system. There
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is a wide selection of aerial systems ranging from large UAVs with long endurance and
high-processing capabilities to small UAVs with short flight times and limited process-
ing capabilities [28,29]. Large vehicles are expensive but have higher payload and can
carry more sensors and other instruments. On the other hand, smaller vehicles are more
affordable but with limited payload. The instruments onboard the vehicles vary between
the reviewed systems, but some are essential to navigation and localization and therefore
found in almost all UAVs. Global Navigation Satellite System (GNSS) and Inertial Navi-
gation System (INS) fall into this last category. Furthermore, almost all of the vehicles in
the reviewed works have at least one kind of imagery sensor used for different purposes
including fire perception. Temperature sensors are also present in some of the proposed
fire assistance systems, but as shown in Section 3, they are less common.

Sensor measurements are the inputs of fire perception algorithms that process the data
to detect the presence of the fire. The processing can be performed either onboard the UAV
or by a computer located at a GCS. Fire perception can also, in some cases, be performed by
a human operator inspecting the data from a GCS. It seems that a lot of efforts in research
are devoted to the automation of fire perception and the optimization of the processing
while at the same time preserving the accuracy of the overall system. Computer vision and
machine learning techniques are commonly used for this purpose.

The last component fire assistance systems is the coordination strategy, it provides the
framework for the deployment of the flight missions. Surveillance missions are usually
planned beforehand and aim to search wide areas, prioritizing areas with higher fire risks.
These missions can be accomplished by humans manually operating UAVs or autonomously.
The coordination strategy in itself becomes more critical during the monitoring of a fire
propagation as it is necessary to adapt the flight plan to the fire spread. This is even more
relevant if there are multiple UAVs collaborating to the mission during a fire emergency. For
this purpose, multiple coordination strategies were proposed in the literature.

For example, a UAV could hover near a fire spot and alert the rest of the fleet to
proceed with fire confirmation [30]. More complex planning is also possible, by requiring a
consensus on the task to be performed by each unit [31] or by flying in a specific formation
around the fire perimeter [32]. In both cases, a concrete description of the task and the
autonomous decision scheme must be defined for the system to be effective. Section 7 gives
more details about the coordination strategies using a single or multiple UAVs.

Tables 1–3 present an overview of the reviewed fire assistance systems. Table 1
contains the year of publication and the validation process used by the authors. Table 2
presents the sensing modalities used to perform fire perception and the tasks performed.
Note that some of the works do not specify sensing instruments and the authors assume
that the necessary instruments are available onboard the UAV. Table 3 contains the level
of autonomy, the organization of the system and the coordination strategy. Not that in
some works the system is only theorized and many assumptions are made and some
information might not be specified as it is not relevant to the central subject of the work.
This is especially the case with works validated in simulations that do not always define a
specific hardware platform.
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Table 1. Reviewed works’ characteristics.

Authors Year Validation

Casbeer et al. [32] 2006 Simulation
Martins et al. [33] 2007 Simulation
Merino et al. [30,34,35] 2007 Practical
Sujit et al. [36] 2007 Simulation
Alexis et al. [37] 2009 Simulation
Ambrosia et al. [17] 2011 Practical
Bradley and Taylor [38] 2011 Near practical
Hinkley and Zajkowski [18] 2011 Practical
Kumar et al. [39] 2011 Simulation
Martínez-de Dios et al. [40] 2011 Practical
Pastor et al. [41] 2011 None
Belbachir et al. [42] 2015 Simulation
Karma et al. [43] 2015 Practical
Merino et al. [44,45] 2015 Practical
Ghamry and Zhang [46,47] 2016 Simulation
Ghamry et al. [31] 2017 Simulation
Sun et al. [48] 2017 Near practical
Yuan et al. [49] 2017 Simulation
Yuan et al. [50–53] 2017 Near practical
Lin et al. [54] 2018 Simulation
Wardihani et al. [55] 2018 Practical
Zhao et al. [56] 2018 Simulation
Pham et al. [57,58] 2018 Simulation
Julian and Kochenderfer [59] 2019 Simulation
Aydin et al. [26] 2019 Near practical
Jiao et al. [60,61] 2020 Near practical
Seraj and Gombolay [62] 2020 Simulation

Table 2. Reviewed works’ sensors and performed tasks.

Authors Sensing Mode Tasks

Casbeer et al. [32] IR Monitoring
Martins et al. [33] NIR, Visual Detection
Merino et al. [30,34,35] IR, Visual Detection, Monitoring
Sujit et al. [36] Not specified Monitoring
Alexis et al. [37] Not specified Monitoring
Ambrosia et al. [17] Multispectral Detection, Diagnosis
Bradley and Taylor [38] IR Detection
Hinkley and Zajkowski [18] IR Monitoring
Kumar et al. [39] IR Monitoring, Fighting
Martínez-de Dios et al. [40] IR, Visual Monitoring, Diagnosis
Pastor et al. [41] IR, Visual Detection, Monitoring
Belbachir et al. [42] Temperature Detection
Karma et al. [43] Not specified Monitoring
Merino et al. [44,45] IR, Visual Detection, Monitoring
Ghamry and Zhang [46,47] Not specified Detection, Monitoring
Ghamry et al. [31] Not specified Fighting
Sun et al. [48] Visual Detection, Monitoring
Yuan et al. [49] IR Detection
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Table 2. Cont.

Authors Sensing Mode Tasks

Yuan et al. [50–53] Visual Detection
Lin et al. [54] Temperature Monitoring
Wardihani et al. [55] Temperature Detection
Zhao et al. [56] Visual Detection
Pham et al. [57,58] IR, Visual Monitoring
Julian and Kochenderfer [59] Not specified Monitoring
Aydin et al. [26] IR, Visual Fighting
Jiao et al. [60,61] Visual Detection
Seraj and Gombolay [62] Visual Monitoring

Table 3. Reviewed works’ system architecture.

Authors Autonomy Organization Coordination

Casbeer et al. [32] Autonomous Multiple UAV Decentralized
Martins et al. [33] Autonomous Single UAV None
Merino et al. [30,34,35] Autonomous Multiple UAV Centralized
Sujit et al. [36] Autonomous Multiple UAV Decentralized
Alexis et al. [37] Autonomous Multiple UAV Decentralized
Ambrosia et al. [17] Piloted Single UAV None
Bradley and Taylor [38] Piloted Single UAV None
Hinkley and Zajkowski [18] Piloted Single UAV None
Kumar et al. [39] Autonomous Multiple UAV Decentralized
Martínez-de Dios et al. [40] Piloted Single UAV None
Pastor et al. [41] Piloted Single UAV None
Belbachir et al. [42] Autonomous Multiple UAV Centralized
Karma et al. [43] Piloted Multiple UAV and UGV Centralized
Merino et al. [44,45] Autonomous Multiple UAV Centralized
Ghamry and Zhang [46,47] Autonomous Multiple UAV Centralized
Ghamry et al. [31] Autonomous Multiple UAV Decentralized
Sun et al. [48] Piloted Single UAV None
Yuan et al. [49] Not specified Single UAV None
Yuan et al. [50–53] Not specified Single UAV None
Lin et al. [54,63] Autonomous Multiple UAV Centralized
Wardihani et al. [55] Near autonomous Single UAV None
Zhao et al. [56] Piloted Single UAV None
Pham et al. [57,58] Autonomous Multiple UAV Decentralized
Julian and Kochenderfer [59] Autonomous Multiple UAV Decentralized
Aydin et al. [26] Autonomous Multiple UAV Centralized
Jiao et al. [60,61] Not specified Single UAV None
Seraj and Gombolay [62] Autonomous Multiple UAV Decentralized

3. Sensing Instruments

Sensors provide the necessary data for navigation and for firefighting monitoring and
assistance. In outdoor scenarios, GNSS and INS provide real-time UAV localization. They
are also used to georeference the captured images thus allowing geographical mapping of
fires. While these sensors are of interest to localize fires, the following section will instead
focus on sensors that are able to detect fires. Fires have specific signatures that can be
composed of different elements such as heat, flickering, motion, brightness, smoke and
bio-product [64]. These elements can be measured using suitable sensing instruments.
Cameras are the sensing instruments that offer the most versatility in their measurement.
Visual and infrared (IR) sensors onboard UAVs can be used to capture a rich amount of
information. In relation to cameras, Table 4 provides a list of the spectral bands used in
the literature reviewed in this section. The table is provided in hopes that it will help
researchers identify pertaining spectral bands for their application or identify areas of the
spectrum that needs more attention for future works.
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Table 4. Visual and IR electromagnetic spectrum.

Spectral Band Wavelength (µm)

Visible 0.4–0.75
Near Infrared (NIR) 0.75–1.4

Short Wave IR (SWIR) 1.4–3
Mid Wave IR (MWIR) 3–8
Long Wave IR (LWIR) 8–15

3.1. Infrared Spectrum

At room temperature, the radiation peak of matter is located within the thermal
infrared band which ranges from 0.7 µm to 1000 µm. Specialized sensors are available and
can capture images in different sub-bands of the IR spectrum. Wildfire temperatures can be
as high as 1000 ◦C (1800 ◦F), leading to a peak radiation in the mid-wave infrared (MWIR)
sub-band [64,65]. Therefore, a sensor operating in the MWIR spectral band is best suited
for fire perception. However, until recently, the form factor of MWIR sensors and their cost
limited their use for low-cost small and medium UAVs [66]. To overcome these restrictions
in smaller aerial vehicles, recent fire detection systems are still using NIR, SWIR or LWIR
sensors. The use of these sub-bands is possible due to the fact that the higher temperature
of fires also shifts the distribution of the object radiation in shorter wavelengths. Therefore,
it is not necessary to use MWIR sensors directly as the effect of the peak can be observed in
these other bands as well. However, a disadvantage of using NIR and SWIR is that objects
under sunlight are often reflecting radiation in these sub-bands creating false positives. In
such conditions, fire hot spots still remain detectable but their contrast is reduced during
day time flights [64].

Characteristics put aside, IR sensors remain the most commonly used sensors in fire
assistance systems due to their ability to detect heat. Bradley and Taylor [38], Casbeer et al. [32],
Hinkley and Zajkowski [18], Kumar et al. [39] and Yuan et al. [49] are among the authors who
have proposed methods based solely on the IR spectrum (see Table 2).

3.2. Visible Spectrum

Visible spectrum cameras are widely available and commonly used in various appli-
cations. They come in a wide variety of resolutions, form factors and cost. Their versatility
offers a valuable alternative in wildland fire research from both technical and commercial
perspectives. Moreover, the ever continuing reduction in visible cameras size and weight
makes them perfect candidates for UAVs.

Data provided by these sensors are images in grayscale or RGB format. This allows
the development of computer vision techniques using color, shape, temporal changes
and motion in images or a sequence of images. Some of the vision-based techniques are
presented in Section 4. Although, they are versatile and widely available, visible light
sensors must be carefully selected for night-time operations as some sensors perform poorly
in low light conditions. Despite some of their limitations, they equip almost all UAVs and
make them good candidates for wildland fires study.

Yuan et al. [50–53], Sun et al. [48] and Zhao et al. [56] are among the authors that
propose systems that rely only on the use of visible spectrum cameras (see Table 2).

3.3. Multispectral Cameras

Using each spectral band alone comes with its limitations. To tackle these limitations
some authors propose the use of multiple cameras and combine multiple spectra. This
allows the use of data fusion techniques to increase the accuracy of fire detection in
complex situations and under different lighting conditions. Esposito et al. [67] developed a
multispectral camera operating in the LWIR, NIR and visible spectrum mounted on a UAV.
In a NASA Dryden’s project, Ikhana UAS [17,68], a Predator B unmanned aircraft system
adapted for civilian missions, was built to carry a multispectral sensor that operates in
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16 different bands from visible to LWIR spectrum. Despite their interesting characteristics,
in both cases, the weight of these combined sensors limited their implementation to large
airborne platforms only. To address this problem, other alternatives combine smaller
sensors such as visible spectrum sensors and IR sensors. Martínez-de Dios et al. [30] used
this approach to capture and project the IR data onto visible images. This generated a
superposition of the data leading to pixels being represented with four intensity values
red, green, blue and IR. The authors report improvements in fire detection with mixed
segmentation techniques that make use of the four-channel values.

3.4. Other Sensors

Various sensors other than cameras have also been proposed to detect and confirm
the presence of fires. Some authors proposed the use of chemical sensors which can detect
concentrations of hazardous compounds [43]. Spectrometry measures is another approach
that can be used to detect the characteristics of burned vegetation and confirm a fire [64].
Again, in both cases, the size of the sensors seems to limit their use.

Temperature sensors have also been used by Belbachir et al. [42,55] to generate heat
maps and detect/locate fires. Lin et al. [54,63] also theorized the use of temperature
sensors to estimate a fire contour and rate of spread in the context of fire modeling. Most
of the authors are using temperature sensors in the context of a simulation and therefore
assume their availability without referring to real hardware. However, Wardihani et al. [55]
performed a real-world validation of their proposed solution and successfully demonstrated the
use of a 2× 2 pixel resolution non-contact infrared sensor with a field of view of five degrees to
measure temperatures. While interesting, these sensors are limited in comparison to IR cameras
that can provide richer data. This reflects on the reviewed works and the reported results are
more limited than with IR cameras.

4. Fire Detection and Segmentation

Research has shown the effectiveness of UAVs as a remote sensing tool in firefighting
scenarios [17,18,43]. They are very useful even in simple tasks such as observing the fire
from a static position and streaming the video sequence to human operators. This simple
use case already allows firefighters to have an aerial view of the spreading fire and plan
containment measures. However, single man-controlled UAVs, even if they are useful
for small emergencies, do not scale up in large scenarios. Therefore, the automation of
the detection and the monitoring of fires can help deliver an optimal coverage of the fire
area with the help of multiple UAVs and with less human intervention. Furthermore,
the gathered data can later be processed to analyze the fire, estimate its Rate of Spread
(ROS) [69], volume [40] or perform post fire damage evaluation [17].

To perform fire-related tasks autonomously, systems must address different subtasks
such as fire geolocation, fire modeling and even path planning and coordination between
UAVs. For that purpose, sensor data are often initially processed to detect fire and extract
fire-related measures. The derived information is then passed on to the different subsys-
tems. For fire detection, authors are usually able to directly extract fire-like pixels based
on color cues or IR intensities and do not require further analysis. However, monitoring
tasks usually require further analysis to estimate the fire perimeter or burned areas. In that
context, computed measures (e.g., segmentation) are provided as input to fire models to
estimate the fire propagation over time.

This section reviews some fire detection and segmentation techniques found in the literature.

4.1. Fire Segmentation

Fire segmentation is the process of extracting pixels corresponding to fire in an image.
The criteria by which a pixel is selected vary from one method to another. The selection
criteria are also the main factor affecting the accuracy of the detection. In general, fire seg-
mentation uses the pixel values of a visual spectrum image (e.g., color space segmentation)
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or the intensities of an IR image. Motion segmentation can also be used to extract the fire
using its movement over a sequence of images.

4.1.1. Color Segmentation

Images are built of pixel units that can have different encoding (e.g., grayscale, color).
In color images, pixels are composed of three values in the red, green and blue channels
(RGB). Other color spaces are also possible such as YCbCr, HSI, CIELAB, YUV, etc. [70]. In
IR images the pixels have one channel value representing temperature (MWIR and LWIR)
or reflectance (NIR, SWIR).

In the COMETS project [30,34,35], the authors employed a lookup table with fire-like
colors (RGB values) that were extracted from a learned fire color histogram. The image
pixels were compared to the table and the values that were not found were considered
as non-fire. A non-calibrated LWIR camera is used to capture qualitative images with
radiation values relative to the overall temperature of the objects in the scene. The heat
peak observed in the resulting image depends on the current scenario. A training process
was carried out to learn the thresholds to be applied to the IR images for binarization.
Images with and without fires were considered as well as different lighting conditions and
backgrounds. This permitted the selection of the appropriate threshold to apply during
deployment in known conditions. Ambrosia et al. [17] selected fixed thresholds for each
IR spectral band. They also varied the bands used for day-and-night missions. During
night-time, the MWIR and LWIR bands were used and during the day, the NIR band was
added. The results show that fixed threshold adapts poorly to unexpected conditions but
can be tuned to perform better in known environments.

Yuan et al. [49–53] used color space segmentation. The images are converted from RGB
to the CIELAB color space before further processing. Sun et al. [48] proposed the use of YCbCr
color space. In both cases, a set of rules were developed based on empirical calculations
performed on captured fire images. For example, Sun et al. [48] considered pixels as fires if
their values followed the following rules: Y > Cb, Cr > Cb, Y > Ymean, Cb < Cbmean and
Cr > Crmean. The mean sub-index indicates the channel mean value of the corresponding
image. Otsu thresholding technique [71] was used in [49] to segment IR images.

Color value rule-based segmentation approaches are computationally efficient, but
lack robustness during detection. Results show that objects with a color similar to fire are
often mislabeled as fire and trigger false alarms. A combination of rules in different color
spaces and the addition of IR can increase the detection accuracy. More complex algorithms
that are time and space aware have also been shown to increase the accuracy of the fire
detection [72–82]. The majority of them have not been integrated with UAVs.

In recent years, deep learning algorithms have shown impressive results in different
areas. Relating to UAVs, past work using deep convolutional neural networks (CNN) dealt
mainly with fire detection [56,83,84]. Deep fire segmentation techniques proposed recently
have shown the potential of developing an efficient wildland fire segmentation system [85].
The used dataset in this last work included some aerial wildland fire images [86]. Deep
segmentation of wildland fires is still lacking in UAV applications.

4.1.2. Motion Segmentation

Fire segmentation using static images help reduce the search space, but often objects
with a similar color to fire can be detected and lead to false positives. Yuan et al. [49–53] and
Sun et al. [48] proposed the use of Lukas-Kanade optical flow algorithm [87] to consider
fire movements. With the detection of corresponding feature points in consecutive image
frames, a relative motion vector can be computed. The mean motion vector matches the
UAV’s motion except for moving objects in the ground. Fire flames are among those objects
because of their random motion. By detecting feature points within regions with both
random movements and fire-like colors, the fire can be confirmed and the false alarm
rate reduced.
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4.2. Fire Detection and Features Extraction

The data fed to a detection system are analyzed in order to find patterns that confirm
the occurrence of an event. Patterns are recognized by computing different features which
can be strong or weak signatures for a specific application. In the case of fire detection with
UAVs, the most popular features are color, brightness and motion. Research focusing on fire
detection considers the fusion of more features to obtain better results in the classification
stage. These features can be categorized by the level of abstraction at which they are
extracted: pixel, spatial and temporal.

Color cues are widely used in the first step to extract fire-like pixels. This reduces
the search space for further processing with more computationally expensive detection
algorithms. For example, the RGB mean values of a Region of Interest (RoI) and the
absolute color differences (|R− B|, |R− G|, |B− G|) can be thresholded [88] or used to
train a classification algorithm [89]. In the work of Duong and Tinh [90], the authors further
added the intensity mean, the variance and the entropy values of the ROI to the feature
vector. Other features used in the literature include color histograms of ROI [75] and color
spatial dispersion measures [73].

After the detection of the ROI, other features can be extracted. Some authors consider
spatial characteristics to determine the fire perimeter complexity by relating the convex
hull to the perimeter ratio and the bounding rectangle to perimeter ratio [91]. The distance
between the blob centroid position within the bounding box has also been considered in
this work.

Texture is another spatial characteristic often used for fire detection. The main texture
descriptors proposed for this task are Local Binary Patterns (LBP) [92–95] and Speeded
Up Robust Features (SURF) [75,78]. These operators characterize local spatial changes in
intensity or color in an image and return a feature vector that can be used as input for
classification. SURF [96] is computationally expensive but allows for scale and rotation
invariant matching. LBP [97] needs less processing power and extracts the mean relation
between pixels in a small area using the 8 neighbors of a pixel. Some authors [98,99]
also used the Harris corner detector [100], which is a computationally efficient feature
point extractor.

Deep learning is another approach that has been used for fire detecting. It allows
the automatic learning of low- and high-level features instead of hand crafting them as
it was the case with the previous approaches described. Zhao et al. [56] developed such
an approach in the form of a 15-layer CNN called Fire_Net. The proposed architecture is
inspired by AlexNet [101] and is made of a succession of convolutions, ReLUs and max
poolings that end with a fully connected layer followed by a softmax layer. The approach
is able to classify image patches as fire or not fire with a 98% accuracy outperforming
many other similar deep learning or learning-based approaches tested by the authors on
the same data. Jiao et al. [60,61] also proposed a deep learning approach but based on the
YOLOv3 architecture [102]. The solution is an object detection approach able to provide
bounding boxes around objects of interest. In this case, the network is trained on 3 classes:
smoke, fire and combination of smoke and fire. Initially, the authors used a YOLOv3-tiny
architecture and on-board computations. The system was able to reach a precision of 83%
and a frame rate of 3 to 6 fps [60]. In a more recent contribution [61], the same authors were
able to reach a detection precision of 91% and a frame rate of over 80 fps by performing the
computation on a GPU located in the GSC instead.

The features reviewed above are extracted from single images. When a video se-
quence is available, the temporal variation in color, shape and position of some blobs
can be extracted. In the work of Ko et al. [103], the fire blob shape variation is computed
by a skewness measure of the distance from the perimeter points to the blob’s centroid.
Foggia et al. [104] measured shape changes by computing the perimeter to area ratio vari-
ation over multiple frames. The authors also detected the blob movements by matching
them in contiguous frames and to compute the centroid displacement. Fire tends to move
slowly upwards, thus blobs that do not comply with this rule can be discarded [72,103,105].
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The centroid displacement can also be an input for further classification [72,91,106]. A
similarity evaluation is employed by Zhou et al. [91]. They measure the rate of change of
overlapping areas of blobs in contiguous frames. This gives a practical representation of
the speed at which the region of interest is moving and if it is growing or decreasing in
size. Fire flickering can also be identified by considering specific measures such as intensity
variation [107], the number of high-pass zero crossing in the wavelet transform [108] or
the number of changes from fire to non-fire pixels inside a region [109]. Wang et al. [110]
implemented a long-term movement gradient histogram, which accumulates the motion
changes. The histogram is fitted to a curve which is used to evaluate if the area corresponds
to a fire or not. Kim and Kim [111] proposed a Brownian motion estimator that measures
the correlation of two random vectors [112]. The vectors are composed of channel values,
the first intensity derivative and the second intensity derivative. Therefore, the Brownian
motion estimator describes the dynamic dependence between a series of regions across
multiple frames. Temporal features consider a time window for the fire evaluation. Then,
some empirical criteria are established to determine the optimal thresholds and duration
of the events in order to trigger a fire alarm.

Among the features described so far, there are some features that are more oriented
towards fire detection. Features such as color, blob centroid displacement and flickering
are some of the most popular. Some novel approaches such as the Brownian correlation
or the histogram of gradients have been less explored but are nevertheless interesting. A
comparison of these different features and an evaluation of which one has a greater impact
on the fire detection accuracy and false positive rate would be very useful. Unfortunately,
such a comprehensive comparison does not seem to have been published yet. However,
as most of these features are not computationally expensive, ensembling the features can
improve the performance and reduce the false detection rate. Table 5 gives an overview of
the features used depending on the input.

Table 5. Image input and extracted features.

Input Statistical Measures Spatial Features Temporal Features

Color, IR and radiance images
Mean value, mean difference,
color histogram, variance and
entropy.

LBP, SURF, shape, convex hull
to the perimeter rate,
bounding box to the perimeter
rate.

Shape and intensity variations,
centroid displacement, ROI
overlapping, fire to non-fire
transitions, movement
gradient histograms and
Brownian correlation.

Wavelet transform Mean energy content. Mean blob energy content.

Diagonal filter difference.
High-pass filter zero crossing
of wavelet transform on area
variation.

4.3. Considerations in UAV Applications

Additional features can improve the fire detection. Features that are obtained by
temporal analysis evaluate the difference between contiguous frames. In simple scenar-
ios, where the camera is static and the background is not complex, frame subtractions
can help detect moving pixels. In the presence of complex and dynamic backgrounds,
Gaussian mixture models and other sophisticated background modeling techniques can
be considered.

However, the video streams from UAVs have fast motions and no classical background
subtraction method would give satisfying results because of the assumption of a static
camera. Even in a situation where the UAV is hovering over a fixed position, the images
are still affected by wind turbulence and vibrations. Therefore, in order to be able to apply
these motion analysis techniques, it is necessary to consider image alignment and video
stabilization. The usual approach is to find strong feature points that can be tracked over
a sequence of frames. Merino et al. [44], in their fire assistance system, used a motion
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estimation approach based on feature points matching known as sparse motion field. From
the matched points, they estimate a homography matrix that maps the pixels in an image
with the pixels in the previous frame. This allows mapping every image to a common
coordinated frame for alignment. SURF [96] and ORB [113] are two feature point methods
that were used for extracting salient features prior to the image alignment. It seems that
the impacts and the benefits of the image alignment have not yet been addressed in the
literature relating to fire and smoke detection but some researchers such as [44] consider it
important for their fire assistance system to work properly.

5. Wildland Fire Datasets

A large number of fire detection approaches use a classification method that relies on
learning algorithms. The main challenges of machine learning is to build or to find a large
enough dataset with low bias. Such a dataset should contain positive examples with high
feature variance and negative examples consisting of standard and challenging samples.

Deep learning techniques need even larger datasets for training. Data augmentation
techniques can help in this regard but it requires a sufficiently large dataset to start. Well-
developed research fields such as face or object recognition have already large datasets that
have been built and vetted by the community. These datasets are considered suitable for the
development and benchmarking of the new algorithms in their respective fields. In the case
of fire detection, no such widely employed dataset is available yet. Some effort has been
made toward this direction. Steffens et al. [114] captured a set of 24 videos from hand-held
cameras and robot mounted cameras. The ground-truth was defined by bounding boxes
around the fire. Foggia et al. [104] compiled a collection of 29 videos of fire and smoke but
did not provide ground-truth data. Chino et al. [93] gathered around 180 fire images to
test their BowFire algorithm and made the dataset available with manually segmented
binary images representing the ground-truth for the fire area. However, the main problem
with these datasets is the lack of wildland fire samples. This could be problematic for the
development of a fire detection module for wildland fire assistance systems. Aerial fire
samples in the form of videos are also necessary for the development of UA-based systems.

In [86], the authors collected images and videos to build the Corsican fire database.
This dataset is specifically built for wildland fires. It also contains multimodal images
(visual and NIR images) of fires. The images have their corresponding binary masks
representing the ground-truth (segmented fire area). Other information is also available
such as smoke presence, location of capture, type of vegetation, dominant color, fire texture
level, etc. The dataset contains some aerial wildland fire views, but their number is limited.

The wildland fire UAV research is still lacking a dataset that can help improve the
development of the algorithms needed in a wildland fire assistance system. Table 6 contains
a brief description of the main fire research datasets.

Table 6. Fire datasets.

Dataset Description Wildland Fires Aerial Footage Annotations

FURG [114] 14,397 fire frames in 24 videos from static
and moving cameras. No No Fire bounding

boxes
BowFire [93] 186 fire and non-fire images. No No Fire masks

Corsican Fire DB [86] 500 RGB and 100 multimodal images. All Few Fire masks

VisiFire [104] 14 fire videos, 15 smoke videos, 2 videos
containing fire-like objects. 17 videos 7 videos No

6. Fire Geolocation and Fire Modeling

In a wildland fire scenario, when a fire is detected, the vehicle must alert the GCS and
send the fire’s geolocation to deploy the firefighting resources. In the reviewed literature,
two different levels of approach are studied for detection alert. Some authors are using a
local approach where the position of the fire is reported at first contact. Other authors go
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further by taking a global approach to the problem by identifying and locating the entire
perimeter of the fire.

The simplest alerting approach is to directly provide the geographical coordinates of
the UAV using the onboard GPS when a fire is first detected. This can be performed with
good accuracy when the UAV is flying at low altitudes and has its data acquisition sensor
pointing to the ground with a 90-degree angle. This approach is employed by Wardihani
et al. [55] using a downward pointing temperature sensor to locate fire hotspots. A similar
approach is possible with a camera located on the bottom of a UAV and oriented downward.
However, for a camera located on the front side of the UAV, it is required to compute a
projection of the camera plane onto a global coordinate system using an homography. This
transformation allows mapping pixel coordinates to the ground plane. This approach per-
forms well when the UAV pose estimation is reliable and when the ground is mostly planar.
Some difficulties arise in the presence of uneven surfaces. Some authors [17,30,41,44,45]
have circumvented this limitation by exploiting a previously known Digital Elevation
Map (DEM) of the surveyed area. DEM allows for the estimation of the location from
where a ray corresponding to a fire pixel originated and thus improves the fire location
estimation. DEMs can induce some errors. To reduce these errors, a UAV fleet looking at
the same hotspot can first detect the fire and then use different views of the UAV to refine
the estimations [30].

In order to better characterize ongoing wildfires, some authors have studied fire modeling
in order to provide global information such as the fire boundaries and its behavior. The
simplest models are using an elliptic shape which is fitted to the fire and where each ellipse
axis increases at some given rate. For example, Ghamry and Zhang [46,47], Ghamry et al. [69]
applied an elliptical model to estimate the fire perimeter. Here, the rate at which the ellipse axis
grows depends on the direction towards which the wind blows and its speed. This allowed
the authors to estimate the perimeter of the fire and then define a UAV team formation for
further monitoring.

More complex fire models with more variables and data inputs have also been studied.
These more advanced models often try to estimate the rate of spread (ROS) of the fire
based on wind speed and direction, terrain slopes, vegetation density, weather and other
variables. These models are often tested in a simulation. For example, Kumar et al. [39],
Pham et al. [57,58], Lin et al. [54,63] and Seraj and Gombolay [62] used the FARSITE model
to test their coordination strategies under various scenarios. Some of these models were not
suitable for real-time fire estimation because their complexity significantly increased the
computation time. However, Lin et al. [54,63] proposed a convergent Kalman filter-based
methodology to provide data to a scalar field wildfire model that is executable on-board a
UAV and requires low computation resources. The proposed approach was able to provide
estimations of the wildfire ROS and the fire front contour.

Some authors used a different approach to model and characterize the fire. For
example, Martínez-de Dios et al. [40] used multiple images to extract geometric features
from the fire such as the base perimeter, the height and the inclination. The extraction
is performed using computer vision techniques (e.g., image segmentation). The authors
propose the use of multiple visible-NIR multimodal stereo vision systems to extract the
fire area. Each stereo system provides an approximate 3D model of the fire. The models
captured using multiple views are registered to get the fire 3D model. This 3D model is
tracked over time to compute different fire characteristics such as height, width, inclination,
perimeter, area, volume, ROS and their evolution over time.

Bradley and Taylor [38] divided the environment into cells and assigned a fire prob-
ability to each cell using IR images. This method takes into account the uncertainty
in the position of the UAV and therefore applies a Gaussian weighting scheme to the
probabilities. The authors then apply a Sequential Monte Carlo (SMC) method to com-
pose a Georeferenced Uncertainty Mosaic (GUM) which is then used to locate the fire.
Belbachir et al. [42] model the fire as a static cone of heat sourcing from the fire center and
dissipating with an altitude and a horizontal distance. Based on this assumption, they
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construct a grid of fire probabilities with the temperature measures. The fire is detected
when the probabilities are above a defined threshold. Lin and Liu [63] also generate an
occupancy grid by using temperature sensors and by associating temperatures to cells.
They also compute the gradient of the grid and estimate the fire center, ROS and perimeter.

7. Coordination Strategy

Coordination strategy is an important component when deploying autonomous UAVs.
The coordination strategy establishes the procedure for communication, task allocation and
planning procedures. Based on the communication links established during the mission,
three main schemes can be distinguished. First, for a single vehicle, there is no coordination
strategy as the UAV does not need to communicate with other UAVs. For multiple UAVs,
the path planning and task allocation are often resolved by an optimization process or
assumed to be so. One approach is to centralize the path planning and decision process
in the GCS and only allows the UAV to communicate with it but not between each other.
Another approach is to tackle the problem of coordinating multiple entities in a distributed
and decentralized manner. Each vehicle can connect to other UAVs, allowing for distributed
decision-making and communication with the GCS is only for reporting observations but
not for planning.

7.1. Single UAV

The viability of single UAVs, either large airships or small aerial systems, has been eval-
uated for wildland fire surveillance and monitoring. The Ikhana UAS [17] was deployed in
western US between 2006 and 2010. It was a single large and high endurance vehicle with
powerful sensory systems for autonomous fire detection. The decision strategy and the path
planning were performed by human operators. Similarly, Wardihani et al. [55] used small
quadcopter UAV and manually defined flight paths using a mission planner software in
order to survey a region and detect hotspots. Pastor et al. [41] proposed a semi-autonomous
system in which a single UAV would sweep a rectangular area, locate hotspots and then
return to a nearby ground station. A human could control the UAV and order it to
stay over the hotspot location to confirm visually if it corresponds to a real fire or not.
Martins et al. [33] used an entirely autonomous navigation system where the UAV only
received waypoints from where to start surveillance. When a hotspot is detected, the UAV
approaches the source, hovers over the target and confirms the fire. The experimental tests
showed very interesting results for fire detection and monitoring tasks.

While single UAV strategies are interesting for their simplicity, they remain very
limited in relation to large-scale wildland fires. For this reason, the more advanced and
mature solutions use team-based systems that help increase the coverage area.

7.2. Centralized

The addition of more UAVs to the mission increases the area covered by the systems.
In a centralized team strategy, all UAVs are coordinated by a single GCS. This scheme can
lead to a more accurate fire georeferencing and less false alarms by allowing for a global
situation awareness at all times. Another advantage of centralized communications is that
it makes centralized processing easy and therefore makes it possible to use smaller and
more affordable UAVs as they do not require high-processing power. The main drawback
of this approach is the need for a functional communication network that can connect to all
UAVs at all times which is not always possible when the fire areas are remote.

Martínez-de Dios et al. [30] proposed a simple centralized approach where data from
multiple UAVs is combined to correct and reduce the uncertainty of fire georeferencing.
After a fire is detected by a unit, nearby vehicles are sent to the same region to perform a
fire confirmation.

Belbachir et al. [42] proposed a greedy algorithm for fire detection using a probability
grid. For this purpose, each UAV selects, in a greedy way, the path that provides more
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information. The UAVs visit cells that have not yet been visited and which are within the
direction where the temperature increases.

Ghamry and Zhang [46] distributed the UAVs uniformly around the fire perimeter
using an elliptical formation. This allows the UAVs to keep their paths at even angles
around the estimated fire center. Ghamry and Zhang [47] added the ability to restructure
the formation if a UAV is damaged or has to leave for refueling. To achieve this fault-
tolerant behavior, when a UAV needs to leave the formation, all communications with it
are stopped. Other vehicles automatically notice the missing UAV and start performing
a reformation process. In this system, prior to the monitoring task, the fleet flies in a
leader–follower formation where the leader gets a predetermined flight path and the rest
follow it at specific distances and angles. In the work of Lin et al. [54], Lin and Liu [63],
UAVs are directed to fly uniformly in formation around an estimated fire center. In this
approach, a Kalman filter is used to estimate the fire contour and the fire center movements,
allowing the UAVs to fly and adapt their formation accordingly.

While incomplete, initial results by Aydin et al. [26] are worthy of mention as it is
one of the only works to tackle fire fighting directly. The authors theorized a collaboration
model where scout UAVs would spot wildfires and monitor the risk of spread to structures.
Relay UAVs would then be used to extend the communication range and allow the scouts
to contact firefighting UAVs carrying fire-extinguishing balls. It is believed that 10 UAVs
each carrying 10 1.3 kg fire-extinguishing balls would be able to extinguish an area of
approximately 676 m2 per sortie. While the extinguishing capacity of the fire-extinguishing
balls was validated, the UAV coordination strategy has not been tested yet. However, this
approach remains promising for wildfire fighting.

7.3. Decentralized

In a decentralized communication scheme, the UAVs are communicating between each
other in order to collaborate for path planning and optimal area coverage. The interaction
with the GCS is reduced to a minimum and usually only happens at the beginning of a flight
to receive initial flight coordinates or at the end of a flight for observation reporting and data
transfers. The system is able to perform more tasks in an autonomous manner and even to
cover larger areas by using some UAVs as communication relays. The main advantages of
such an approach are reliability as a link with the GCS is not required to be active at all
times and the possibility for operations in remote areas where global communication links
are impractical. However, the added complexity imposes new challenges as distributed
coordination algorithms need to be developed and implemented. In the literature, these
systems were mainly used for optimal fire perimeter surveillance and task allocation.

Alexis et al. [37] describe a UAV rendezvous-based consensus algorithm which aims
to equally distribute the path length of the UAV around the fire perimeter. UAVs depart in
pairs and in opposite directions around the fire perimeter. They set rendezvous locations
where they share knowledge about the traveled paths, the current state of the fire perimeter
and other units encountered. If the update shows that the fire perimeter has evolved, then
each UAV will select new rendezvous locations in such a way that the distance traveled by
each of the UAVs is almost the same. The authors have shown through simulations that the
algorithm converges and the recomputing of rendezvous points allows efficient adaptation
of the UAV formation to an evolving fire perimeter. The optimal distribution of UAVs
around a fire perimeter has also been studied by Casbeer et al. [32]. They demonstrated
that in order to reduce the length of time between data uploads to the GCS, the UAVs must
depart in pairs, travel in opposite directions and be evenly spaced around the perimeter.
To achieve optimal perimeter tracking, they designed a control loop to keep half of the
bottom-facing IR camera over hotspot pixels and the other half over non-fire area.

For monitoring, Pham et al. [57,58] proposes a collaborative system in which UAVs
are sent to monitor a fire and optimally cover the fire area. This formation is achieved by
detecting neighboring UAVs and reducing camera view overlaps while considering the
location of the fire front. The UAVs are also allowed to increase or decrease their altitude in
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order to control the resolution of the captured imagery to provide optimal observational
capabilities. This behavior is accomplished with the application of a force field-based
algorithm that simulates the attraction of a UAV by the fire front and its repeal from the
other UAVs. The attraction and repulsion forces are adapted by considering the fire front
confidence and the estimated field of view of each UAV. One problem with this approach is
that the visibility reduction induced by smoke is not taken into account which can put the
vehicle in a dangerous situation.

Another coordination strategy was proposed to perform optimal task allocation within a
team of UAVs. The tasks can be surveillance, monitoring or firefighting. Ghamry et al. [31]
proposed an auction-based firefighting coordination algorithm. In this algorithm, a fire is first
detected and then the UAV must coordinate themselves to act upon each known fire spot. To
achieve this task, each vehicle generates a bid valued by a cost function of its distance from
the fire spot. In this manner, the UAV with the best offer for the task will be assigned to it.
Sujit et al. [36] also proposed a similar auction-based collaboration algorithm but with the
ability to consider a minimal number of UAVs to watch each hotspot. Both contributions
distributed the UAVs equally around the fire perimeter.

Decentralized approaches have also been used for direct fire fighting using fire sup-
pressants. Kumar et al. [39] proposed such a coordination protocol where the planned
path of each UAV is optimized to minimize the distance to a detected fire perimeter. As a
second phase, the path of UAVs carrying fire suppressants is optimized by minimizing the
distance to the fire center. This allows the solution to monitor a fire situation and provide
optimal fire suppressant delivery.

Recently, new control approaches based on deep reinforcement learning (DRL) started
to appear in the literature. One of the very first with such an approach for wildfire monitor-
ing has been proposed by Julian and Kochenderfer [59]. The authors first formulated the
problem as a partially observable Markov decision process (POMDP) solvable with DRL. A
simulation environment being required for DRL, they also defined a simplified stochastic
wildfire model using a 100 × 100 fire presence grid. This environment was used to train a
simulated fixed-wing agent with a decision process based on a CNN. Multiple agent using
the same CNN can be spawned in the same environment to simulate a multi-UAV system.
While the authors defined different DRL approaches, the best performing approach used
a collaborative belief map shared and updated by all agents indicating the state of the
wildfire. A reward function rewarding newly discovered burning cells by any aircraft is
used to encourage good fire monitoring and collaboration between agents. An aircraft
proximity penalty is also added to encourage aircraft separation. Simulation results show
that the approach is able to outperform a baseline receding-horizon controller, scale with
different numbers of aircraft and adapt to different fire area shapes. However, the approach
remains limited as the environment modeling is oversimplified, the UAVs are assumed
to maintain a steady altitude, a constant speed and fly at different altitudes as collision
avoidance is not implemented.

While new approaches are interesting, research on objective function optimization-based
distributed control frameworks is still very active and continues to generate state-of-the-art
results. This is the case with the approach proposed by Seraj and Gombolay [62]. The authors
used a dual-criterion objective function based on a Kalman uncertainty residual propagation
and a weighted multi-agent consensus protocol. An adaptive extended Kalman filter (AEKF)
is used to leverage the fire propagation model (FARSITE) and the observation model. The
approach includes an uncertainty-based controller built through the combination of a fire front
location uncertainty map and a human uncertainty map. This allows the system to take into
account GPS-equipped human firefighters on the ground in order to ensure their safety while
considering the fire front location like other similar methods. A second controller (formation
controller) is encouraging the UAV team to maintain a formation consensus for maximizing
the coverage. The approach is using the theory of artificial potential field to generate artificial
forces to pull or push on the UAV in order to attain an optimal state. Following a simulation,
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the solution was able to outperform both a state-of-the-art model-based distributed control
algorithm and a DRL baseline strongly confirming the relevance of the approach.

This paper only reviews decentralized communication frameworks used in wildland
fire contexts. However, many solutions in the literature are presented as general commu-
nication solutions without corresponding applications. This is the case with the work of
Pignaton de Freitas et al. [115] that proposed a multipurpose localization service to inform
all UAVs in the formation of the other UAVs position. One interesting and rarely seen
feature of the system is its ability to estimate the position of UAVs that are not received
due to communication errors. This illustrates that researchers in the field should not only
refer to wildfire-related works when the time comes to design new systems and that some
works outside of the field may be important to consider.

8. Cooperative Autonomous Systems for Wildland Fires

UAVs can play an important role in the detection and monitoring of large wildland
fires. Multiple UAVs can collaborate in the extraction of important data and improve
firefighting strategies. Moreover, aerial vehicles can cooperate with unmanned ground
vehicles (UGV) in operational firefighting scenarios.

One type of cooperation can consist of the use of UGV to carry small short endurance
UAVs to detected fire areas and be used as refueling stations. Ghamry et al. [69] proposed
such a system, where a coordinated leader–follower strategy is used. UAVs are carried by
UGV to a desired location and deployed to explore preassigned areas. If a UAV detects a
fire, an alert is sent to the leading UGV and to the rest of the fleet. The leader computes new
optimal trajectories for the UAVs in order to monitor the fire perimeter. Phan and Liu [116]
present another firefighting collaborative UAV-UGV strategy. A hierarchical UAV-UGV
system composed of a large leading airship and cooperative UAV and UGV is proposed.
When a fire is detected, the vehicles are deployed for fire monitoring. In this scenario, UAVs
and UGVs are supposed to have the capacity to carry water and combat fire. The UAVs are
deployed in an optimal flying formation over the fire front area. UGV are sent to prevent
the fire propagation and limit its spread using water and fire retardants. Auction-based
algorithms are implemented to allocate the tasks to each vehicle. Viguria et al. [117] also
proposed the use of task allocation by an auction-based algorithm. In their framework,
the vehicles can perform various tasks such as surveillance, monitoring, fire extinguishing,
transportation and acts as a communication relay. A human or the GCS can generate a list
of tasks that need to be fulfilled. Each robot sends a bid for each task and the one with the
best offer wins and can proceed to execute the task. The offers are based on specific cost
functions for each task that consider the vehicle distance, fuel level and capabilities.

Akhloufi et al. [118] proposed a multimodal UAV-UGV cooperative framework for large-
scale wildland fire detection and segmentation, 3D modeling and strategical firefighting. The
framework is composed of multiple UAVs and UGVs operating in a team-based cooperative
mode. Figure 2 illustrates the proposed framework [118]. The vehicles are equipped with a
multimodal stereo-vision system such as the ones developed for ground-based fire detection
and 3D modeling [119–122]. The stereo system includes multispectral cameras operating
in the visible and NIR spectrum for efficient fire detection and segmentation. Each stereo
system provides an approximate 3D model of the fire. The models captured using multiple
views are registered using inertial measurements, geospatial data and the extracted features
using computer vision to build the propagating fire front 3D model [119–121]. Based on
the 3D model of the fire, the UAVs and UGVs can be positioned strategically to capture
complementary views of the fire front. This 3D model is tracked over time to compute
different three-dimensional fire characteristics such as height, width, inclination, perimeter,
area, volume, ROS and their evolution over time. The extracted three-dimensional fire
characteristics can be fed to a mathematical fire propagation model to predict the fire behavior
and spread over time. The obtained data make it possible to alert and inform about the risk
levels in the surrounding areas. The predicted fire propagation can be mapped and used
in an operational firefighting strategy. Furthermore, this information can be used for the
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optimal deployment of UAVs and UGVs in the field. This type of framework can be combined
with other firefighting resources such as firefighters, aerial firefighting aircraft and future fire
extinguisher drones.

(a) The acquisition of 3D fire front data. UAVs and UGVs equipped with multimodal stereo cameras, IMU and GPS.

(b) The modeling and prediction. Registered 3D fire front, weather, topographic and vegetation data are used to predict
the fire propagation and map it.

Figure 2. Unmanned aerial vehicle-unmanned ground vehicle (UAV-UGV) multimodal framework for wildland fires
assistance.
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9. Conclusions

This paper presents a survey of different approaches for the development of UAV
fire assistance systems. Sensing instruments, fire perception algorithms and different
coordination strategies have been described. UAVs can play an important role in the
fight against wildland fires in large areas. With the decrease in their prices and their
wider commercial availability, new applications in this field will emerge. However, some
limitations remain such as autonomy, reliability and fault tolerance. Further research
is needed to overcome these limitations. Security is also a concern, as there are risks
associated with having UAVs flying over firefighters or close to aircraft carrying water and
fire retardants. Nevertheless, the benefits of using UAVs are significant and this could lead
to innovations aiming to solve these problems.

On the perception side, most of the developed techniques rely on classical computer
vision algorithms. However, the emergence of some work in the field of deep learning has
been witnessed in recent years, especially for fire detection, but it remains in the early stages
of development. Furthermore, some datasets containing wildland fire images that can be
used for the development of computer vision algorithms were presented. Unfortunately,
only a small number of them contains aerial views of wildland fires. In addition, the lack of
a large dataset limits the development of advanced deep learning algorithms. Such datasets
would be important for the future of the field as they can serve to benchmark approaches
and compare them quantitatively. Therefore, deep learning and the construction of new
large-scale aerial wildfire datasets represents interesting research opportunities for future
contributions by researchers in the field.

In this work, frameworks proposing cooperative autonomous systems where both
aerial and ground vehicles contribute to wildland firefighting were also discussed. While
these frameworks are mostly theoretical and limited to simulations, they provide interesting
ideas about a more complete wildland firefighting system. Future research in these areas
can provide new approaches for the further development of autonomous operational
systems without or with little human intervention.
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