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Abstract: Food security is a longstanding global issue over the last few centuries. Eradicating
hunger and all forms of malnutrition by 2030 is still a key challenge. The COVID-19 pandemic has
placed additional stress on food production, demand, and supply chain systems; majorly impacting
cereal crop producer and importer countries. Short food supply chain based on the production
from local farms is less susceptible to travel and export bans and works as a smooth system in
the face of these stresses. Local drone-based data solutions can provide an opportunity to address
these challenges. This review aims to present a deeper understanding of how the drone-based
data solutions can help to combat food insecurity caused due to the pandemic, zoonotic diseases,
and other food shocks by enhancing cereal crop productivity of small-scale farming systems in
low-income countries. More specifically, the review covers sensing capabilities, promising algorithms,
and methods, and added-value of novel machine learning algorithms for local-scale monitoring,
biomass and yield estimation, and mapping of them. Finally, we present the opportunities for linking
information from citizen science, internet of things (IoT) based on low-cost sensors and drone-based
information to satellite data for upscaling crop yield estimation to a larger geographical extent within
the Earth Observation umbrella.

Keywords: precision agriculture; cereals; drones; machine learning methods; scaling up; citizen
science; low-cost sensors; IoT; COVID-19; food security

1. Introduction

Food security has been a global challenge over the last few centuries. The competence of
agriculture food production to support the increasing population has been a global concern for
generations. The rapidly growing population has elevated demand for food production systems [1].
Eradicating hunger and all forms of malnutrition by 2030 is still a prime challenge (Sustainable
Development Goal (SDG) 2: Zero Hunger) [2]. Still, over 2 billion people do not have regular access to
safe, nutritious, and sufficient food [3]. The Food and Agriculture Organization of the United Nations
(FAO) estimated that 821.6 million people globally are undernourished of which 278.5 million people
are from South Asia [3]. Projections indicate agricultural productions would have to increase by at
least 50% by 2050 to fulfill the increased food demand [4,5], most of which is expected to come from
improved yields [6].
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Cereal crops are the key components of the human diet and livestock feed. The term “cereals”
refers to members of the Gramineae family and denotes nine species: wheat (Triticum), rye (Secale),
barley (Hordeum), oat (Avena), rice (Oryza), millet (Pennisetum), corn (Zea), sorghum (Sorghum),
and triticale (a hybrid of wheat and rye). Cereal crops; specifically rice and wheat are the prime staple
food consumed in most parts of the world, especially in Asia and Africa. Therefore, food security is
fundamentally a reflection of cereal crop security in these countries [7]. Hence, achieving self-reliance
in cereal crop production is an effective way to promote nation-wide food security and achieve the
SDG Zero Hunger target.

Traditionally, different direct and indirect measurements of plant characteristics, soil parameters,
environmental conditions are being applied to monitor the crop [8]. Ground-based measurements
are the utmost accurate monitoring approach. Nevertheless, the approach requires enormous human
resources and is time-consuming which makes it costly. More prominently, it’s use is restricted to a
smaller area. For agriculture crop monitoring over a larger geographical extent, earth observation
(EO) satellite technologies and resulting datasets have been extensively used for decades as alternative
methods (e.g., MODIS, Landsat, Sentinel, etc. [9–11]). While these datasets are suitable for regional
studies, it requires corresponding ground truth data in building a synergy between satellite data and
in-situ measurements [12]. Usually, agriculture production from small-holder farmers is dominant in
low-income countries [13]. Further, individual farm size is also small in these countries [13]. Hence,
coarser spatial and temporal resolution data offered by satellite-based EO systems appear to deliver
generic monitoring advice and erroneous yield estimation [9–11,14].

Drones [15,16] are becoming new promising platforms for cost-effective spatial data collection
as compared to satellite images [17,18]. The ongoing development and improvement of navigation
and flight control system, ease of flight at low-altitudes, and ultra-high spatial resolution images
(i.e., centimeter-level) offer great data solutions possibilities to monitor the crop development process
at the local level. Despite these potentials, drone-based data solutions still face some challenges.
Administrative hurdles for securing drone flight permissions [19] in many parts of the world is time
consuming and involves a lot of bureaucratic process. Moreover, its application is restricted due to the
limited availability of data processing hardware and software facilities. Most of the drone workflows
are still limited to research laboratories. Transferability of the acquired knowledge to the farmers’ level
in making informed decisions needs further scaffolding and a long way to go.

The rest of the paper is organized as follows: Section 2 defines and describes the terminologies,
and highlights the importance of a review focusing on cereal crops. Section 3 presents the importance
of cereal crops for ensuring food security, Section 4 highlights impact of the COVID-19 pandemic on
food security situations and importance of resilience of small scale local farmers, Section 5 elaborates
state-of-the-art of drone and sensor technologies, and Section 6 deals with drone-based data solutions
for cereal crops. Finally, the conclusion of this review and recommendations for future research are
presented in Section 7.

2. Research Need

Precision agriculture (PA) [20,21] is a data-intensive farm management approach that uses modern
information and communication technologies (ICT) to ensure that the crops receive the right amount
of nutrients and water for optimum health and productivity. The ultimate goal of PA is to ensure
productivity, profitability, and sustainability. The data, repeatedly collected with EO sensors and
IoT-based devices are processed to precisely and accurately determine location-specific interventions.
The PA system helps in monitoring crop characteristics and agricultural fields, and detecting problems
in the early stages so that the right decisions can be made at the right time and right deployment can
be targeted to the right locations. Thus, it supports optimization of the crop yield through reduced
use of water, fertilizer, and pesticide by significant amounts. The terms like precision farming [21],
smart farming [22], satellite farming [21], site-specific crop management [21], and digital agriculture [23]
are also commonly used these days with a similar concept.
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To present a deeper understanding of the research domain, we systematically reviewed over 200
recent peer-reviewed papers from electronic databases such as Scopus [24] and Web of Science [25].
Search terms included “UAV”, “Drones”, “Cereal Crops”, combined with “Agriculture”. A selection
filter was used to consider the literature from 2010 onwards for this review paper. Numerous papers
have examined the drone’s applications and their capabilities for various purposes. Many civilian
applications of drones have been reviewed by González-Jorge et al. [16]. Further, applications of drones
at and by communities have been examined in [15]. Stöcker et al. has presented regulations for drones
around the world [19]. The overall use of drones in the field of photogrammetry and remote sensing
is covered in [26]. A number of review articles have also focused on examining the contribution of
drones to the agricultural domain [22,27–32]. The examination of drones for precision farming, in
general, has been presented in many papers [22,29,30,32]. Similarly, a number of review articles on
the use of imaging sensors for drone platforms are also available [28,31]. The utilization of thermal
imageries using drones is examined and discussed by Messina and Modica [28]. Likewise, the use of
drone-based imaging sensors for assessment of crop stress including drought, fertilizer use efficiency,
and disease detection has been assessed in [31]. Additionally, a review of methods to enhance nitrogen
use efficiency has been discussed by Sharma and Bali [27].

To date, the review articles have covered the use of drones for generic precision agriculture
mapping and fertilizer use management. However, none of them incorporates the review tailored
at a particular crop type e.g., cereals. Cereal crops have short life-span, require more intense
monitoring and quick intervention. Hence, we review the key issues and options available for
drone-based data solutions (particularly with a clear focus on cereal crops), from the smallholder
farmers’ perspective. More specifically, we review the capabilities of promising sensors, algorithms
and methods, and added-value of novel machine learning algorithms for local-scale cereal crops
monitoring, biomass, and yield estimation, and mapping. We present the opportunities for linking
information from the citizen science, internet of things (IoT) based on low-cost sensors and drone-based
information to EO satellite data for upscaling crop yield estimation to a larger geographical area.

The main contributions of this review article are as follows:

1. An importance of drone-based data solutions for cereal crops to combat food insecurity,
2. A historical overview of drone and sensor technologies,
3. An inventory of methods and techniques used in various phases of drone data acquisition and

processing for cereal crops monitoring and yield estimation, and
4. A series of research issues and recommendations for potential future research directions.

3. Importance of Cereal Crops for Ensuring Food Security

Cereal grains are grown in greater quantities and offer more food energy worldwide than any
other type of crop [33]. These grains are rich in carbohydrates, fats, oils, protein, vitamins, minerals,
and fiber [34]. Cereal products (such as rice, wheat, maize, barley, and sorghum) have a central role
in most countries and are staple foods for most of the world’s population [35]. Wheat together with
maize and rice was grown on more than 582 million hectares of land in 2017 [36]. In low-income
countries, maize, wheat, and rice together share 48% of the total calories and 42% of the total protein
consumption [37]. Cereals provide more protein to the human diet than the contribution from
animal-based foods like milk, meat, fish, and eggs. Thus, cereals contribute as an important source
of protein for over half of the world’s population. Further, they are a rich source of dietary fiber and
nutrients. Hence, achieving self-reliance in cereal crop production can perhaps be an effective way
to promote nation-wide food security and achieve the SDG Zero Hunger target. However, the food
production of cereals is not uniform across the world (Figure 1) and many countries are dependent on
their import to meet the minimum calories.
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Figure 1. Global scenario of cereal production (in million tons) in 2017 by country/territory. This map
is prepared by authors with the cereal data retrieved from the Food and Agriculture Organization of
the United Nations (FAO) and boundary data was obtained from the World Bank.

4. Impact of the COVID-19 Pandemic on Food Security

The COVID-19 pandemic has a severe impact on food production, demand, and supply chain
systems [38,39]. Access to key requirements such as seeds, fertilizers, and pesticides might become
a limiting factor for food production [39,40]. Disruptions in national food supply chains, financial
instability and remittances are further creating severe food insecurity in many countries [41].
Additionally, national food security risks will be compromised by trade and export restrictions,
which could be destructive, particularly for cereal food-import-dependent countries [39,40,42].
The problem is worsened by labor (both agricultural and non-agricultural) shortages and disruptions
to transportation networks [43]. About 135 million people across 55 countries and territories
around the world were experiencing hunger (integrated food security and humanitarian phase
classification-IPC/CH Phase 3 or above) before the COVID-19 pandemic [44]. Millions of people are
likely to join the list as a result of the COVID-19-triggered recession. The lives and livelihoods of
265 million people (130 million new people due to the pandemic) in low and middle-income countries
would be under severe threat due to acute hunger by the end of 2020 [42].

The resilience of small-scale farmers is key to feeding both rural and urban populations in many
parts of the world. The food production system is dominated by smallholder farmers who produce
more than 70% of the food calories in 83 countries across Latin America, sub-Saharan Africa, and South
and East Asia [45]. The production from small-scale farms is extremely important as they belong to
rural areas of developing countries where the necessity is the highest. Moreover, the produce from the
smallholder farms is generally sold in local marketplaces enabling a smooth supply of food where
the COVID-19 pandemic has created complex logistical and transport problems. Moreover, the food
supply chain sourcing from the local farms is less vulnerable to travel and export bans and works
as a smooth food supply system [43]. Additionally, it offers economic, social, environmental as well
as health benefits [46]. Migration of unskilled workforce towards rural areas due to the COVID-19
pandemic [39] and utilization of family labor may empower them to overcome the need of seasonal
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labor deficiencies (at least in the developing countries where the family size is usually larger and family
members have returned to their rural homes due to shutdowns and job cuts in the urban areas) around
plantation, harvesting, and sending the product to the market. This might help in reducing the cost of
local food production so that local food supply chains may compete with the mainstream supply chain
systems as well as empower the local communities with limited income due to the loss of jobs to buy
staple foods.

Thus, this review paper aims to explore how the local drone-based data solution can help to combat
food insecurity caused due to the COVID-19 pandemic and shocks beyond the COVID-19 like drought,
flood, natural disaster as well as man-made extreme events such as social and political disturbances [47]
by improving cereal crop productivity of small-scale farming systems in low-income countries.

5. State-of-the-Art of Drone and Sensor Technologies

Drone [15,16] is an aircraft without a human pilot onboard which is controlled either autonomously
by onboard computers or through the remote control by a pilot on the ground. Other names
like unmanned aerial system (UAS), unmanned aerial vehicle (UAV), low altitude remote sensing,
and remotely controlled planes are also commonly used.

5.1. Drone Types and Categories

A wide range of criteria can be used to categorize drones in use for civilian purposes.
Common parameters include aerodynamic flight principle, size, payload, flight range, and endurance.
These parameters are interwoven. For example, a larger drone has greater payload capacity, higher
endurance, range, and vice-versa.

Based on the aerodynamic flight principles, drones are classified into two major types: fixed-wing
and multi-rotor [16]. Each of them flies based on different principles and has pros and cons. A multi-rotor
drone is propelled by rotors. The propellers are positioned in the same plane, parallel to the ground.
It has a mechanism that applies the opposite force to balance the wind; resulting in more stable flight
performance. Further, the ability to vertical take-off and landing (VTOL) makes a multi-rotor drone more
popular because of its ability to operate in space-constrained situations. Nevertheless, a multi-rotor
has low efficiency. On the contrary, a fixed-wing drone requires more space to take-off-and-land and
drifts more in windy conditions. However, it generally has higher endurance; meaning one can cover
larger acreage with a single battery from the same flying altitude and the sensor (if it is installable).
A summary of features of fixed-wing and multi-rotor drones (Table 1) and an illustration of typical
drones of the two types (Figure 2) are presented.

Figure 2. Types of drones based on aerodynamic flight principles. DJI P4 Multispectral (https:
//www.dji.com/p4-multispectral/specs), a multi-rotor drone (a); senseFly eBee SQ (https://www.sensefly.
com/drone/ebee-sq-agriculture-drone/), a fixed-wing drone (b).

https://www.dji.com/p4-multispectral/specs
https://www.dji.com/p4-multispectral/specs
https://www.sensefly.com/drone/ebee-sq-agriculture-drone/
https://www.sensefly.com/drone/ebee-sq-agriculture-drone/
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Table 1. Comparative analysis of drone types. There is a wide price range for drones. Low: Starting from 1,500 to 2500 USD, Medium: above 2,500 up to 7,000 USD,
High: above 7,000 USD.

Type Pros Cons Common Applications in
Geospatial Domain Indicative Price Range

Multi-rotor

• Better accessibility
• Better stability
• Vertical take-off and

landing (VTOL)
• No runway required
• Ability to hover at a point
• Usually heavier

payload capacity
• Easy getting started flying

• Short endurance and range
• Lower flight speed
• Less energy efficient
• Complex architecture and

difficult maintenance process

• Cultural
heritage documentation

• Survey and mapping
• Agriculture
• Disaster management

Low -Medium

Fixed-wing

• Simpler architecture and
easier maintenance process

• Long endurance and range
• Higher flight speed
• Larger acreage
• Greater energy efficiency
• Greater ability to survive

technical failure due to
gliding capability

• Limited accessibility
• Less wind resistance
• Difficulties in launching

and landing
• Harder to manuver
• Harder to fly, more

training needed

• Agriculture
• Forestry
• Wildlife conservation
• Long-distance inspection
• Survey and mapping
• Cultural

heritage documentation

Medium-High



Drones 2020, 4, 41 7 of 29

A helicopter can be categorized as a special case of a multi-rotor drone, having only one rotor.
Moreover, hybrid drones are being developed nowadays. These drones have a VTOL feature like a
multi-rotor but fly like a fixed-wing drone. Thus, they have advantages of the two types. Cost is a
major driving factor in the choice of drones where a multi-rotor is comparatively economical. However,
the choice depends upon a project’s requirements.

5.2. Applications of Drone Technologies in Geospatial Engineering.

Innovations in drones date back to the early 20th century with their military use. Gradually,
focus on drone research for civilian purposes started to develop from the 1990s, beginning with the
Environmental Research Aircraft and Sensor Technology (ERAST) project by NASA [48]. The high cost
of equipment, limited payload capacity, and unavailability of quality sensors were some of the notable
challenges in the early days for their scientific applications. With the development of a wide range of
sensors, reduced cost of ownership, and increased reliability and robustness, the drone technology
is becoming popular and is being widely used in scientific as well as engineering applications.
Applications of drone technologies in geospatial science and engineering are discussed.

Applications of drone for aerial survey and mapping [49–54], forest [55–58], wildlife
conservation [59–61], agriculture [22,27–31,62–89], disaster management [90–94], documentation
of cultural heritage [95–102], among many others, have been observed over the years. Examples of
research cases in each of these domains are summarized in Table 2.

5.3. Suitable Sensors for Vegetation Scouting

A widespread range of sensors has been reported for vegetation monitoring. The list of such
sensors includes inexpensive consumer-grade red-green-blue (RGB) cameras to the most expensive
but accurate LiDAR sensors. The use of lightweight multispectral sensors with near-infrared (NIR)
and/or Red-Edge bands as well as hyperspectral sensors have also become common because of
the spectral separability they offer. Thermal sensors are also becoming common in agriculture
monitoring [28,67,71,89,103]. Simultaneous utilization of multispectral, thermal, and RGB sensors for
precision viticulture has also been reported [67]. Similarly, the use of thermal sensors for assessing
water stress in the agricultural field has been described in the literature [89].

The use of LiDAR equipped drones has also been reported in the literature for a wide range
of vegetation monitoring applications; ranging from forestry [55,104,105] to agricultural [80,88,106]
applications. They come with a higher precision global positioning system (GPS) and inertial
measurement unit (IMU) and offer promising results. However, these systems are very expensive
because of the higher payload requirement for the carrier drones and the high cost of LiDAR sensors
as well as other necessary high precision sensors like IMU. Hence, the associated high cost is a prime
concern for farmers in low-income countries. While consumer RGB sensors are in-expensive, are
lightweight, and find a broad range of applications, multispectral and hyperspectral sensors are mostly
designed for specific applications (e.g., vegetation monitoring, soil characteristics, rock analysis, etc.).
It has to be noted that sensor technology is a fast-growing industry where new and promising sensors
are being rapidly developed. Sensors that were available on remote sensing satellite platforms are
now becoming available for integration with drones [107], however, they are still unaffordable to many
users. Only typical sensors available for integration with small drones for vegetation monitoring are
presented in Table 3.
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Table 2. Example of the applications of drone technologies in the geospatial domain.

Application Area Aims Common Sensor Type on Drone Ref.

Survey and mapping

• Geo-rectified mosaics
• Topographic and

cadastral mapping
• Monitoring of buildings

and structures

RGB and multispectral [49,50,52–54]

Agriculture

• Crop classification
• Precision agriculture
• Crop scouting
• Fertilizer use efficiency
• Drought monitoring

RGB, multispectral, thermal,
and hyperspectral [68,70,73,75,83,88,89]

Forest and wildlife conservation

• Forest inventories
• Forest fire
• Tracking of wildlife

RGB, multispectral, hyperspectral,
thermal, and LiDAR [55–59]

Cultural heritage documentation

• 3D reconstruction
• Identification and visualization of

archaeological crop marks
• Historical building information

modeling (HBIM)
• Archaeological sites detection
• Excavation monitoring

RGB, multispectral, and thermal [95,97,99]

Disaster management
• Slope failure detection
• Environmental risk assessment RGB [90,91]
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Generally, a smaller multi-rotor drone comes equipped with a company-fitted digital camera with
an RGB sensor. However, consumer RGB sensors have limited application in vegetation monitoring
given overlapping of spectral bands in these sensors [108]. Moreover, the interpolation algorithm
applied in such cameras for simulating a realistic appearance to the human eye [109] brings in
interpolated pixel values, thereby lowering the radiometric quality of the images. This is an undesirable
process for qualitative remote sensing. Researchers have experimented with modifying the RGB camera
by removing NIR blocking filter and replacing it with a visible (generally blue or green) band blocking
filter [109] so that vegetation analysis can be performed effectively. However, poor performance has
been reported because of the high vignetting effect on the vegetation indices calculated with visible
and infrared bands like the normalized difference vegetation index (NDVI) [109]. Yet, comparable
results with those from professional-grade sensors can be obtained after reducing the vignetting effect
from the modified camera [65]. Nonetheless, the correction/reduction methods are camera dependent
or require a large set of images with different acquisition and illumination scene conditions [109].

To overcome the limitation of RGB sensors, a professional but lightweight multispectral sensor
with a NIR/Red-Edge band or a hyperspectral sensor can be employed. Larger drones are equipped
with sensor swapping facilities so that multispectral and hyperspectral cameras and other sensors can
be installed (Figure 3b). On smaller consumer drones, however, customization facilities are provided,
where an additional sensor (generally, a multispectral sensor) is attached along with the existing
company fitted RGB sensor Figure 3a.

Figure 3. Options for multi-spectral sensor installations on small drones. Installation of Sentera NDVI
camera (https://sentera.com/dji-ndvi-upgrade/) on Mavic 2 (https://www.dji.com/mavic-2) in addition
to the company fitted RGB camera (a); a gimbal suitable for installing a select/swappable sensor (a
GPS/IMU, a thermal and a hyperspectral) on DJI M600 Pro (https://www.headwallphotonics.com/blog/

airborne-integration-considerations) (b).

https://sentera.com/dji-ndvi-upgrade/
https://www.dji.com/mavic-2
https://www.headwallphotonics.com/blog/airborne-integration-considerations
https://www.headwallphotonics.com/blog/airborne-integration-considerations
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Table 3. Typical sensors available for small drones. Wide varieties of sensors ranging from consumer RGB digital camera to multispectral, hyperspectral, thermal, and
LiDAR sensors fitted on drones are in use in vegetation/agriculture applications.

Spectral Category Sensor Type Sensor Color Space/Spectral
Band Carrier Drone Ref.

RGB 1′’ CMOS DJI FC6310 sRGB DJI Phantoms [66,110]

Multispectral
CMOS SlantRange 3p/4p/4p+ 470–850 nm (6 bands) DJI M100 [111–113]
CMOS MicaSense RedEdge 475–842 nm (5 bands) DJI M100, S800 EVO [114–116]

9 CMOS Mono-Chromatic
sensors MAIA S2

Same wavelength
intervals as of Sentinel-2

(9 bands)
- [107,117]

Hyperspectral
- SPECIM AFX10 400–1000 nm (224 bands) DJI M600 [118,119]

CMOS Headwall
Nano-Hyperspec VNIR 400–1000 nm (270 bands) S800 EVO [105,116,120,121]

CCD/sCMOS
Headwall

Micro-Hyperspec VNIR
A/E-Series

400–1000 nm (324/369
bands) DJI M600 Pro [120,122]

Thermal

CMOS FLIR Tau 2 7.5–13.5 µm S800 EVO, modified
Hexacopter [59,67]

- FLIR Duo Pro R 7.5–13.5 µm DJI Phantom 4 Pro [123,124]
- FLIR Vue Pro R 7.5–13.5 µm DJI M600 Pro, DJI S1000+ [125,126]

1/3” sensor WIRIS Agro R Long Wavelength
InfraRed DJI M600 Pro, DJI S1000 [127]

LiDAR
- Velodyne VLP-32C 32 channels DJI M600 Pro [128,129]
- RIEGL VUX-1UAV - Hexacopter, RiCopter [106,130]
- Hesai Pandar40 40 channels DJI M200 series, LiAir 200 [105]
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6. Drone-Based Data Solutions for Cereal Crops

6.1. Use of Drones for Cereal Crop Scouting

Drones have found to achieve a multitude of aims in agriculture applications. Their application
ranges from growth monitoring, biomass, and yield estimation to fertilizer, weeds and pest management,
water stress assessment, among others. The major application areas of drone-based data in precision
agriculture are presented in Table 4.

Table 4. Application of drones in agriculture. ER: exponential regression, Log: logarithmic regression,
LR: linear regression, MLR: multiple linear regression, RF: random forest.

Application Crop Indices/Variable Methods R2/Accuracy Ref.

Growth monitoring Wheat
Coverage, EXG, RED,

BG, RG, RB, and
Plant height

LR 0.70 to 0.97 [131]

Yield estimation Rice VARI, NDVI LR, MLR,
and Log 0.71, 0.76 [132]

Biomass estimation Maize NGRDI, ExG, ExGR,
CIVE, and VEG

LR, MLR,
and ER 0.59–0.82 [66]

Biomass estimation Barley Plant height ER 0.31–0.72 [17]
Biomass estimation Black Oat Plant height LR and ER 0.69–0.94 [133]

Fertilizer management Rice 39 variables LR ≥ 0.8(N uptake
and biomass) [79]

Water stress
assessment Maize TCARI/SAVI and

TCARI/RDVI LR 0.80 and 0.81
(with CWSI) [134]

Weeds, Oat - RF 87–89% [62]
Pest and disease

management Wheat RVI, NDVI, and
OSAVI RF 89% [63]

6.1.1. Crop Monitoring

Researchers have explored the use of drones for growth and health monitoring of cereal crops.
They have experimented with a wide range of criteria, ranging from plant height to various vegetation
indices, and sensors from RGB consumer cameras to LiDAR sensors. Canopy height extracted from
drone-based point cloud data derived from photogrammetry with a moving cuboid filter has been
used to monitor winter wheat [135]. Likewise, NDVI and Red-Edge NDVI (RENDVI) indices have
been used to study maize crops [73]. The use of color indices (CIs)/vegetation indices (VIs) to monitor
different cereal crops has been reported in the literature [77,131,136]. Few researchers have replaced the
red band with NIR by using a red band blocking filter and records data in Green-Blue-NIR bands [136].
Christiansen et al. [88] have used a LiDAR sensor mounted on a drone to monitor winter wheat.
Likewise, the relationship between plant height obtained from drone-based LiDAR and the lodging
degree of maize has been studied [106].

6.1.2. Biomass Estimation

Biomass estimation of cereal crops has been reported in various studies. Like crop monitoring, plant
height, RGB-based color indices as well as NIR/Red-Edge-based vegetation indices have been used to
estimate crop biomass. Canopy height obtained from RGB images is used in many studies [17,133,137].
The combination of vegetation indices and plant height derived from drone RGB imagery has shown
a high potential for maize biomass estimation [66]. Table 4 presents examples of combining VIs for
estimating biomass. Furthermore, the use of NIR/Red-Edge-based VIs has been reported to estimate
cereal crops biomass [18,65,83]. The use of multi-sensor data (multispectral, hyperspectral, and RGB
cameras) for biomass estimation of barley has been reported in [74].
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6.1.3. Yield Estimation

Yield estimation of cereals using plant height [137,138], CIs/VIs [18,65,75,81,82,132,138] derived
from RGB, multispectral and/or hyperspectral sensors are available in the literature. An image
processing method combined with the K-means clustering algorithm with a graph-cut (KCG) algorithm
on RGB images collected using a multi-rotor drone is utilized to estimate rice yield [139]. Similarly,
NDVI alone is used to estimate rice yield [18]. The rice yield is predicted with single-stage and
multi-temporal VIs derived from multispectral and digital (RGB) images [132]. Spectral indices,
ground-measured plant height, and height derived from drone hyperspectral images were used to
predict the winter wheat yield [138].

6.1.4. Fertilizer, Weeds, Pest, and Water-Stress Assessment

The impact of applied fertilizer on yield and/or biomass estimate has been investigated in
many studies [27,65,69,79,82,88]. A consumer-grade camera was used to assess wheat N status and
grain yield [65]. The study used developed vegetation indices using blue (B), green (G), red (R),
and near-infrared (NIR) bands. Further, the study finds that indices developed using R-G bands could
differentiate unfertilized and fertilized plots. In a different research, correlation of high-resolution
NDVI with fertilizer application level, and yield of rice and wheat crops were assessed [82]. Crop height
derived from LiDAR point clouds was correlated to the applied nitrogen treatments [88].

Additionally, weeds [62,86,140] and disease detection [63,64,72] studies with the help of
drone-based data have also been carried out. A semi-automatic object-based image analysis (OBIA)
procedure was developed with random forest (RF) combined with feature selection techniques, was
used to classify soil, weeds, and maize [86]. Multispectral [63] and hyperspectral [64] drone images
were used to map crop diseases in wheat. The studies used deep learning methods for disease
detection and mapping [63,64]. While Su et al. [63] explore spectral vegetation indices (SVIs) with RF
classification method to accurately map healthy and yellow rust infected areas, a deep convolutional
neural network (DCNN) based approach was utilized by Zhang et al. [64].

About 70% of freshwater is utilized in the agriculture sector [141]. Therefore, proper management
of water in this area is of paramount importance. Drones can better be utilized to assess water stress
levels in agricultural fields [89,134,142]. Zhang et al. [134] has demonstrated the use of multispectral
drone images as promising data for water-stress assessment in the maize field. They found strong
relationships between crop water stress index (CWSI), calculated by on-site measurements and
transformed chlorophyll absorption in reflectance index (TCARI)/soil-adjusted vegetation index (SAVI)
ratio, derived from drone images as well as CSWI and TCARI/renormalized difference vegetation
index (RDVI) ratio.

6.2. Crop Characteristics and Modeling Methods

6.2.1. Correlating Crop Characteristics with Remote Sensing Data

Remote sensing of crop yield depends on crop properties that vary according to the growth stage,
type, varieties, and health. These properties can be related to plant height and several indices derived
from RGB, multispectral, and hyperspectral images. Efforts have been made to developing and/or
improving vegetation indices to better understand the characteristics of the crops. These indices use
spectral reflectance from specific wavelengths recorded by the remote sensor. The foliage is found to
be very reflective and absorptive respectively in the NIR and red bands. Therefore, NDVI, which is
derived using information recorded in these two bands, is perhaps the most widely used index to
monitor vegetation health and dynamics. In addition to NDVI, other VIs/CIs are also used in the
literature to address the issues like atmospheric effects, canopy background, among others. Some of the
indices are visual atmospheric resistance index (VARI), normalized green-red difference index (NGRDI),
excess green (ExG), excess red (ExR), excess green minus red (ExGR), color index of vegetation (CIVE),
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and vegetation index (VEG). Major indices (either generic for vegetation analysis or more relevant to
crop assessment), their formula, and the literature are provided in Table 5.

While some studies have used plant height alone [17,133,143,144], others have used vegetation
indices and plant height [66,81,145]. In addition, use of single index [18,82] and multiple indices were
also reported in studies [66,69,73,77,79,83,132,145]. Usually, VIs derived using multispectral images
provide a better relationship with yield data than those obtained from the color image [132]. However,
Zhou et al. [132] have reported a higher correlation with color indices in the early growth stage of rice,
which behaved poorly after the heading stage. Hence, no consensus is available on which of the two
sensor types is the best. Nonetheless, the fusion of multi-sensor data and/or indices monitored over
time has shown stronger relationships [74,132].

Table 5. Vegetation indices for crop analysis reported in the literature adopted from [132], [66], and [79].
R, G, B, RE, and NIR signify digital numbers (DNs) in Red, Green, Blue, Red-Edge, and Near-Infrared
spectral bands, respectively whereas r, g, and b represent normalized DNs values of R, G, and B bands,
respectively. Rλ is radiance with spectral band wavelength λ.

Name Abbr. Formula Ref.

Vegetation index

Normalized Difference Vegetation Index NDVI (NIR−R)/(NIR + R) [146]
Normalized Difference Red Edge Index NDRE (NIR−RE)/(NIR + RE) [147]

Transformed NDVI TNDVI [(NIR−R)/ + 0.5]0.5 [148]
Green NDVI gNDVI (NIR−G)/(NIR + G) [149]

Ratio Vegetation Index RVI (λ1, λ2) Rλ1Rλ2 [150]
Difference Vegetation Index DVI (λ1, λ2) Rλ1 −Rλ2 [150]

Green DVI gDVI NIR−G [148]
Soil Adjusted Vegetation Index SAVI 1.5(NIR−R)/(NIR + R + 0.5) [151]

Optimized Soil Adjusted Vegetation
Index OSAVI 1.16(NIR−R)/(NIR + R + 0.16) [152]

Green SAVI GSAVI 1.5(NIR−G)/(NIR + G + 0.5) [153]
Red-Edge SAVI RESAVI 1.5(NIR−RE)/(NIR + RE + 0.5) [154]

Modified Enhanced VI MEVI 2.5 + 1) [154]
Enhanced Vegetation Index EVI 2.5(NIR−R)/(NIR + 6R− 7.5B + 1) [155]

Canopy Chlorophyll Content Index CCCI (NDRE−NDREmin)/(NDREmax −NDREmin) [156]
Green Chlorophyll Index CIgreen (NIR/R) − 1 [157]

Renormalized Difference Vegetation
Index RDVI (NIR−R)/(NIR + R)0.5 [158]

Modified GSAVI MGSAVI 0.5
[
2NIR + 1−

{
(2NIR + 1)2

− 8(NIR−G)
}0.5

]
[154]

Red-Edge wide dynamic range VI REWDRVI (0.12NIR−RE)/(0.12NIR + RE) [154]
Green RDVI gRDVI (NIR−G)/(NIR + G)0.5

Transformed Chlorophyll Absorption
Index TCARI 3 [(RE−R) − 0.2(RE−G)(RE⁄R)] [134]

Color Index

Normalized Difference Green/Red Index NGRDI (G−R)/(G + R) [159]
Excess Green Vegetation Index ExG 2g− r− b [131]
Excess Red Vegetation Index ExR 1.4r− g [160]

Excess Green Minus Red Vegetation Index ExGR 3g− 2.4r− b [160]
Visual Atmospheric Resistance Index VARI (g− r)/(g + r− b) [161]

Green Leaf Index GLI (2g− b− r)/(2g + b + r) [162]
Color Index of Vegetation CIVE 0.441R− 0.881G + 0.385R + 18.78745 [163]

Vegetation Index VEG G/Ra
× B(1−a), a = 0.667 [164]

6.2.2. Comparative Analysis of Cereal Crop Modeling with Machine Learning Methods

The methods to predict crop biomass and yield using remote sensing data can be grouped into three
broad categories: (1) physics-based methods, (2) crop simulation methods, and (3) regression-based
methods. The physics-based methods only consider individual crops and require soil-related
parameters. The simulation methods offer many benefits (e.g., are dynamic, parameters can be
tuned as per growth stage and consider growth development), however, they also require the inclusion
of changing meteorological situations, agricultural practices together with crop and soil parameters,
among others to predict crop yield [165]. Applying simulation methods to a larger extent can be
challenging because of the enormous need for diverse data mentioned above [165]. Furthermore,
the unavailability of large-scale data may result in inaccurate yield estimates. On the contrary,
regression-based methods are site-dependent, are less data-hungry, and are well suited for local scales.
Here, we deal with regression-based methods in this review.

While numerous studies have used traditional machine learning (ML) methods like linear,
exponential, and multiple/multi-temporal regressions, modern ML methods like artificial neural
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network (ANN), random forest (RF), support vector machine (SVM), convolution neural network
(CNN), etc. have developed over the years, and are relatively new for agricultural applications.
Several studies have used a linear regression model to correlate biomass and/or crop yield with
crop parameters measured using remote sensing techniques [18,66,74,81,137,143–145]. The use of
multiple variables (multiple linear regression) and multitemporal data are also reported in the
literature [66,79,83,132]. Non-linear (exponential and logarithmic) regression models have also
been used in many cereal crop research [17,66,133,144,145]. The use of multiple models has also
become common in recent times [66,74,132,133]. As compared to linear regression, non-linear models
produce higher accuracy biomass and yield estimates [66]. Likewise, regression with multi-temporal
data generally provides a higher correlation score [132]. However, these models also require more
in-situ samples.

With the huge amount of remote sensing data being collected from agricultural fields using
drones as well as IoT sensors, modern ML methods are now finding applications in PA. ML methods
can enhance the performance of drone-based systems by extracting soil and crop information from
images and sensors. Together with big data technologies and the availability of high-performance
computing facilities, these modern ML methods have evolved to offer new opportunities to understand
data-enabled analyses in PA. Application of these ML methods in PA ranges from species classification
to weeds and disease identification, fertilizer efficiency, and biomass and yield estimation. In the
upcoming paragraphs, we deal with the use of modern ML methods for cereal crops using drone-based
data only. A detail review of machine learning applications in agricultural production systems can be
found in the literature [23].

Deep neural network (DNN), a type of ANN with multiple hidden layers, was utilized for crop
classification [166]. The method was successful in identifying staple food crops like maize and banana
while it failed to classify intercropping crops like legume. In a separate study, a semi-automatic
object-based image analysis (OBIA) technique was used to extract spectral, textural, and geometric
features from drone RGB images, which was provided to RF classifier to classify soil, weeds, and maize.
To detect yellow rust in winter wheat, Zhang et al. [64] provided spatial and spectral information from
high-resolution hyperspectral drone images to a deep convolutional neural network (DCNN) while
that of spectral information only was used in the RF. Combining both spectral and spatial information
in DCNN yielded higher accuracy in detecting the disease [64].

For water stress assessment in winter wheat, Ge et al. explored extreme learning machine (ELM)
and RF methods [121] and used 4 spectral indices derived from hyperspectral drone images. The RF
algorithm was found to be the best method with a perpendicular index (PI). In another research,
the RF algorithm was used to estimate barley biomass and nitrogen content [74]. The authors utilized
combinations of 55 hyperspectral features and 13 RGB features. The utilization of spectral features
was the most significant while that of the 3D features was found to be the least significant [74].
Various methods for wheat yield estimation were used by Fu et al. [167]. With a combination of four VIs
from multispectral drone images as input in the study, the RF algorithm provided the best estimation
accuracy, followed by ANN and partial least square regression (PLSR) methods. Applications of only
modern ML methods for cereal crops with the use of drone-based data are summarized in Table 6.
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Table 6. Summary of modern Machine Learning methods in cereal crop applications. ANN—artificial neural network, CCCI—canopy chlorophyll content index,
CIs—color indices, DCNN—deep convolution neural network, DNN—deep neural networks, NDRE—normalized difference red edge index, NDVI—normalized
difference vegetation index, RF—random forest, OSAVI—optimized soil adjusted vegetation index, PLSR—partial least square regression, VIs—vegetation indices,
DI—difference index, RI—ratio index, NDI—normalized difference index, PI—perpendicular index.

Application Inputs Est. Param. Method/Algorithm Target Crop Results Ref.

Crop classification Drone RGB images - DNN Maize, Banana,
and Legume

(Accuracy, Kappa)
Maize: (0.93, 0.85)

Banana: (0.98, 0.95)
Legume: (0.95, 0.46)

[166]

Weeds identification Spectral, textural, and
geometric features

Soil, weeds, and
maize RF Maize Overall Accuracy: 0.945

Kappa: 0.912 [86]

Disease detection
Spatial and spectral
info. to DCNN; only

spatial info. to RF
Yellow rust DCNN, RF Wheat

Overall Accuracy
DCNN: 0.85

RF: 0.77
[64]

Water-stress
assessment DI, RI, NDI, and PI Soil moisture content

(SMC) RF, ELM Wheat
(R2, RMSEP, RPD)

RF: (0.907, 1.477, 3.396)
ELM: (0.820, 1.984, 2.322)

[121]

Fertilizer estimation 36 spectral features
from hyperspectral
sensor, 13 VIs/Cis,
and 16 3D features

Nitrogen RF Barley PCC: 0.97%RMSE: 21.6% [74]

Biomass and yield
estimation

Biomass RF Barley PCC: 0.95%
RMSE: 33.3% [74]

NDVI, NDRE, OSAVI
& CCCI Yield PLSR, ANN, RF Wheat

(R2, RRMSE)
PLSR: (0.7667, 0.1353)
ANN: (0.7701, 0.1126)

RF: (0.7800, 0.1030)

[167]
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SVM/support vector regression (SVR), CNN, and RF are popular modern ML methods/algorithms.
SVR is appreciated because of its ability to tackle with high dimensionality data and do well with
limited training sets [168]. RF is popular for being relatively insensitive to classification parameters and
usually offers high accuracy [169]. However, there is no consensus on which of these methods yields
the best results [64,167,170,171]. Moreover, the application of ML methods with a tremendous volume
of drone-based agriculture data is relatively unmatured. Hence, additional research is necessary to
explore and utilize the efficiency and efficacy of such methods in this arena.

6.3. Opportunities and Challenges

A drone-based platform coupled with digital, multispectral, and/or hyperspectral sensors presents
a multitude of opportunities and challenges for monitoring, investigating, and mapping cereal crops
at the farm level. Some issues like complex drone regulations and unavailability of insurance policy
for drones, however, are debatable and actual conditions may differ country by country [19,172].
Similarly, privacy concerns may be relaxed as the agriculture area generally lies in remote places with
no nearby settlements. Additionally, an endurance of around 2 h with a fixed-wing drone will be
fine for agriculture scouting at the farm level. A list of opportunities and challenges for cereal crop
investigation and modeling are summarized in Table 7 and each of them is reviewed and discussed.

Table 7. Opportunities and challenges of drone-based crop monitoring and yield estimation.

Opportunities Challenges

• Ultra-high spatial resolution • Limited payload

• Extremely high temporal resolution • Low spectral resolution for low-cost sensors;
High cost of hyperspectral sensors

• Cloud free data/images • Sensitivity to atmospheric conditions

• Potential for high-density 3D point cloud • Limited flight endurance

• High potential for citizens participation • The high initial cost of ownership

• Scalability with relatively low costs of operation • Requirement of customized training to
the farmers

• The emergence of cloud-based data
processing platforms • Technical knowledge for repair and maintenance

• The fair and accurate payout for crop insurance

6.3.1. Opportunities

• Ultra-high spatial resolution

The flying height of small drones is usually in the range of tens of meters to a few hundred meters.
This allows the platform to provide ultra-high-resolution images [49,86,131]. Spatial resolution smaller
than 10 cm is generally obtained, though 1 cm spatial resolution [131] has become quite common in
recent times. The available resolution is very much suitable for monitoring and mapping of smaller
farms in low-income countries [13]. Further, the ultra-high spatial resolution images not only allow to
get individual crop level information but also can permit the information on soil characteristics, e.g.,
soil moisture [89,121].

• Extremely high temporal resolution

Due to the short lifespan of cereal crops, monitoring, and intervention of the farms with the
extremely high temporal resolution is of paramount importance. Monitoring cereal crop characteristics
at each/particular phenological stage is crucial. Moreover, the revisit time of very high resolution
(VHR) satellite images may not align with the strict crop monitoring schedule. However, a drone can
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be flown at the strict monitoring schedule. Furthermore, this platform also permits to fly at a chosen
time of the day which will enable to reduce the shadowing effect. Additionally, the lower operational
cost of drones also supports capturing data with high temporal resolution.

• Cloud-free data/images

Though optical satellite images were common in the past, cloud cover [14,110] is a major hindrance
to their applications for cereal crop investigation, especially during the monsoon and the winter.
Cloud cover is prevalent in the monsoon when paddy rice is grown in the larger area of Asia. Similarly,
fog and haze are quite common during the winter wheat growing season. Hence, these images
limit the investigation of cereal crops. Satellite-based active sensors (e.g., SAR) can be an alternative
data source, however, the spatial resolution of such images currently available is unsuitable for the
smallholders’ plot-level farm investigation. Hence, drone images prove to be the most promising
platform considering the operational flying height of small drones that permits the acquisition of
cloud-free ultra-high spatial resolution images.

• Potential for high-density 3D point cloud

Three-dimensional point could is crucial for estimating plant height, crop phenology, and
biomass [135,144,173]. A better estimation of these parameters can be achieved with a high-density
point cloud obtainable from drone images and LiDAR than aerial imageries and stereo satellite images.
Though the accuracy of the point cloud from LiDAR is tremendous, its cost is far greater than that
from the drone images [174]. Moreover, monitoring smaller farms with manned aircraft and satellite
images is not practical due to associated cost and necessity for high temporal resolution.

• High potential for citizens participation

Planning and operating a consumer drone have become straight forward because of the high
level of automation in planning, takeoff, and landing. With high penetration of mobile networks [175],
smartphones-based freely available flight planning software have made planning a drone flight
reachable to almost all, and are tremendously easy as they now offer intuitive graphical user interface
(GUI). With some kind of training provided to the farmers, they could download and process images
with freely available GUI based software, e.g., PrecisionMapper (https://www.precisionhawk.com/

precisionanalytics) and WebODM (https://www.opendronemap.org/webodm/).

• Scalability with relatively low costs operation

Cereal crop monitoring, investigation, and yield estimation using satellite-based EO images are
challenging due to smaller farm sizes in low-income countries [13] and a short cereal crop lifespan.
Whilst the spatial and temporal resolutions of freely available satellite images prohibit their applicability
at the farm level, the cost of very high-resolution (VHR) satellite images bars temporal monitoring
of such crops [176]. Moreover, the farmers lack the resources to use VHR remote sensing images,
images from piloted aircraft, or any sophisticated and expensive systems like LiDAR. Further, the cost
of operation for consumer drones are low, are easy to operate, and provide ultra-high spatial and
temporal resolution images.

Cooperative farming is becoming popular [177]. This practice not only helps to cut the cost
of inputs and gets government subsidies but also support sharing resources, knowledge, and find
marketing their product much appropriate. As a result of the low operational cost and easy to operate
the system for monitoring, mapping, and yield estimation with consumer drones, the cooperatives can
manage to pay for and employ the technology to scout their cereal farms, make informed decisions,
and get enhanced productivity. Henceforth, the drone-based system is scalable with a cooperative
farming system. In one of our research, plant height measurements were performed by farmers’
cooperative members [137]. Thus, the farmers’ cooperatives can appropriately employ the drones and
operate it themselves as well, if proper training is prearranged.

https://www.precisionhawk.com/precisionanalytics
https://www.precisionhawk.com/precisionanalytics
https://www.opendronemap.org/webodm/


Drones 2020, 4, 41 18 of 29

• The emergence of cloud-based data processing platforms

The drone data solution represents the five stages of the data lifecycle i.e., acquisition, analysis,
storage, sharing, and visualization. The advancements of sensor technologies (e.g., Table 3) have
enabled drones to acquire a large amount of data (e.g., image, video, radio signals, emission gases,
etc.) with very high spatial and temporal resolution. At the same time, IoT-based low-cost sensors
continuously present agronomic and environmental parameters, which can be assimilated with the
drone-platforms. The advancement of big data processing environments (e.g., Microsoft Azure, Google
Earth Engine (GEE) and machine learning methods (e.g., Table 6) offer a unique opportunity to process
these datasets in real-time for better decision making [178,179].

• The fair and accurate payout for crop insurance

Natural disasters (such as floods, drought, cyclone, etc.), pandemic and zoonotic diseases (such
as COVID-19, bacteria, parasites, and fungi) and occasional but disruptive insects like Desert Locust
(which appears at the beginning of 2020 in Africa and entered Nepal in July 2020) can damage the
crop and reduce the yield. Precise and accurate information is mandatory for both the farmers and the
insurance companies for a fair and accurate payout. Traditional surveying methods like images from
an expensive aircraft or an inaccurate measurement produced by “eyeballing”, are no longer practical
in these conditions. On the contrary, a single drone flight can provide a rapid, easy, and accurate
assessment for crop insurance adjustment procedures and payout.

Further, crop simulation models require very comprehensive information on crop fields to
accurately predict the produce. With drone’s technology, the crop insurance companies can get
supplementary information like tentative sowing date, planting density, row spacing, management
regimes, precise growth, and health among other information at the plot-level. Farmers plant/sow
different crops than what had been committed to crop insurance companies at the time of issuance
of the insurance policy. With the application of drone’s technology, geographic information system
(GIS), and digital cadastral data, it is now possible to detect fraudulent claims by the farmers, measure
discrepancies and validate the compliance level stated/agreed in the policy [180]. Hence, a drone-based
crop scouting system can be a great solution for fair and accurate payout to the insured farmers,
by the crop insurance companies and this would help the companies to stay competitive and increase
operational efficiency.

6.3.2. Challenges

• Limited payload

Consumer drones have limited payload capacity. Thus, they cannot afford to accommodate
heavy professional quality sensors. Innovations in sensor technology have led to the development of
lightweight sensors that can fit on consumer drones (Table 3). However, the cost of such sensors is still
out of reach for many users, especially in low-income countries. Nonetheless, the cost of light-weight
sensors can be anticipated to drop in the coming years as did the price of the consumer drones.

• Low spectral resolution for low-cost sensors and high cost of hyperspectral sensors

The high cost of high spectral resolution (hyperspectral) sensors is a major limiting factor to
the widespread use of drones in the agriculture sector. Thus, many users were limited to use a
consumer-grade digital camera for many applications [66,108,109,137]. Consumer digital cameras
suffer from overlapping spectral bands [108], pixel interpolation, and high vignetting effect [109]. Thus,
these sensors may find limited applications, for example, in disease detection, crop health monitoring,
and weeds identification. The use of multispectral sensors could bridge the gap for many, as a cost
point of view.

• Sensitivity to atmospheric conditions



Drones 2020, 4, 41 19 of 29

Drone images are free from the cloud cover issues. However, other atmospheric phenomena like
haze, fog, precipitation, and strong winds may negatively impact its usage [181]. These issues can,
however, be tackled with proper flight planning and management, and to some extent with the help of
image pre-processing techniques.

• Limited flight endurance

Flight endurance of multi-rotor drones which present flexibility in sensor installation, is still
a major challenge for monitoring larger acreage. However, the lager acreage can be inspected and
mapped with the help of fixed-wing drones. Nonetheless, only light-weight sensors can be installed
on them.

• The high initial cost of ownership

Though consumer drones are cheaper, they come with consumer-grade optical sensors, which are
unsuitable for many agricultural applications. A hyperspectral sensor offers tremendous opportunities
for cereal crop analysis. However, they are unaffordable to many. Additionally, the weight of such
sensors is still on the heavier side which requires larger carrier drones, increasing the ownership cost.
Thus, the initial cost of ownership is still a major hurdle in the wider application of drones. We can
expect to drop the cost as well as the size and the weight of the sensors in the future.

• Requirement of customized training to the farmers

For proper utilization of the technologies, confidence and knowledge of the farmers need to be
boosted. Motivating and capacity building of wide diversity of farmers may be the main challenge
towards real applications of drones in agriculture. While younger generations are selecting farming
as an occupation, the job can be completed comparatively with ease. Nonetheless, training for
implementing the entire workflow is of paramount importance.

• Lack of technical knowledge for repair and maintenance, and unavailability of parts

Though consumer drones are easy to operate, their repair and maintenance require technical
knowledge and experience. Further, the unavailability of parts (for replacement in case of damage)
may be another issue at many places in the world.

7. Conclusions and Outlook

The outbreak of the COVID-19 pandemic is having an unparalleled effect on our food systems
and beyond. To this end, we provide a synthesis of the use of drone-based data solutions and highlight
the need to capitalize on this development towards improving cereal crop productivity of small-scale
farming systems in low-income countries. We also discussed the availability of suitable sensors,
platform choices, and the benefits of utilizing novel machine learning methods for crop yield estimation
by employing associated variables. Furthermore, possible opportunities and challenges of drone-based
technologies for cereal crop monitoring and mapping are presented in this review article. We conclude
that the productivity of smallholder farmers may be enhanced with the use of technologies like drones
to combat the disruption caused in food supply systems because of the COVID-19 pandemic.

The drone navigation system, sensor technologies, regulations, and platforms together with
internet services are constantly improving. These improvements will provide new opportunities
for drone-based data solutions. A number of future outlooks have been identified with regards to
cereal crops:

• Drone-based data solutions have produced promising results in crop biomass and yield estimation.
However, they are applicable to farm scales only due to logistics, cost, and big amount of
data acquisition. Furthermore, drone technologies are still considered high-tech in farmers’
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communities, especially in low-income countries. Satellite remote sensing images are better suited
for homogeneous agriculture practice where larger farm sizes exist. While satellite remote sensing
data are not capable to produce high accuracy yield prediction in heterogeneous agriculture
practice, the drone-based solutions apply to local scales only. Hence, there is a requirement for a
robust system and method for estimating crop yield in heterogenous agriculture practices with
smaller farm sizes, and yet they should be scalable to larger areas. A framework is required for
integrating the information from drones at local scales to satellite-based data which will make yield
prediction at larger scales possible [182]. This framework could reduce the requirement for in-situ
data. For biomass estimation of mangrove forest, up to 37% reduction in in-situ data was observed
than what is normally required for direct calibration-validation using satellite data [55]). Sentinel-1
SAR (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/overview) and upcoming
NASA-ISRO SAR mission (NISAR) (https://nisar.jpl.nasa.gov/) can provide a backscatter of up
to 10 m spatial resolution. This will also help to get weather independent data (cloud during
the monsoon crops like rice and maize; and fog and haze during the winter crops) to upscale
the results.

• Citizen science has been considered as an alternative and cost-effective way to acquire in-situ
data [183]. Citizen science-based data can be utilized to calibrate and validate the models.
The usability of smartphones and low-cost sensors can be explored to increase the wider acceptance
of the system in low-income countries [184,185]. Furthermore, the utilization of drones by local
farmers themselves will allow cost reduction, enhance technical know-how, increase acceptance
by the farmers’ communities, and make the system sustainable. Nevertheless, data privacy,
data governance, and the degree to which communities would require external support, training,
and funding for drone operation also need to be considered carefully.

• It is usually not possible to regulate multiple variables through linear regression models. Multiple
variables can be ingested to machine learning techniques; however, most studies have been
using developed vegetation indices only. Additional research can ingest multiple variables (e.g.,
agro-environmental conditions) in the model. Internet of things (IoT) based low-cost sensors can
be employed to automate the system and to reduce the cost of data acquisition.
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