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Abstract: Deriving crop information from remotely sensed data is an important strategy for precision
agriculture. Small unmanned aerial systems (UAS) have emerged in recent years as a versatile
remote sensing tool that can provide precisely-timed, fine-grained data for informing management
responses to intra-field crop variability (e.g., nutrient status and pest damage). UAS sensors with
high spectral resolution used to compute informative vegetation indices, however, are practically
limited by high cost and data dimensionality. This research extends spectral analysis for remote
crop monitoring to investigate the relationship between crop health and 3D canopy structure using
low-cost UAS equipped with consumer-grade RGB cameras. We used flue-cured tobacco as a case
study due to its known sensitivity to fertility variation and nutrient-specific symptomology. Fertilizer
treatments were applied to induce plant health variability in a 0.5 ha field of flue-cured tobacco.
Multi-view stereo images from three UAS surveys collected during crop development were processed
into orthoimages used to compute a visible band spectral index and photogrammetric point clouds
using Structure from Motion (SfM). Plant structural metrics were then computed from detailed
high resolution canopy surface models (0.05 m resolution) interpolated from the photogrammetric
point clouds. The UAS surveys were complimented by nutrient status measurements obtained
from plant tissues. The relationships between foliar nitrogen (N), phosphorus (P), potassium (K),
and boron (B) concentrations and the UAS-derived metrics were assessed using multiple linear
regression. Symptoms of N and K deficiencies were well captured and differentiated by the structural
metrics. The strongest relationship observed was between canopy shape and N foliar concentration
(adj. r2 = 0.59, increasing to adj. r2 = 0.81 when combined with the spectral index). B foliar
concentration was consistently better predicted by canopy structure with a maximum adj. r2 = 0.41
observed at the latest growth stage surveyed. Overall, combining information about canopy structure
and spectral reflectance increased model fit for all measured nutrients compared to spectral alone.
These results suggest that an important relationship exists between relative canopy shape and crop
health that can be leveraged to improve the usefulness of low cost UAS for precision agriculture.
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1. Introduction

One of the primary goals of precision agriculture is identifying intra-field variability to enable a
management response to plant stress that will maximize yield. Currently, farmers monitor crop health
in high-value crops through labor-intensive scouting, destructive field sampling, and costly laboratory
assays. Remote sensing, however, is increasingly being used as an alternative tool for crop monitoring
that more accurately accounts for spatial variations in crop stress across a field [1]. Small unmanned
aerial systems (UAS) have emerged in recent years as a versatile remote sensing tool used by scientists
and agricultural producers for collecting data at very high spatial and temporal resolutions [2,3].
UAS can provide precisely-timed, fine-grained data for informing spatially variable management
responses for maximizing crop productivity while minimizing natural resource degradation.

One of the most promising application of remote sensing in agriculture is identifying symptoms
from biotic and abiotic plant stressors, such as nutrient deficiencies, pest pressure, and harsh
environmental conditions. In particular, monitoring plant nutrition with remote sensing has
been successfully demonstrated by numerous studies [4–7]. Symptoms of deficiencies of essential
macronutrients, like nitrogen (N), phosphorus (P), and potassium (K), can often be differentiated
visually, making remote identification possible. These nutrients perform crucial roles in plant
development and are needed in relatively high concentrations at specific plant growth stages [8].
Nutrient toxicity is also important to monitor for many crops, such as boron (B) in flue-cured
tobacco, which has negative effects on leaf quality due to increased nicotine and other alkaloids [9–11].
Remote monitoring of crop nutrient status with UAS can provide on-demand, fine-grained spatial
information to improve crop productivity and minimize over-application of fertilizers if integrated
into existing precision agriculture technology used on-board commercial tractors and implements.

Nutrient deficiencies often cause visible changes in foliar coloration, appearing yellow (chlorotic),
white (bleached), brown (necrotic), red, or black [12]. These well-documented deficiencies can
be measured by sensors as changes in spectral reflectance and enable noninvasive diagnostics of
plant nutrient disorders. Vegetation indices, like Normalized Difference Vegetation Index (NDVI),
measured by broadband multispectral sensors have been shown to strongly correlate with crop health
and are widely used in agriculture and throughout the literature [13–16]. Hyperspectral sensors with
very fine spectral resolution also have the potential to measure unique spectral signatures for nutrient
disorders [7,17,18]. However, practical application of UAS hyperspectral imagery to diagnose nutrient
disorders in production agriculture remains limited by high costs, high data dimensionality, and the
need for advanced data analysis skills. UAS with optical cameras, in contrast, are inexpensive and often
supported by cloud-based data storage and processing, making them easier to use by farmers without
remote sensing data processing skills [2]. Optical cameras provide visible band imagery that can be
used to calculate vegetation indices, like Visible Atmospheric Resistant Index (VARI) and Triangular
Greenness Index (TGI) [19]. These RGB indices have been shown to correlate well with leaf area index
and chlorophyll content [19,20]. Chlorophyll, which reflects highly in the green spectrum, is a good
indicator of many plant stressors with symptoms of foliar chlorosis or yellowing [21]. Unfortunately,
the small spectral range of optical cameras make RGB vegetation indices limited in usefulness.

In addition to natural color images, 3D point clouds and highly detailed surface models that
provide valuable information about vegetation height and heterogeneity can be computed from RGB
images using the photogrammetric technique Structure from Motion (SfM) [22]. The high-resolution
representation of crop canopy surfaces presents an opportunity to explore the relationship between
canopy structure and important crop characteristics, like stress and productivity. For example,
Hunt and Rondon [23] used very high resolution canopy surface models to identify foliar pest damage
in potatoes. Other studies have shown success in correlating yield and biomass with structural metrics
generally used to characterize geomorphological surfaces [24–26]. Parker and Russ [24] measured
spatial covariance of LIDAR-derived outer forest canopy through rugosity (standard deviation of
canopy height), hypsographs, fractal dimension, integral scale, and elevation relief ratio to characterize
conifer forest canopy structural complexity. A similar technique was used by Li et al. [26] and Li, Niu,
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Chen and Li [25] with photogrammetric point clouds to estimate biomass and leaf area index (LAI) in
maize. Studies have also used simple crop height and relative canopy cover to estimate barley and
cotton yields [27,28]. Research on methods for characterizing crop canopy structure and the potential
for deriving valuable crop information from SfM canopy surface models has been limited, however,
and should be further explored.

A common goal within precision agriculture is improving crop yield and farm profitability
through the use of technology and data analytics. The current costs and barriers to practical use
associated with high spectral resolution imagery and active laser scanning increase the importance of
improving the predictive power of inexpensive UAS-acquired data. In this study, we used a small UAS
platform equipped with a consumer-grade RGB camera to investigate the use of canopy structural
metrics combined with spectral reflectance to monitor the onset of nutrient disorder symptomology in
a case study of flue-cured tobacco. This approach goes beyond traditional spectral analysis for remote
crop monitoring to explore the relationship between crop health and patterns in canopy height spatial
variance measured from high resolution, photogrammetric canopy surface models. Our results suggest
that an important relationship exists between relative canopy shape and crop nutrition that can be
leveraged to improve the usefulness of low cost UAS for precision agriculture.

2. Materials and Methods

2.1. Study Site

A field experiment took place in Wilson, NC (35◦47′42′ ′ N lat, 77◦56′52′ ′ W long) during the 2019
summer growing season to investigate the use of UAS imagery for detecting nutrient disorders in
flue-cured tobacco. The study site was located on a commercial farm and was planted and maintained
by the farm managers. The site had a mean elevation of 47.5 m and relatively uniform, low gradient
topography with mean slope of 1.46 degrees tilted eastward. Soils across the study site were relatively
homogeneous sandy loam. Six soil samples evenly distributed across the field were collected and
analyzed for nutrient content, pH, humic matter, and cation exchange capacity (CEC) prior to the
experiment (NCDA & CS Agronomic Services Division; Raleigh, NC). The soil properties were similar
across the samples with an average of 5.68 pH, 3.12 cmolc/kg CEC, and 0.32% humic matter. Weather
conditions during the experiment were typical of the area’s humid subtropical climate, with an average
daily air temperature of 25.6 ◦C and average daily precipitation of 2.7 mm. During the two weeks prior
to the first data collection, the study site received 97 mm of rain. Total rainfall during the remaining
four weeks of the experiment was 30 mm.

Flue-cured tobacco seedlings were transplanted on 16 April 2019 into a 0.5 ha field in thirty-six
10 m × 16 m blocks. Each block consisted of four rows with 1.16 m row spacing and 0.58 m
in-row spacing between plants. To induce variability and extremes in nutrient availability within
the field, 6N-6P-18K fertilizer (Tobacco Super Rainbow; Agrium U.S., Inc., Denver, CO, USA) was
applied to the blocks in early May (3–4 true leaves) at four different rates using block randomization.
Nine blocks each received 0, 50, 100, or 200% of the recommended fertilizer rate for flue-cured tobacco
production as published by Fisher [29]. To induce nutrient disorders, three small strips of twelve
plants (approximately 1.7 m × 4.7 m) within each block were given a fertilizer treatment deficient of
N, P, or K or a toxic amount of B. Within the blocks fertilized at 0 or 50% rates, the three strips were
fertilized with a custom fertilizer made to replicate the 6N-6P-18K fertilizer devoid of either N, P, or K.
Within the blocks fertilized at 100 or 200%, the three strips were given an excess application of B at a
rate of 4.50, 9.00, or 18.1 kg/ha in addition to the 6N-6P-18K fertilizer. Figure 1 shows the study site
with the block and strip fertilizer treatments. Flowering and topping began on June 15 with all plants
topped by 3 July. Chemical sucker control was used to inhibit auxiliary bud growth after topping.
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Figure 1. Field experiment site in Wilson, NC. Flue-cured tobacco was planted in thirty-six blocks
each containing three strips fertilized with treatments to induce variability in nutrient availability
throughout the 0.5 ha field.

2.2. Data Collection

UAS surveys to collect aerial imagery of the study site were conducted on 19 June, 3 July, and 17
July starting approximately four weeks after the fertilizer treatments were applied. The UAS data were
collected by PrecisionHawk (Raleigh, NC, USA) using a DJI Phantom Pro 4 equipped with a 20 mp
RGB camera. At least twenty-two images were collected during each survey using a grid flight pattern
at approximately 67 m altitude with a nadir camera angle. To ensure matched vegetation features
across multiple images, 80% side and forward image overlap was used. Ground control points were
not used as the images were initially collected to be used for visual inspection. Errors in X,Y position
and elevation were corrected using orthoimagery and LIDAR data as described in Section 2.3.

Foliar tissue samples were collected from each treatment replicate at approximately the same time
as the UAS flights by Dr. Josh Henry and field research assistants from the Crop and Soil Sciences
and Horticulture Science Departments at NC State. Leaf tissue samples were pooled resulting in three
samples per fertilizer treatment to reduce the total number of samples and lab analysis costs. The leaf
tissues were dried, ground, and analyzed for elemental nutrient concentrations of N, P, K, and B by
AgSource Laboratories (Lincoln, NE, USA).

2.3. Data Processing

Photogrammetry software (Agisoft Metashape, version 1.5.4.8885) was used to process the UAS
images into 3D point clouds and orthoimages for the three survey dates. The multi-view stereo images
were aligned by matching features in multiple images to create a sparse point cloud. The sparse
point cloud was then filtered to include only points with reconstruction uncertainty less than 50 and
reprojection error less than 0.35 pixels. A dense point cloud was created using images downscaled
by a factor of four (high reconstruction quality setting). Point filtering was disabled to preserve gaps
between plants and other heterogeneous features in the point geometry representing the plant canopy
(Figure 2). The density of the resulting point clouds was approximately 900 points/m2. The average



Drones 2020, 4, 36 5 of 22

X,Y and Z camera location error was 2.29 m and 0.46 m, respectively. The average point reprojection
error was 0.56 pixels.

(a) (b) (c) (d)
Figure 2. Comparison of surface models resulting from variations in point cloud filtering in Agisoft
Metashape and interpolation smoothing parameters. (a) Orthoimage of tobacco plants represented in
surface models shown at right. (b) Noisy surface with poor representation of gaps between plant rows
created using mild depth filtering and no surface smoothing. The point filtering algorithm removed
important bare ground points between plant rows. (c) Noisy surface with better representation of gaps
between plant rows created using no depth filtering and no surface smoothing. (d) Less noisy surface
with good representation of gaps between plants created using no depth filtering and smoothing
splines with tension.

The point clouds were then interpolated to create smoothed digital surface models (DSM) using a
regularized spline with tension method implemented in GRASS GIS 7.8 [30,31]. The tension parameter
tunes the surface stiffness and the smoothing parameter controls the resulting surface’s deviation from
the point cloud (see the relevant equations and explanation of the parameters in [30,31]). Tension and
smoothing parameter settings were iteratively adjusted to reduce surface noise and retain realistic
canopy features (tension: 20, smoothing: 5) (Figure 2). A spatial resolution of 0.05 m was used for the
interpolated surface model based on point density and plant feature dimensions. To correct errors in
X,Y position, the resulting DSMs and UAS-derived orthoimages were georeferenced to 2017 state-wide
orthoimagery (0.15 m resolution) [32].

To correct errors in elevation, the DSMs were compared to a 0.05 m resolution digital elevation
model (DEM) interpolated from LIDAR bare earth points (9.25 cm vertical linear root mean square
error (RMSEz)) collected in 2015 for the NC Floodplain Mapping Program [33]. Orthoimages created
from the UAS data were used to identify approximately 30 bare earth points well distributed across the
study area that should have elevations values that match the DEM. The DSMs were sampled at each of
these bare earth points and the sample point values were interpolated using splines with tension to
create smoothed surfaces representing error in the z-values for each DSM (tension: 40, smoothing: 5).
The error surfaces were then subtracted from the DSMs to correct the elevation values. The corrected
DSMs had bare earth elevation values within ±0.05 m of the DEM. Crop surface models (CSM) with
z-values normalized for topography were created by subtracting the bare earth DEM from each DSM.
Note that bare earth points from UAS data could also be used to create a DEM when lidar data is not
available [34].

A mask was created to exclude non-tobacco features, such as soil, rocks, and other vegetation,
from computation of the spectral vegetation index and the structural metrics that were not intended to
characterize canopy gaps (described in Sections 2.4 and 2.5). Features less than 0.2 m in height were
considered non-tobacco. This height threshold was effective in removing features that were not of
interest while retaining canopy features from the most nutrient deficient plants, which were at least
0.6 m in height at the first survey.
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2.4. Canopy Surface Analysis

Using ArcMap 10.7, plot boundaries were drawn around each treatment strip with approximately
0.5 m between each polygon to reduce edge effects, resulting in 4.7 m × 1.2 m areas for each strip.
Four plot polygons of equal size were drawn in each treatment block as well (Figure 3). The plot
polygons were used to extract pixel values representing crop height in each treatment area and compute
metrics quantifying structural characteristics of the canopy. Vertical and horizontal patterns in canopy
structure were of interest for their potential to predict crop health. Metrics were chosen to quantify
central tendency of crop height, canopy structural complexity, and canopy structural uniformity.
Table 1 summarizes the metrics used.

Figure 3. Plot polygons corresponding to variable nutrient treatments across the study area. The plot
polygons were used to extract canopy height and geometry from the canopy surface models.

Table 1. Summary of canopy metrics computed from unmanned aerial systems (UAS) data.

Metric Canopy Characteristic Measured Notes

Crop height mean (m) central tendency of plant height
Crop height std. dev. (m) variability of plant height
Histogram skewness uniformity of plant height
Histogram kurtosis uniformity of plant height Excess kurtosis
Rumple index (RI) canopy surface roughness, complexity [35]
Canopy relief ratio (CRR) [36]

median central tendency of local relative canopy shape
interquartile range variability of local relative canopy shape

Moran’s I local similarity of plant height [37]
Water flow index spatial distribution of overland water flow [38]
Triangular Greenness Index (TGI): [19]

mean central tendency of per pixel chlorophyll content
standard deviation variability of per pixel chlorophyll content

Nutrient disorders have been shown to correlate with flue-cured tobacco size and shape in
multiple prior studies [39–42]. To quantify plant size and variability in canopy height, mean and
standard deviation of height were computed. Skewness and excess kurtosis of the histogram of canopy
heights within each plot were used to quantify canopy uniformity and closure [43]. Highly skewed
canopy heights may measure uniformity and relative plant shape within a plot (i.e., ratio of height
and width of plants). High histogram kurtosis is associated with a very high peak and heavy tails
compared to a normal distribution, which may indicate canopy closure, or similar heights across a plot.
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Low kurtosis indicates a more uniform distribution of heights, which may be a good indicator of the
presence of gaps between plants. Rumple index (RI) was used to quantify three-dimensional canopy
complexity in both the horizontal and vertical directions [35,44]. RI is a measure of surface roughness,
calculated as the ratio between surface area and the two-dimensional projected area on a plane below.

The metrics described thus far do not account for the spatial pattern of canopy structure and
cannot, for example, distinguish between clusters of pixels with low heights and dispersed pixels with
low heights. To better account for local spatial patterns in canopy structure, canopy relief ratio (CRR)
was calculated for a moving window of approximately 0.25 m × 0.25 m (5 × 5 pixels) within each
plot [36]. CRR measures how close the mean height is to the minimum and maximum heights within
the chosen neighborhood. The neighborhood size was chosen to correspond to one quarter of a single
plant to measure variability in relative shape within a plant. Several neighborhood sizes were tested to
identify which resulted in metrics that explained the most variability in nutrient concentrations. CRR
was calculated as

CRR =
mean(height)−min(height)
max(height)−min(height)

(1)

This metric was intended to measure relative shape of the canopy. Generally, canopy peaks will have
CRR values close to 1, valleys will be close 0, and slopes or flat areas will have values centered around
0.5. To summarize the results of the moving window CRR calculation, the median and interquartile
range (IQR) for each plot were used.

In addition to CRR, spatial patterns in canopy height were measured using Moran’s I with an
approximately 0.55 m × 0.55 m (11 × 11 pixels) Queen’s case weights matrix [37,45,46]. The weights
matrix defines the area and direction in which plant heights are expected to be spatially correlated and
was chosen to correspond to the in-row plant spacing, or the approximate area of one mature tobacco
plant. These metrics were intended to quantify the similarity of local canopy structure across each plot.
Plots with repeating patterns of canopy geometry due to uniform plant growth were expected to have
high spatial autocorrelation, whereas plots with highly heterogeneous plant sizes and shapes were
expected to have low spatial autocorrelation.

2.5. Visible Band Spectral Metrics

Triangular greenness index (TGI) was used to approximate chlorophyll content and vegetation
vigor from broadband visible wavelength reflectance. TGI is based on the spectral features of
chlorophyll and can be used for crop nitrogen management [19]. TGI was calculated as

TGI =
(λRed − λBlue)(ρRed − ρGreen)− (λRed − λGreen)(ρRed − ρBlue)

2
(2)

where λ is the center wavelength and ρ is the pixel value of the respective bands. The band center
wavelengths used were 670 nm, 550 nm, and 480 nm for red, green, and blue, respectively, as proposed
for broadband digital cameras by Hunt et al. [19]. For each UAS survey, TGI was computed for all
pixels containing tobacco vegetation using the red, green, and blue bands and summarized per plot
using mean and standard deviation.

2.6. Water Flow Index

To account for spatial variability in soil moisture and possible movement of nutrients within the
soil caused by water flow, an overland water flow index was computed. The index was derived from
an overland flow simulation in GRASS GIS 7.8.0 [38,47]. We simulated a steady state water flow over a
0.05 m resolution LIDAR DEM of the study area resulting in per pixel water accumulation depth [33].
The water depth values were normalized to create an index representing the spatial distribution of
water flow for the site. The sum of the per pixel index values was used to summarize water flow for
each plot.
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2.7. Statistics

The computed canopy metrics were aggregated using the mean value for each combination of
three plots used during the foliar tissue sample collection resulting in a single set of canopy metrics
per lab sample. The metrics were then z-score = standardized to facilitate comparison of statistical
results. The relationship between the canopy metrics and foliar concentrations of N, P, K, and B was
evaluated using ordinary least squares regression [48]. To quantify multicollinearity between the
regression predictors, the variance inflation factor (VIF), an index measuring the increase in regression
coefficient variance caused by collinearity, was computed for each predictor [48]. Any predictor
variable with a VIF greater than 4 was omitted from subsequent analysis due to the redundancy of the
information provided and to reduce model overfitting [49]. Multicollinear variables removed include
height standard deviation and height histogram skewness.

The canopy metrics were then used in ordinary least squares regression to predict not only
nutrient concentrations measured at the time of the UAS surveys, but also all prior measurements of
nutrient concentrations resulting in six sets of regression models. This was done to investigate the
timing of canopy response to the nutrient application. First, the structural and spectral metrics were
used in the models separately to predict nutrient concentrations. Then, the combined metrics were
used to determine if model fit could be improved by using a combination of structural and spectral
information. For each combination of variables, Akaike’s information criteria with small sample bias
adjustment (AICc) was used to select the highest quality model to reduce the risk of overfitting [50].
The adjusted coefficient of determination (adj. r2) was used to evaluate the models.

3. Results

3.1. Foliar Nutrient Concentrations

A summary of foliar tissue nutrient concentrations and correlation coefficients for the three
sample dates are shown in Tables 2 and 3. The fertilizer treatments applied across the study plots
were effective in creating plot-level variability in N, K, and B response. Symptoms of N deficiency
were visible early in plant development and were well-captured by each UAS survey. Plots with
K deficiency were not observed until after the first UAS survey, with symptoms becoming visible
approximately six weeks after the fertilizer treatments were applied. High variability in foliar B
concentration was achieved throughout the study site with very high concentrations observed at
each sample date. P concentrations, however, were present in the study area soils prior to fertilizer
treatments at levels 2–5 times greater than optimal making it impossible to induce a deficit in the
plants. P is relatively immobile in soils, which has resulted in a build up of stores in agricultural soils
over time caused by fertilizer over-application. As very little variation in foliar P concentrations were
observed, the regression models for this nutrient were not informative and therefore not reported here.
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Table 2. Foliar nutrient concentrations.

Sample Date Growth Stage Nutrient Mean St. Dev. Min Max Sufficiency
Range [51]

17 June
early growth,
9 weeks
post-transplant

N (%) 4.439 0.798 2.226 5.308 4.0–5.0
P (%) 0.382 0.057 0.257 0.508 0.2–0.5
K (%) 4.186 0.798 2.490 5.880 2.5–3.5

B (ppm) 73.584 57.798 23.730 250.410 18–75

1 July
flowering,
11 weeks
post-transplant

N (%) 3.552 0.804 1.382 4.396 3.5–4.5
P (%) 0.287 0.036 0.208 0.357 0.2–0.5
K (%) 4.303 0.942 1.980 6.080 2.5–3.5

B (ppm) 206.823 225.862 28.260 856.170 18–75

18 July
maturity,
13 weeks
post-transplant

N (%) 2.964 0.666 1.450 4.171 2.25–3.0
P (%) 0.247 0.036 0.165 0.313 0.17–0.5
K (%) 3.015 0.614 1.360 4.140 1.6–3.0

B (ppm) 152.947 180.258 33.870 746.360 18–75

Table 3. Correlation matrices of foliar nutrient concentrations.

19 June 3 July 17 July

N P K B N P K B N P K B

N 1 1 1
P 0.639 *** 1 0.037 1 0.466 *** 1
K 0.572 *** 0.547 *** 1 0.523 *** −0.007 1 0.476 *** −0.067 1
B 0.219 0.043 0.220 1 0.112 −0.011 0.093 1 0.405 *** 0.166 0.245 1

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

3.2. UAS-Derived Canopy Metrics

Table 4 shows a summary of the metrics computed to quantify canopy structure and spectral
reflectance. Two structural metrics, crop height standard deviation and histogram skewness,
were removed from the analysis due to collinearity. The remaining metrics were used to explain
variation in foliar N, K, and B concentrations. The standardized regression model coefficients for all
models are summarized in Tables 5–7.

Table 4. Summary of UAS-derived canopy metrics.

19 June 3 July 17 July

Metric Mean St. Dev. Mean St. Dev. Mean St. Dev.

Crop height mean (m) 0.725 0.089 0.873 0.123 1.004 0.183
Crop height std. dev. (m) * 0.235 0.028 0.364 0.042 0.336 0.049
Crop height histogram kurtosis −0.743 0.471 −1.111 0.241 −0.258 1.319
Crop height histogram skewness * −0.508 0.286 −0.264 0.257 −0.611 0.469
Rumple index (RI) 2.478 0.333 3.615 0.358 3.142 0.560
Canopy relief ratio (CRR) median 0.547 0.028 0.480 0.051 0.530 0.026
Canopy relief ratio (CRR) IQR 0.218 0.057 0.277 0.038 0.218 0.049
Moran’s I 0.635 0.024 0.649 0.024 0.658 0.043
Triangular greenness index (TGI) mean 0.131 0.020 0.146 0.026 0.155 0.019
Triangular greenness index (TGI) st. dev. 0.044 0.013 0.049 0.010 0.061 0.013

Note: * Collinear variable, omitted from regression modeling.
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Table 5. Summary of standardized coefficients from regression models using canopy structural metrics
to predict nutrient concentrations.

UAS
Survey
Date

Nutrient
Sample
Date

Crop
Mean
Height

Crop
Height
Histogram
Kurtosis

Rumple
Index

Canopy
Relief
Ratio
Median

Canopy
Relief
Ratio
IQR

Moran’s I Water
Flow
Index

Adj.
r2

N

19 June 20 June 0.609 *** −0.328 ** 0.338 ** 0.222 0.428

3 July 20 June 0.431 *** −0.258 * 0.390 *** 0.243 * 0.398
1 July 0.527 *** 0.259

17 July
20 June 0.777 *** 0.485 *** 0.181 0.554
1 July 1.242 *** −0.675 ** 0.322 ** 0.592
18 July 1.116 *** −0.772 *** 0.301

K

19 June 20 June −0.319 ** 0.533 *** 0.259

3 July 20 June 0.516 *** 0.248
1 July 0.394 *** −0.301 ** 0.255

17 July
20 June 0.697 ** −0.430 * 0.380 ** 0.423
1 July 0.588 *** 0.329
18 July 0.275 0.474 *** 0.290 ** 0.454

B

19 June 20 June −0.499 *** 0.381 ** 0.256

3 July 20 June 0.448 *** 0.181
1 July 0.378 ** 0.121

17 July
20 June 0.336 ** −0.383 * 0.577 *** −0.456 *** 0.408
1 July 0.381 *** −0.404 *** 0.257
18 July 0.267 * 0.048

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table 6. Summary of standardized coefficients from regression models using spectral metrics to predict
nutrient concentrations.

UAS
Survey
Date

Nutrient
Sample
Date

TGI
Mean

TGI Std.
Dev.

Adj. r2

N

19 June 20 June −0.818 *** 0.661

3 July 20 June −0.818 *** 0.660
1 July −0.822 *** 0.667

17 July
20 June −0.235 ** −0.734 *** 0.570
1 July −0.203 * −0.691 *** 0.491
18 July −0.292 ** −0.616 *** 0.434

K

19 June 20 June −0.354 ** −0.317 * 0.313

3 July 20 June −0.655 *** 0.414
1 July −0.610 *** 0.356

17 July
20 June −0.592 *** 0.334
1 July −0.501 *** 0.231
18 July −0.621 *** 0.370

B

19 June 20 June −0.279 * 0.054

3 July 20 June −0.278 * 0.054
1 July 0.000

17 July
20 June 0.248 * −0.300 * 0.108
1 July 0.287 * 0.059
18 July 0.000

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 7. Summary of standardized coefficients from regression models using a combination of canopy
structural and spectral metrics to predict nutrient concentrations.

UAS
Survey
Date

Nutrient
Sample
Date

Crop
Mean
Height

Crop
Height
Histogram
Kurtosis

Rumple
Index

Canopy
Relief
Ratio
Median

Canopy
Relief
Ratio
IQR

Moran’s I Water
Flow
Index

TGI
Mean

TGI Std.
Dev.

Adj.
r2

N

19 June 20 June 0.203 ** 0.280 *** −0.760 *** −0.177 0.760

3 July 20 June 0.494 *** −0.589 *** 0.154 * −0.939 *** 0.756
1 July 0.623 *** −0.843 *** −1.037 *** 0.805

17 July
20 June 1.053 *** 0.529 *** −0.267 ** −0.402 *** 0.704
1 July 1.269 *** −0.429 * 0.505 *** −0.203 −0.359 *** 0.711
18 July −0.292 ** −0.616 *** 0.434

K

19 June 20 June −0.384 *** 0.254 * −0.760 *** 0.450

3 July 20 June −0.655 *** 0.414
1 July −0.610 *** 0.356

17 July
20 June 0.417 *** −0.186 −0.381 *** 0.475
1 July 0.450 *** −0.271 * 0.369
18 July 0.417 *** −0.408 *** 0.488

B

19 June 20 June −0.499 *** 0.381 ** 0.256

3 July 20 June 0.448 *** 0.181
1 July 0.508 *** −0.467 ** −0.394 *** 0.194

17 July
20 June 0.336 ** −0.383 * 0.577 *** −0.456 *** 0.408
1 July 0.784 *** 0.806 *** −0.318 ** 0.737 *** 0.368
18 July 0.267 * 0.048

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

3.2.1. Mean Crop Height

Mean crop height provided information about the central tendency of height within a plot.
It was the most important predictor of N and K concentrations at the last two survey dates (Table 5).
Surprisingly, mean height was not important at the earliest growth stage observed. It was also
important and positively correlated with B concentrations at the last survey date. These results are
consistent with observations made by other researchers that increases in N and B concentrations can
lead to an accumulation of plant biomass [27,52,53].

3.2.2. Crop Height Histogram Kurtosis

Kurtosis measured the shape of the distribution of canopy heights with increased histogram
kurtosis indicating a sharper peak and more outliers in height compared to a normal distribution of
heights. Plots with lower kurtosis tended to have a more uniform distribution of heights with narrow
plants and wider gaps between rows (Figure 4). Plots with more canopy closure and fewer ground
pixels tended to have high kurtosis. Kurtosis was an important predictor and negatively correlated
with foliar concentration of N and K at the last date (Table 5). Kurtosis was important and positively
correlation with B at the second survey date.
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Figure 4. Tobacco canopy surface model with examples high and low height histogram kurtosis.
Plots on the left side have high kurtosis, which corresponded primarily to more canopy closure.
Plots on the right side have low kurtosis, which corresponded to more narrow plants with gaps
between rows. The blue line in each histogram provides a comparison to a normal distribution.

3.2.3. Rumple Index

Rumple index measured the ratio of the 3D surface area of a volume to its 2D area, with an
increase in the index indicating more surface complexity. As RI was computed for each plot of
equal 2D area, the index can be interpreted as simply the 3D surface area of the canopy. RI was
closely related to the slope of the canopy surface within each plot. Plots with steep canopy slopes
(narrow plants with many ground pixels) had high RI and plots with gentle slopes (wide plants with
canopy closure) had low RI (Figure 5). RI was one of the most important predictors of N concentrations
at the second and third survey dates (Table 5). The positive relationship indicates that as surface area
and slopes of the canopy increased, N concentrations increased. Conversely, the pyramid canopy
shape symptomatic of N deficiency tended to have gentle slopes with wider plant base and lower RI.
RI was negatively correlated with B and K at the first survey date, with more gentle slopes associated
with lower concentrations.

Figure 5. Slope and RI of tobacco canopy surface models with high and low fertilizer rates. Plots with
high RI values are shown in the top row and low RI in the bottom row. Plots with low fertilizer rates
are in the left column and high fertilizer rates in the right column. High RI values are associated with
steeper canopy slopes (red and yellow), while low RI values are associated with gentle canopy slopes
(blue and green). Respective vertical profiles through the canopy are shown with each model.
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3.2.4. Canopy Relief Ratio

Canopy relief ratio measured the relative shape of the canopy and was useful for characterizing
the ratio of plant width to height and identifying gaps in the canopy. Lower median CRR indicated
more narrow plants with less canopy closure (Figure 6). High CRR median was associated with fewer
gaps between rows and well defined canopy peaks, in contrast to a rounded canopy. CRR median was
important and positively correlated with all nutrients observed at one or more survey dates (Table 5).
In particular, it was the most important predictor for K at all dates. It was also the most important
structural predictor of N at the first date. These relationships indicate that as nutrient concentrations
increase, plants get wider and fill gaps between rows. The consistent positive relationship with K
may also be related to K deficiency, which is characterized by leaves that curve downward making
the canopy more rounded without a defined peak [42]. When spectral information was added, CRR
median was negatively correlated with N at the last two survey dates (Table 7). This may be related to
N deficiency symptoms, which include stunting with erect leaves that form a pyramid shape with a
sharp canopy peak [42]. CRR interquartile range was associated with the presence of defined peaks as
well as gaps between rows. It was important and negatively correlated with N at the first two dates
and K at the second date. It was very important and positively correlated with prior B concentrations
at the last date.

Figure 6. Tobacco canopy surface model with examples high and low canopy relief ratio (CRR) median.
Plots on the left had higher CRR median values and generally had fewer valley pixels (blue) and more
slope pixels (yellow). Plots on the right side had more gaps between rows (blue pixels), well-defined
peaks (red), and fewer slope pixels (yellow).

3.2.5. Spatial Autocorrelation of Crop Height

Moran’s I measured spatial autocorrelation of crop heights, which characterized canopy surface
smoothness or likeness of crop heights within a neighborhood of surface model pixels (Figure 7).
Conversely, it also detected the presence of peaks or pits in the canopy. The 0.55 m × 0.55 m
neighborhood used to compute spatial autocorrelation corresponded to the approximate size of
one healthy plant. Many of the plants, however, were stunted with gaps between rows. The patches of
ground areas with similar height between rows resulted in increased Moran’s I values in plots with
low canopy closure. Overall, Moran’s I explained the limited variability in nutrient concentrations.
Moran’s I was important, and positively correlated with N at the first two dates (Table 5). As N
concentrations increased, the plot had more clusters of similar heights and was smoother with fewer
peaks or pits. It was important and negatively correlated with prior B concentrations at the last survey
date. As B concentrations increased, the canopy was less smooth with more gaps or spikes and has
fewer patches of similar heights.



Drones 2020, 4, 36 14 of 22

Figure 7. Canopy surface model of tobacco plots with range of Moran’s I values. Plots in the upper left
portion of the block have relatively high Moran’s I (0.74). The plots identified in the lower right have
relatively low Moran’s I (0.57).

3.2.6. Water Flow Index

An overland water flow index was included in the regression models to account for topography
and how water flow across the field might affect nutrient availability or uptake (Figure 8). The water
index was positively correlated with N at the first two survey dates, especially when combined with
the spectral metrics (Tables 5 and 7). There was considerable rainfall over the two weeks between
fertilizer application and the first UAS and nutrient survey dates (97 mm). Over the remaining four
weeks of the study, there was much less rainfall (30 mm). Although the field was mostly flat, even small
changes in elevation can influence the movement of water and soluble nutrients. It is possible that the
rainfall early in plant growth influenced the spatial distribution of nutrient and water availability in
the field.

Figure 8. Derived water flow index based on simulated overland water flow.

3.2.7. Triangular Greenness Index

Triangular greenness index measured the similarity of canopy reflectance to the spectral features
of chlorophyll and therefore estimated plant chlorophyll content and vigor. TGI mean was important
and negatively correlated with all nutrients, although it accounted for almost no variation in B
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(Table 6). TGI mean was positively correlated with B at the last survey date. Standard deviation of TGI
was important and negatively correlated with all of the nutrients, especially at the last survey date,
indicating that a wider range of TGI values in a plot is related to lower concentrations of foliar nutrients.

3.3. Overall Relationship between the Crop Canopy Shape, Reflectance, and Nutrient Concentration

The amount of variability explained by the canopy metrics differed by nutrient and developmental
stage as shown in Figure 9. Overall, structure had a stronger relationship with N, K, and B
concentrations at later growth stages. Visible range spectral reflectance consistently explained
variability in N and K concentrations. For nearly all cases, combining spectral and structural
information explained more variability in nutrient concentrations than either set of metrics did
alone. Moreover, canopy structure and reflectance were more closely related to N and B nutrient
concentrations at earlier stages of growth than nutrient concentrations measured at the time of the
UAS survey.

Figure 9. Adjusted r2 for regression models using canopy structural and spectral metrics to explain
foliar concentrations of elemental nutrients in tobacco plants.

3.3.1. Nitrogen

N is the most important nutrient for flue-cured tobacco yield and quality. It is typically applied
in time for immediate plant uptake to avoid leaching beyond the root zone. N-deficient plants are
characterized by stunting, chlorosis, and upward pointing leaves forming an acute angle with the
stalk [39,42]. The structural metrics explained 40% of the variation in N concentrations at the first
two growth stages observed (Figure 9). The amount of variability explained increased to as much as
60% at the last observation date. The canopy structure better explained N concentrations measured
at the previous date (approximately 2 weeks prior). The visible range spectral metrics explained
more variation in N concentrations than structure did overall, with approximately two-thirds of the
variability explained at the first two survey dates. At the last survey date, the relationship was slightly
weaker and better explained N concentrations measured at previous dates. Combining spectral and
structural information strengthened the relationship and explained 75–80% of the variation in N during
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the first two survey dates. Again, the relationship decreased slightly as the plant matured. This may
be explained by the movement of N from leaves to reproductive tissues as the plant matures.

3.3.2. Potassium

K is also an important macronutrient needed for tobacco production. Symptoms of K deficiency
include chlorosis that begins on lower leaves and quickly progresses up the plant and leaves with a
distinctive downward cupping or umbrella-like shape [39,42]. The canopy structural metrics were
able to explain variation in foliar K levels across all dates, with the relationship increasing slightly
as the crop matured (Figure 9). Canopy structure explained 26% of K variation at the first date and
up to 45% at the last survey date. K deficiency was not achieved until sometime after the first survey
date with visible symptoms developing around the same time. This may explain why predictability
of K increased over time. K was also the only nutrient that was better predicted using nutrition
measurements taken at the same time as the UAS survey. The canopy was able to explain variation
in current concentrations of foliar K as well or better than at previous stages of plant development.
Visible-range spectral reflectance was able to explain similar amounts of variation in K as canopy
structure. The delay in visible deficiency symptoms is reflected in the increase in variation explained
by the spectral metrics over time. Combining spectral and structural predictors increased the variation
in K explained at the first and last survey dates, with 45% explained at the first date and 49% variation
explained at the last date. There was a slight decrease in model fit when predicting K concentrations
measured at the second date. All of the other models, however, were able to explain similar amounts
of variation ranging from 42% to 51%. The predictability of K using the UAS-derived canopy metrics
was the most consistent of the nutrients studied.

3.3.3. Boron

B is an important nutrient for proper development of growing points in tobacco plants. It is
needed in very small amounts, however, and can result in reduced leaf quality if over applied [10].
Visible symptoms of B toxicity include a very slow spreading chlorosis on lower leaves, undulating
leaf deformity, and curling of leaf edges upward [39]. The canopy structural metrics were able to
explain moderate variation in foliar B concentrations (Figure 9). The amount of variation explained at
the earliest survey date was 26% and increased to as much as 41% at the latest date when predicting B
concentration from the earliest date. B predictability dropped to as low as 5% at the last date when
using nutrient concentrations measured at the time of the flight. The structural metrics were much
more closely related to B concentrations measured earlier in plant development. This is consistent with
other observations that symptoms of B toxicity can take 33 days to become visible [39]. Visible-range
spectral reflectance explained almost no variability in B concentrations. Model fit was not improved by
combining spectral and structural predictors since the spectral metrics did not explain variability in B.

4. Discussion

In this study, we investigated the relationship between structural and spectral canopy-level
metrics derived from a UAS-mounted RGB camera and nutrient concentrations in flue-cured tobacco.
The aim of this research was to determine if the plant response to nutrient disorders can be detected
from photogrammetric crop surface models and to evaluate the usefulness of structural metrics
describing canopy shape and uniformity for improving remote monitoring of crop nutritional status,
particularly when used in combination with widely accepted spectral remote sensing techniques.
This research demonstrates that information about crop canopy shape and uniformity can provide
useful information related to crop health that can be leveraged to improve remote monitoring and
modeling for precision agriculture.

This research confirms that a relationship exists between crop canopy structure and nutrient
concentrations in plant tissues. Not surprisingly, the strongest relationship observed was between
canopy shape and N foliar concentration (adj. r2 = 0.59, increasing to adj. r2 = 0.81 when combined with
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TGI). Many studies have explored methods for remotely assessing N status and other crop variables
closely correlated with N concentration, like leaf area index, above ground biomass, and yield. Work by
Li et al. [25,26] found that RI and CRR had high correlation with LAI. These results are consistent
with our study, which found that RI, CRR, histogram kurtosis, and mean height were some of the
most important predictors of foliar N concentrations. The metrics used in this research and other
similar structural measures that quantify the spatial arrangement of heights could be useful for remote
approximations of other crop variables correlated with N.

The visible-band spectral vegetation index used in this study—Triangular Greenness
Index—provides an approximation of chlorophyll content. The close relationship between N and
chlorophyll makes it unsurprising that TGI was limited in explaining concentrations of the other
nutrients. Chlorosis, however, is characteristic of K deficiency [39,42], so TGI was able to explain
moderate variation in foliar K concentration. As expected, variation in B was not explained by TGI as
B toxicity is not closely associated with chlorosis.

Several important decisions about how the metrics were computed affected their ability to explain
nutrient concentrations. For example, CRR was more effective when a subplant neighborhood size was
used. This suggests that capturing variability in relative shape within a plant influences the usefulness
of this metric for characterizing canopy structure. Additionally, the weights matrix used to compute
Moran’s I also made this metric more or less useful. The size of the weights matrix should be chosen
based on the area in which heights are expected to be spatially autocorrelated. It is also important,
however, to consider features that are not of interest, like bare ground, that fall within the matrix
and influence the computation. The effectiveness of Moran’s I may be improved by removing soil
pixels and using a directional, anisotropic weights matrix to limit the computation to along plant
rows for future studies. Nonetheless, lower Moran’s I was useful for identifying plots with B toxicity.
This was likely due to plots with toxic B levels being associated with higher overall fertilizer rates and
very full, closed canopies with no clusters of ground pixels. Furthermore, plots with closed canopies
lacked features with high contrast, like bare earth, that could be used as tie points in the SfM process,
which may have increased point cloud errors (unrealistic peaks and pits) further reducing spatial
autocorrelation. Further research should be done to understand how this approach is sensitive to
decisions about the window sizes and weight matrices used.

The regression models predicting N and B foliar concentrations all improved when using nutrient
concentrations measured 2–4 weeks prior to the UAS survey. While the direct cause of this effect
remains unclear, a few possible explanations warrant discussion. N is very mobile within the plant,
so this preference for past nutrient measurements could be explained by the movement of these
nutrients to other, unsampled parts of the plants, particularly reproductive tissue [54]. The sharp
decrease in correlation between nutrient concentrations at the second and third foliar sample dates
could also be related to nutrient mobility (Table 3). Another potential explanation for the increased
relationship between the canopy and past nutrient concentrations is an accumulation of symptomlogy
over time making the effects of a disorder more apparent. There also could be a delay in appearance of
symptoms measurable by the structural and spectral metrics. B toxicity in particular has been shown
to take over a month to develop visible symptoms [39]. As this delay pattern was observed for two of
the three nutrients studied, further investigation should be completed to understand the cause and
practical implications this has for precision agriculture or rapid phenotyping applications.

Symptoms of N and K deficiencies in flue-cured tobacco described by McMurtrey and
Henry et al. [39,42] were well captured by the structural metrics used in this study and the distinct
features of the deficiencies can be used to differentiate each. N deficiencies are associated with chlorosis,
stunting, and erect leaves that form an acute angle with the stalk. K deficiencies are also associated
with chlorosis and stunting, but in contrast to N deficiencies, leaf deformation is characterized by a
downward cupping or umbrella-like shape. This explains why the most important structural metric
for predicting K concentrations was CRR. K-deficient plants with downward curving leaves are
limited in width and less likely to fill spaces between rows, resulting in more valleys in the canopy
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shape, which have CRR close to zero and lower median CRR values. Furthermore, the downward
curved leaves result in a rounded canopy with fewer peaks, which further lowers median CRR values.
Whereas high height histogram kurtosis was one of the most important predictors of N deficiency due
to leaves that stand at an acute angle relative to the stalk creating a relatively short, pyramid shaped
canopy with fewer gaps between rows. Figure 10 illustrates the differences in canopy shape for N
and K deficiencies. Kurtosis and CRR in combination with mean height, which captures stunting,
were effective in distinguishing N and K deficiencies. If spectral reflectance information is also
considered, it is possible that N and P deficiencies could also be distinguished due to the lack of
chlorosis associated with P deficiencies [39,42]. Future experiments to observed P deficiencies in
field-grown tobacco are needed to test this.

Figure 10. Canopy surface model with nutrient deficient plots. The K-deficient plot in the upper
right has a rounded canopy shape with minimal closure between rows resulting in lower median
CRR. The N-deficient plot to the left has a pyramid shape with sharper peaks and is generally stunted
resulting in high height histogram kurtosis and low mean height.

Many studies have focused on validating the accuracy of measurements taken from
photogrammetric surface models, like crop height and volume, through field measurements and
precise ground control [53,55–57]. While the importance of accuracy for many measurements taken
from canopy surface models is clear, the measurements of interest in this study focus on relative shape
of the canopy rather than absolute quantities. Point cloud quality, however, is important to ensure
that the reconstruction of the canopy shape is representative of reality. Decisions made during image
acquisition and processing, like camera angle, image overlap, flight time of day, altitude, point filtering,
and surface interpolation, all have an impact on feature reconstruction. For example, the challenge
faced by the SfM algorithm when distinguishing between low-contrast features like plants, shadows,
and dark, moist soil was apparent in the June 17 CSM. The canopy appears more closed with fewer soil
pixels compared to the 3 July CSM, which was created from images with high contrast between features
due to better lighting and lower soil moisture. Furthermore, oblique imagery, which has been shown
to improve reconstruction of vertical features, like buildings, forests, and steep terrain [58,59], was not
collected for use in this study. Future implementation of this approach should incorporate oblique
imagery during point cloud generation to improve representation of canopy features, especially along
plant row edges. Several studies [55,58,60–63] have evaluated the impact of these considerations
on feature reconstruction, but further research is needed to understand how sensitive the canopy
structural metrics used in this study are to data acquisition and processing parameters. However,
the relatively strong, consistent relationships between canopy structure and nutrients observed across
all dates suggest that trends in canopy shape are being represented well enough in the data to provide
meaningful, useful information.
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5. Conclusions

In this study, we developed a methodology for extracting crop canopy characteristics from
high-resolution, photogrammetric canopy surface models and demonstrated how these characteristics
can be used to improve remote monitoring of crop nutrient status. The strength of this approach is its
use of both 3D canopy geometry and spectral reflectance derived from very low cost, ubiquitous UAS
with a consumer-grade RGB camera. Combining spectral and structural canopy information improved
model fit in nearly every case observed, making a strong case for including structural metrics in
models used to remotely estimate crop variables. The relationship between canopy structure measured
from point clouds and crop stress should be further explored as we may be able to leverage this
relationship as technologies for producing more precise point clouds become more readily available
(e.g., active LIDAR sensors optimized for use with UAS). In the meantime, useful information about
canopy structure can be extracted from photogrammetric point clouds to improve remote estimates of
nutritional status and identify areas that warrant further ground-based observation and evaluation.
Further investigation should also be done to explore how canopy structure varies in response to
different types of stress to attempt to remotely distinguish the cause of plant stress without destructive,
specialized testing. High spatial and temporal resolution data on 3D canopy geometry opens up new
opportunities to explore patterns in plant responses to stress that could provide useful evidence to
support management decisions or rapid phenotyping.
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Abbreviations

The following abbreviations are used in this manuscript:

UAS Unmanned aerial system
N Nitrogen
P Phosphorus
K Potassium
B Boron
NDVI Normalized Difference Vegetation Index
VARI Visible Atmospheric Resistance Index
TGI Triangular Greenness Index
RGB Red Green Blue
SfM Structure from Motion
LAI Leaf area index
CEC Cation exchange capacity
DSM Digital surface model
DEM Digital elevation model
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RMSEz Root mean squared error in z direction
CSM Crop surface model
RI Rumple index
CRR Canopy relief ratio
IQR Interquartile range
VIF Variable inflation factor
AIC Akaike’s information criteria
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