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Abstract: Water quality deterioration due to outdoor loading of livestock manure requires efficient
management of outside manure piles (OMPs). This study was designed to investigate OMPs using
unmanned aerial vehicles (UAVs) for efficient management of non-point source pollution in agricul-
tural areas. A UAV was used to acquire image data, and the distribution and cover installation status
of OMPs were identified through ortho-images; the volumes of OMP were calculated using digital
surface model (DSM). UAV- and terrestrial laser scanning (TLS)-derived DSMs were compared for
identifying the accuracy of calculated volumes. The average volume accuracy was 92.45%. From
April to October, excluding July, the monthly average volumes of OMPs in the study site ranged
from 64.89 m3 to 149.69 m3. Among the 28 OMPs investigated, 18 were located near streams or
agricultural waterways. Establishing priority management areas among the OMP sites distributed in
a basin is possible using spatial analysis, and it is expected that the application of UAV technology
will contribute to the efficient management of OMPs and other non-point source pollutants.

Keywords: UAV; terrestrial laser scanning; digital surface model; agriculture area; non-point source
pollutants; livestock waste, outside manure piles

1. Introduction

Composted livestock waste in agricultural areas is actively used as fertilizer to improve
crop cultivation [1,2]. Livestock waste that enters water systems is a major concern because
of factors such as nutrients, suspended solids, oxygen depletion, and bacteriological
quality [3]. Particularly, phosphorus, one of the main components of livestock waste, acts
as a non-point source pollutant because it primarily exists as inorganic phosphorus, and
its content in manure ranges from 2600 to 40,000 mg/kg. Because 80% of livestock waste
is water-soluble, it is likely to flow as leachate or surface runoff during rains [4–6]. As of
2014, 80% of the total volume of the livestock waste generated was used as a resource by
converting it to manure and liquid manure [7]. In case of small livestock facilities, however,
a large volume of livestock waste is stacked outdoors, to be used as a resource in the form of
an outside manure pile (OMP) because it is difficult to access the livestock waste treatment
facility. Hence, water quality is deteriorating due to livestock manure loaded outdoors,
requiring efficient management of OMPs.

In South Korea, release of nutrients into the water system during rainfall is a concern
because here, OMPs are usually located on the edges of agricultural land, near stream
embankments, and agricultural waterways. Hence, a cover such as a plastic sheet is
used to prevent the release of pollutants during rainfall, and local government managers
are continuously conducting surveys as a temporary measure for the management of
OMPs. However, local government managers are limited in their ability to investigate the
distribution locations and volumes of OMPs quickly and accurately [8]. This is because the
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spatial distribution of OMPs is extensive, making it difficult for investigators to conduct a
direct full-scale investigation. For this reason, the behavior of OMPs which is a prerequisite
for efficient management has not been confirmed, and thus OMP investigation is necessary.

Recently, technology for the detection of various ground surface information using im-
age data obtained from satellites and unmanned aerial vehicles (UAVs) has been developed
that obviates the need for direct on-site investigation. Remote sensing tools have also been
actively used in the management of non-point source pollutants [9–13]. Satellite images can
provide information on the ground surface covering a wide area. They are also effective
in identifying temporal changes in the characteristics of the ground surface because they
capture images of the same area at regular intervals [14–16]. However, it is difficult to
precisely identify the characteristics of the ground surface with satellite images as most of
these images exhibit mid to low resolution, and it is particularly difficult to detect objects,
such as OMP sites, that occupy small areas [17–19]. Therefore, it is necessary to use alterna-
tive remote sensing tools to identify the characteristics of small pollution sources such as
OMPs. UAVs capable of acquiring high-resolution images in space and time are attracting
attention because of their ability to overcome the limitations of satellite images [20,21].
They can collect data rapidly, and facilitate precise identification of ground surface charac-
teristics by collecting images at low altitudes [22–26]. Because of these advantages, UAVs
have been utilized in various areas, including photogrammetry [27–30], agriculture [31,32],
rescue missions [33], vegetation monitoring [34,35], and construction [20], and the range
of applications is continually expanding. In the field of management of non-point source
pollution in agricultural areas, UAV images have been used in many studies to overcome
the limitations of satellite images [8,36,37]. Therefore, it is expected that UAV image data
can be used for investigating and monitoring pollutants such as OMPs that are difficult to
detect in satellite images, allowing for efficient management of non-point source pollution.

In this study, a UAV was applied to investigate the spatio-temporal changes of OMP
in agricultural areas. this is previous step to efficiently manage non-point source pollution
caused by OMPs in agricultural areas. To this end, (1) UAV images were acquired, and
the OMP locations were identified, and (2) a digital surface model (DSM) was created and
compared with terrestrial laser scanning (TLS) to verify the reliability of OMP volumes
calculated using UAV images. Finally, (3) the spatio-temporal distribution and volume
changes of OMP were analyzed.

2. Materials and Methods
2.1. Study Area

Samga township, Hapcheon county, Gyeongsangnam province (35
◦
24′48′′ N, 128

◦
6′17′′

E) in South Korea, with a total area of 1.5 km2, was selected as the study site for investi-
gating spatiotemporal changes in OMPs (Figure 1). In the study area, which is a flat area
between mountainous terrain, streams flow around the farmland and provide agricultural
water. As the agricultural waterway that supplies agricultural water between farmland is
connected to the stream, non-point pollutants on the ground are likely to flow as surface
runoff during rainfall into the stream. The agricultural areas in the study site operate as
double-cropping; in winter, upland crops are cultivated, while in summer, paddy rice is
grown as the main crop, with livestock manure used to grow crops throughout the four
seasons. As OMPs are used for crop growth, the selected area is considered to be a suitable
study site for investigating spatiotemporal changes in OMP sites.

2.2. UAV Image and OMP Information Collection

The DJI Phantom 4 UAV was used for image acquisition. The standard camera
and other equipment were not modified, and it was possible to use automatic flight
modes [38]. The digital camera (1′′ CMOS sensor) installed on the gimbal had a resolution
of 20 megapixels and a shutter speed of 1:8000 [39]. The data collection used automatic
flight mode to collect images of the study site once a month from March to October 2019,
excluding July. In July, UAV flights were not possible due to the rainy season in South
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Korea. In March, only four acquisitions of OMP data were collected for comparison with
TLS-based DSMs and volumes. In the UAV image collection, detailed 3D modeling was not
possible because the ground sample distance was 4.09 cm; however, images were captured
by setting the image overlap ratio to 75% at an altitude of 150 m (legally specified as the
highest altitude in South Korea) to rapidly collect information over the entire study site. In
addition, real-time kinematic (RTK) global navigation satellite system (GNSS) equipment
was used for correcting the positions of the images, and 25 ground control points (GCPs)
were acquired as terrain features at about 500 m intervals (Figure 1).Drones 2021, 4, x FOR PEER REVIEW 3 of 15 
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Figure 1. Location of the study area in Samga township, Hapcheon county, Gyeongsangnam province, South Korea, is
indicated with a red dot. The study site is in. The yellow circles and red X marks indicate the location of the outside manure
piles (OMPs) and ground control points (GCPs), respectively.

Ortho-images and DSMs were produced using the collected UAV images and GCPs
by PIX4D MAPPER S/W. The distribution and cover installation status of OMPs were then
identified using ortho-images. As shown in Figure 2, the cover installation status of the
OMPs was classified as one of three types because the amount of rainwater that penetrates
the OMP during rainfall depends on this status. The volume of OMP was calculated using
the Surface Volume tool after setting the outline in the ortho-image along the boundary of
the OMP and then clipping the outline from the DSM using the Extract by Mask tool by
ESRI ArcGIS 10.6 S/W.Drones 2021, 4, x FOR PEER REVIEW 4 of 15 
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2.3. Comparison of UAV-Derived DSM Accuracy of OMP Volumes

The OMP volume produced by the UAV-derived DSM was compared and analyzed
with TLS-derived DSM to determine the accuracy of the OMP volume; this method was
obtained from existing literature [40,41]. TLS is considered a trustworthy and accurate
measurement method and has been used in many studies to generate terrain data [40–47].
However, TLS measurement is more time consuming than UAV-imaging-based measure-
ments due to the requirement for several scan positions, along with manual transportation,
and the measuring time; in particular, the TLS instrument is more difficult to transport
because of its heavier mass as compared with that of a UAV [40]. Therefore, OMP sites
with various sizes were selected for the smooth TLS data collection, and a total of four
OMP sites were collected.

TLS was performed simultaneously with UAV imaging and from at least four direc-
tions relative to the OMP. The equipment used was a RIEGL VZ 400i, for which the scan
range and error were 800 m ± 5 mm [48]. The RiSCAN PRO S/W was used to match
the 3D point clouds acquired from the ground [49]. DSMs and ortho-images were then
created by extracting the point clouds and using the Las Dataset to Raster tool of ArcGIS
10.6 S/W. The resolution of all DSMs was set to 5 cm, and the DSMs were produced after
removing the point clouds of the trees adjacent to the OMP. Next, the TLS images were
subjected to geometric correction based on the UAV ortho-images. To compare the form of
the OMPs, the TLS-derived DSM was adjusted to the same Z value based on the average of
Z value of the UAV-derived DSM for each OMP. The spatial difference between UAV- and
TLS-derived DSMs was estimated using the raster calculator tool, and the accuracy of the
volume of the OMPs based on UAV images was calculated using equation (1), where is
the volume of the OMP calculated from TLS-derived DSM and is the volume of the OMP
calculated from UAV-derived DSM. Finally, the spatio-temporal changes were investigated
based on the accuracy of the evaluated volume calculations.

Volume Accuracy (%)=

(
1−

∣∣∣∣VTLS−VUAV

VTLS

∣∣∣∣)×100 (1)

3. Results
3.1. Results of UAV Flight Data

Table 1 and Figure A1 (which is in the Appendix A at the end of the manuscript)
show the results of the distribution of the OMPs and the cover installation status from
April to October 2019 using the ortho-images of the UAV; the OMPs were identified in a
total of 28 sites. Between April and May, four OMP sites were created, the largest number
compared to other periods, indicating that OMPs were actively created. Between September
and October, seven OMP sites disappeared and three OMP sites were created, which had
the largest number of disappearing OMP sites compared to other periods. Furthermore,
the type A (covered with plastic sheets) OMPs accounted for only 22.2% of the OMPs
in October, which was much lower than other months. October is the harvest period of
paddy rice in south Korea; this indicates that several OMPs were scattered after the harvest.
In June, the cover installation status type A had the largest percentage compared with
other months. From June to August, it is a rainy season causing more than a week of rain
in Korea [50,51]. Thus, farmers covered OMPs with plastic sheets to prevent loss of the
OMPs during the rainy season. After the rainy season, it was confirmed that traces of
leachate had flowed out despite extensive type A coverage in August. Despite limitations
in determining which variable acted on the OMPs during the rainy season, type A OMPs,
which were expected to prevent rain penetration, could also act as a non-point source
pollutant. In addition, from April to October, 80% of the newly created OMPs in each
month were the type C, and 10% were confirmed as type B; three of the four OMPs created
in May appeared as type C; the one OMP created in August appeared as type B; the two
OMPs created in September appeared as type C, and the three OMPs created in October
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appeared as type C. This indicates there was no immediate management of newly created
OMPs.

Table 1. Monthly data for number of OMP sites and their cover installation status through the ortho-images of the unmanned
aerial vehicle (UAV).

Month April May June August September October

Number of OMP Sites
Total 19 23 22 21 22 18

Disappeared - - 1 2 1 7
Created - 4 - 1 2 3

Cover
Installation

Status

Type A 68.40% 69.60% 86.40% 81.00% 81.80% 22.20%
Type B 15.80% 8.70% 13.60% 9.50% 9.10% 33.30%
Type C 15.80% 21.70% 0.00% 9.50% 9.10% 44.40%

3.2. Accuracy Analysis of OMP Volume from UAV Data

The OMPs numbered 5, 6, 7, and 8 (which refer to Figure A1 (a) for their location)
were used to analyze the accuracy of UAV-derived DSM and volume using TLS-derived
DSM; as a result of georeferencing TLS images based on UAV images, the RMS error was
2.57 cm. The cover installation status of OMPs Nos. 6, 7, and 8 was type A, and OMP No. 5
was type B. Table 2 and Figure 3 show the results obtained by comparing the UAV-derived
DSMs with those of the TLS-derived DSMs. To examine sections that exhibit significant
differences from the geometry obtained with TLS, the class of each image was divided by
the standard deviation (σ) interval based on the mean; the standard deviation value was
0.086 m, with three of the four OMPs, and the mean value was −0.001 m; red indicates
higher TLS-derived DSM, and blue indicates higher UAV-derived DSM. The mean residual
errors of UAV- and TLS-derived DSMs were −0.002 m and −0.001 m, and the standard
deviations were 0.078 m and 0.086 m, respectively. Comparing the volume of the OMPs, the
results showed that volume accuracy of OMPs from UAV-derived DSMs had an accuracy
range of 86.67% to 96.97%, with an average of 92.45%. In addition, it was found that the
smaller the OMP volume, the lower the accuracy. It is considered that the smaller the OMP
volume, the greater the volume ratio of the irregular curved surface of the part that could
not account for the use of tires used to secure the cover of the OMP, so that the difference
is greater.

Overall, the UAV- and TLS-derived DSM show noticeable differences in areas where
tires were used. As shown in Figure 3b, the sections where the red area is visible are
generally observed in the areas with tires, and as shown in Figure 3a, the section where the
blue area is visible between the tires is mainly found at the edge of the OMP. OMP is a pile
of livestock manure with various and irregular curves along the perimeter. When it has a
cover, such as plastic sheets, tires or ropes are installed on its periphery to hold the cover in
place. According to Ouédraogo et al. [41], UAV better reconstructs the individual ridges
and furrows, whereas TLS shows a succession of mounds and depressions. Therefore, the
TLS-derived DSM expresses the irregular curves or tires; however, the UAV-derived DSM
appears to produce differences as it reconstructs them into smooth curves. In addition to
the tire areas, red or blue areas, as shown in Figure 3c, were identified. There were apparent
differences between TLS- and UAV-derived DSM because most of the covers were plastic
sheets which could be swollen, depending on the wind conditions.

Table 2. Digital surface model (DSM) comparison results for each OMP.

OMP ID Residual Error Volume (m3)

Mean (m) Standard Deviation (m) TLS UAV

5 −0.001 0.086 238.19 228.69
6 −0.002 0.078 79.92 77.5
7 −0.001 0.086 18.16 16.37
8 −0.001 0.086 8.748 7.61
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with tires, and (c) red boxes where red or blue areas are visible without tires.

3.3. Spatio-Temporal Changes of OMPs

From April to October 2019, the volume of OMPs for each month was calculated using
ortho-images and DSMs, as shown in Table 3. The spatial distribution of monthly OMP
volume changes is shown in Figure 4; a considerable decrease is indicated by a blue region,
while a considerable increase is indicated by a red region compared to the previous month.
The average volume of OMPs per month tended to increase from 89.73 m3 to 108.70 m3

from April to May. Twelve OMPs showed volume increases in the range of 0–25 m3, the
largest in the number of small increases compared to other months, while there were
also four OMPs that showed increases of over 100 m3, the largest in the number of large
increases. In June, the average volume of OMPs decreased from May to 94.77 m3; twelve
OMPs showed volume decreases, the largest in the number of small decreases compared to
other months. This is because the OMPs were stored while growing upland crops such as
garlic and onions until May and were used for planting paddy rice in June [52]. In August,
the average volume of OMPs tended to increase from June to 149.69 m3, which was the
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highest compared to other months; there were eight OMPs that showed increases in the
range of 50–100 m3, and three OMPs that showed increases over 100 m3. In September
and October, the average volume of OMPs, 103.58 m3 and 64.89 m3, respectively, showed
a tendency to continuously decrease from the previous month; there were six OMPs that
decreased in the range of −100 to −50 m3 in both months, and there were two and four
OMPs that decreased over −100 m3. The reason for this trend is that livestock waste was
stored and composted in advance to produce good quality OMPs in August [3,53], because
OMPs were scattered over the agricultural ground to improve soil fertility and productivity
by increasing nutrient supply, water retention, and microbial activity after harvesting was
completed in September and October [54–56].

Table 3. Volume of OMPs in the study site.

OMP ID Volume (m3)

12 April 10 May 25 June 10 August 29 September 26 October Mean

1 228.14 490.07 251.21 355.39 227.43 68.87 270.19
2 5.43 35.45 - 13.05 14.71 - 11.44
3 152.33 168.95 146.61 194.67 125.91 - 131.41
4 - 33.22 25.03 12.98 14.15 - 14.23
5 230.8 239.03 207.39 282.82 201.7 111.58 212.22
6 83.37 89.34 79.13 102.38 67.67 - 70.32
7 4.54 4.94 4.25 79.3 89.89 - 30.49
8 4.42 5.24 5.29 - - - 2.49
9 164.02 156.62 165.6 259.83 170.84 134.01 175.15

10 38.49 36.61 33.36 44.32 115.33 110.83 63.16
11 89.88 106.19 189.72 254.77 176.37 - 136.16
12 271.26 290.69 244.26 345.34 253.92 103.34 251.47
13 130.43 133.82 108.93 155.08 111.37 104.44 124.01
14 21.24 20.08 18.94 174.45 117.01 109.81 76.92
15 - 102.79 133.35 191.13 120.68 110.36 109.72
16 43.18 43.76 44.97 78.51 64.66 17.5 48.76
17 22.59 55.69 46.63 109.04 153.97 93.48 80.23
18 - 117.1 96.07 182.36 - - 65.92
19 87.17 101.4 89.32 65.16 60.37 38.58 73.67
20 48.45 56.33 51.67 73.52 51.99 - 46.99
21 40.13 140.16 69.02 134.2 74.19 34.13 81.97
22 38.99 40.4 56.77 - - - 22.69
23 - 32.18 17.52 35.27 12.67 15.1 18.79
24 - - - - 7.84 4.04 1.98
25 - - - - 45.98 17.68 10.61
26 - - - - - 21.11 3.52
27 - - - - - 45.54 7.59
28 - - - - - 27.68 4.61

Mean 89.73 108.7 94.77 149.69 103.58 64.89

The average volumes of individual OMPs numbered 1 to 28 were identified. As in
the case of OMP No. 22, a total of ten OMPs with an average volume of less than 23 m3

were confirmed. These small-scale OMPs were not identified more than twice during the
investigation period, confirming that five OMPs were especially produced in September
and October. The small-scale OMPs created in September and October were created to
scatter OMPs over agriculture areas. In addition, considering both these OMPs and the
cover installation status suggested in Section 3.1, these OMPs were consistent with type C
as no cover was used in October after harvest. Therefore, if it rains during these months,
which is the harvesting period, it is highly likely that a substantial amount of nutrients
will be released into water systems as rainwater will directly penetrate the OMP. Thus,
inspection of the cover installation status is required during rainfall. On the contrary,
it was confirmed that 16 of 18 OMPs with an average volume exceeding 23 m3 were
always observed from April to September, except in October, when OMPs were heavily
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scattered. Among them, OMPs Nos. 1, 5, and 12 with average volume of 270.19, 212.22,
and 251.47 m3, respectively, were always observed from April to October. The location
of such bulky OMPs was constant despite fluctuations in volume. Thus, it is necessary to
check the OMP locations because, if they are close to the water systems, it is highly likely
that leachate will be released into the water systems during rainfall.Drones 2021, 4, x FOR PEER REVIEW 8 of 15 
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OMPs Nos. 9–14 in the study site were located near the stream without the presence of
embankments or other management facilities; their leachate or surface runoff would flow
directly into the stream during rainfall. Among them, OMPs Nos. 9, 12, 13 and 14 were
located near the stream at a distance of 3.9–6.9 m. Furthermore, all OMPs, except Nos. 9–14,
were located near the agricultural waterway within the embankment; their leachate or
surface runoff would be possible to flow into the stream through the agricultural waterway
during rainfall. Eleven of twenty-two OMPs were located within 6.9 m of agricultural
waterways; these were Nos. 1, 2, 3, 6, 15, 16, 18, 19, 23, 25, and 28. This confirmed that
many OMPs were located near streams or agricultural waterways. In addition, as discussed
above, once OMPs are created, they tend to remain at their locations. Hence, there is a
possibility that nutrients will enter the water system during each rainfall event throughout
the crop cultivation period.

Finally, the range of increase or decrease in the volume of OMPs was confirmed.
OMP No. 1 showed the largest range of increase or decrease in volume with an average
of 178.30 m3, whereas OMP Nos. 3, 5, 11, 12, 15, 18, and 22 showed an average change
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of more than 50 m3. Except for OMP No. 22, the average volumes of these OMPs were
large, and their locations were mostly consistent with OMPs that were close to streams or
agricultural waterways. Loading or use of OMPs in agricultural areas is usually carried
out even during rainfall according to the agricultural work schedule for composting. Thus,
inspecting OMPs with a large average volume and high fluctuation require continuous
monitoring and review of the OMP sites or management facilities.

4. Discussion

Non-point sources such as livestock waste have been considered as a major cause of
water quality [57]. It is important to acquire information such as the location and type
of pollutants to manage the water quality because it is difficult to determine the status
of non-point pollutants that are widely distributed in the watershed [58,59]. The basic
water quality investigation has a limitation in that it is difficult to confirm the spatial and
quantitative distribution of pollutants; the pollutant information is filled in survey tables at
the judgment of the field investigator. In this respect, UAVs can provide quantitative data,
which can be an alternative way to investigate pollutants.

UAVs have been used for many applications, including reconnaissance, rescue, and
monitoring. In particular, small fixed-wing and rotary-wing UAVs have been popular
because of their moderate cost [60–63]. Many UAV applications, however, exhibit problems
covering large areas; these problems are caused by battery life, obstacles such as buildings
and mountains, and communication connection [64,65]. These challenges must also be
considered in similar studies in the future. Therefore, it is difficult to manage a large basin,
including those containing several cities, when investigating non-point source pollutants.
Thus, areas around small rivers are judged to be appropriate for the investigation of non-
point source pollutants. UAVs must be used after selecting priority survey areas with
large influences from non-point source pollutants, and in conjunction with existing survey
methods such as water sampling and satellite imaging. In addition, methods for making
appropriate connections must be considered.

Despite the challenges encountered with the use of UAVs, investigations of OMP sites
using UAVs can reduce time and cost compared to the existing survey methods in which
investigators perform on-site measurements to calculate OMP volumes. UAVs can also
gather quantitative data from surrounding areas, in addition to those for the OMP sites.
Furthermore, it was confirmed that UAVs can be used to identify the spatial distribution,
cover installation status, and volumes of OMP sites. These can be used as necessary data
for developing effective OMP management methods. For example, it is possible to identify
the location of OMP sites with insufficient management to prevent the inflow of OMP into
streams, which is caused by rainfall in the rainy season. In addition, it will be possible to
establish priority management areas among the OMP sites distributed in a basin, provided
that spatial analysis is conducted using conditions under which OMP can release more
non-point source pollutants.

The OMP volume was calculated using a UAV, and an average accuracy of 92% or
higher was confirmed by comparison with TLS results. However, there were several
other considerations involved in calculating the actual OMP volume. First, there were
cases in which vegetation grew on the OMP over time, or when the covers of the OMP
were swollen by wind or the gas generated from the livestock waste, which may lead to
errors. As the magnitudes of the errors generated by natural phenomena have not yet been
investigated, further research is required. Moreover, because it was difficult to identify the
geometry of the ground surface under the OMP, the volume of the OMP located on a slope
could be different from the actual volume because the former was calculated by including
the volume of the slope. Therefore, it was difficult to calculate the actual OMP volume;
however, the results were adequate for examining temporal changes in OMP volume.
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5. Conclusions

This study was designed to apply the unmanned aerial vehicle (UAV) for investigating
the spatio-temporal changes of outside manure piles (OMPs) in agricultural areas. To this
end, UAV images were compared with terrestrial laser scanning (TLS) measurements. Then,
a UAV was used to acquire image data, and the distribution and cover installation status of
OMPs were identified through ortho-images, and the OMP volumes were calculated using
digital surface model (DSM).

UAV- and TLS-derived DSMs were compared for identifying the cause of the error
in calculating the volume. While it was difficult to express the detailed texture, it was
confirmed that the overall shapes were similar; the average volume calculation accuracy
was 92.45%. According to that finding, an application of UAV images was quite successful
in investigation of OMP volumes.

According to the results of the monthly OMP volume changes from April to October,
the volume of OMPs tended to increase before crops were harvested; thus, the tendency
to change according to the condition of the crops was confirmed. The small-scale OMPs
with an average monthly volume of 23 m3 or less were identified as OMPs created in
September and October and were consistent with the type C (uncovered) in October after
harvest. In addition, from April to October, 80% of the newly created OMPs in each
month were the type C, and 10% were confirmed as type B. This indicates that there is
no immediate management of small-scale OMPs or newly created OMPs. Loading or use
of OMPs in agricultural areas is usually performed even during rainfall according to the
agricultural work schedule for composting. Thus, OMPs with a large average volume and
high fluctuation require continuous inspection and review of the OMP sites or management
facility. The results above could be used as basic data to efficiently manage non-point
source pollution caused by OMPs in agricultural areas.

This study has demonstrated that UAV imagery is sufficiently applicable for inves-
tigating the distribution and volume of OMPs. Of course, it is still necessary to develop
methods to efficiently investigate OMP. Future research directions will include studies of
automatic OMP detection technology that uses data analysis methods such as machine
learning and deep learning to improve the efficiency of surveys done with UAVs. In addi-
tion, as information on various non-point source pollutants can be collected from images
using UAVs, research can be extended to include analysis of non-point source pollutants
other than OMPs.
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