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Abstract: The performance of vehicle dynamic model (VDM)-based navigation largely depends on
the accurate determination of aerodynamic coefficients that are unknown a priori. Among different
techniques, such as model simulations or experimental analysis in a wind tunnel, the method
of self-calibration via state-space augmentation benefiting Global Navigation Satellite System
(GNSS) positioning represents an interesting and economical alternative. We study this technique
under simulation with the goal of determining the impact of aircraft maneuvers on the precision
and (de)-correlation of the aerodynamic coefficients among themselves and with respect to other
error-states. A combination of different maneuvers indicates to be essential for obtaining satisfactory
aerodynamic coefficients estimation and reduce their uncertainty.
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The expansion of applications utilizing small unmanned aerial vehicles (UAVs) in the last few
years is unprecedented. No aviation sector has experienced such rapid technological evolution in
both hardware and software. However, most light-weight UAVs made for large zone inspections and
mapping rely on GNSS positioning as the main element that assures the drone navigation along a
pre-programmed path and, thus, its safety. As the average satellite signal power at reception is very
weak, −125 dbm [1] (−75 dbm for WiFi [2]), its reception can be relatively easily perturbed either
unintentionally (due to an interference) or intentionally (via jamming or spoofing). In the absence
of GNSS signal, the UAV executes a safe-fail procedure that generally relies on autonomous sensors.
Over a time interval longer than a minute, its performance is usually sufficient only for controlling
vehicle attitude and altitude.

In this context, a certain form of vehicle dynamic model (VDM)-based navigation [3,4] has shown
a considerably better performance in comparison to the traditional inertial-based counterpart in
GNSS-denied environment for fixed-wing UAV [5]. This technique is potentially promising also for
improving the accuracy of sensor orientation for mapping within the nominal scenario with GNSS
signal reception [6]. However, in contract to INS/GNSS integration, the VDM-based navigation
is a vehicle-dependent technique. In other words, its implementation requires to determine the
a-prior unknown aerodynamic coefficients reflecting the physical properties of a particular aircraft.
Only with “reasonably” correct coefficients, the dynamic process model will represent the realistic
flight behavior of the platform so the navigation filter works correctly, otherwise it may become
unstable and diverge [7].

The determination of some model parameters is straightforwards as the aircraft weight or the
wing surface. Wind tunnel tests or Computational Fluid Dynamic (CDF) simulations can be conducted
to accurately determine some other VDM parameters. However, a more practical option is to determine
their values directly in-flight when GNSS signals are present [3].
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In either case, it is difficult to estimate the parameter individually because of their implicit
correlation with each other [3]. The limitations of in-flight estimation of VDM parameters during
normal dynamics advocate investigating a dedicated calibration procedure that lower the uncertainty
of their estimation as compared to nominal mission dynamic while reducing the remaining correlations.

This study investigates this option by simulating VDM parameter calibration through different
aircraft maneuvers with sensory and external perturbations in a Monte-Carlo manner. The rest of
the paper is organized, as follows: Section 1 synthesizes the principle of VDM-based navigation,
Section 2 provides details of different simulation steps and considered scenarios, Section 3 analyses
the simulation outcomes, and Section 4 summarizes the findings.

1. Vehicle Dynamic Model

While the essentials of VDM-based navigation system is presented here shortly, more technicalities
of the derivations can be found in [3] and details on the employed dynamic model can be found in [8].

1.1. Frames Definition

Within the context of navigation, the following five reference frames are considered: the inertial
(i)-frame is an Earth Centered Inertial (ECI) frame, the Earth (i)-frame is an Earth Centered Earth Fixed
(ECEF) frame, the local-level (l)-frame is oriented in north, east, and down directions with respect to
the tangent plane on a reference ellipsoid [9]. Definitions of body (b)-frame and wind (w)-frame with
respect to l-frame can be perceived from Figure 1.
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Figure 1. Local level, body, and wind frames with airspeed V, wind velocity w, and UAV velocity v [5].

The wind frame has its first axis in direction of airspeed V, and is defined by two angles with
respect to body frame, angle of attack α and sideslip angle β. The velocity of airflow that is due to
UAV’s velocity with respect to ground v and wind velocity w is denoted by airspeed vector V as

V = v−w. (1)

The rotation matrix Cw
b from body frame to wind frame is defined as a function of angle of attack

α and sideslip angle β as
Cw

b = R3(β)R2(α), (2)

where Ri denotes the elementary rotation matrix around the i-th axis.
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1.2. Motion States

We consider modeling rigid body in arbitrary three-dimensional (3D) space affected by Earth
gravity via specific forces f , and moments M, as in [5]. This is described via a set of first-order
differential Equations (4)–(7) considering Earth rotation, curvature, and normal gravity, the resolution
of which provides the "navigation states"

Xn =
[
rl

e
T

, vl
e
T

, ql
b

T
, ωb

ib
T]T

(3)

where the position vector rl
e = [φ, λ, h]T represents position of platform (represented by the origin

of body frame) in Earth frame and in ellipsoidal coordinates, the velocity vector vl
e = [vN , vE, vD]

T

represents velocity of platform, as observed in Earth frame and expressed in local (NED) frame,
the quaternion ql

b = [q0, q1, q2, q3]
T represents orientation of body frame (platform) with respect to

local frame and the angular velocity vector ωb
ib = [ωx, ωy, ωz]T represents angular velocity (rotation

rate) of body frame with respect to inertial frame, expressed in body frame. The ⊗ operator defines
quaternion cross-products, as defined in [10].

This set of equations can be expressed as

ṙl
e = D−1vl

e (4)

v̇l
e = Cl

b f b + gl − (Ωl
el + 2Ωl

ie)v
l
e (5)

q̇l
b =

1
2

ql
b ⊗

[
ωb

lb

]
q

(6)

ω̇b
ib =

(
Ib
)−1 [

Mb −Ωb
ib(Ibωb

ib)
]

, (7)

where any Ωr
pq is a skew-symmetric matrix representation of associated vector.

In Equation (4), D−1 matrix is a function of ellipsoid curvatures, height and longitude.
In Equation (5), the rotation matrix Cl

b can be expressed as a known function of the quaternion ql
b.

In (6), ωb
lb is calculated as

ωb
lb = ωb

ib −
(

Cl
b

)T (
ωl

ie + ωl
el

)
, (8)

1.3. Dynamic Model

The dynamic model for a particular vehicle, a fixed-wing UAV for example, describes how f
and M are specified following an aerodynamic model. This model takes motion states, wind velocity,
actuators, and physical parameters of the platform as inputs. The models vary for different UAV types.
A fixed-wing platform is considered here, as described in [3]. As depicted schematically in Figure 1,
this UAV has a single propeller, with aileron, elevator, and rudder control surfaces. The models for
aerodynamic forces and moments for this UAV are borrowed from [8].

Four components of aerodynamic forces and three components of aerodynamic moments are
recognizable in this model: thrust, drag, lateral, and lift forces (FT , Fw

x , Fw
y , and Fw

z , respectively),
as well as roll, pitch, and yaw moments (Mb

x, Mb
y, and Mb

z , respectively). All moment components
and thrust force (along xb-axis) are expressed in body frame, while lift, lateral, and drag forces are
expressed in wind frame, as follows:
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FT = ρn2D4
(

CFT1 + CFT2 J + CFT3 J2
)

(9)

Fw
x = q̄S

(
CFx1 + CFxαα + CFxα2α2 + CFx β2β2

)
(10)

Fw
y = q̄S

(
CFy1β

)
(11)

Fw
z = q̄S (CFz1 + CFzαα) (12)

Mb
x = q̄Sb

(
CMxaδa+CMx ββ+CMxω̃x ω̃x+CMxω̃z ω̃z

)
(13)

Mb
y = q̄Sc̄

(
CMy1 + CMyeδe + CMyω̃y ω̃y + CMyαα

)
(14)

Mb
z = q̄Sb

(
CMzδr δr + CMzω̃z ω̃z + CMz ββ

)
(15)

where ρ is air density, n is propeller speed, D is propeller diameter, q̄ is dynamic pressure defined as
ρV2

2 , S is wing surface, b is wingspan, c̄ is mean aerodynamic chord, J = V/(Dπn), ω̃x = bωx/(2V),
ω̃y = c̄ωy/(2V), ω̃z = bωz/(2V), and C...’s are aerodynamic coefficients for the particular UAV at
hand. Deflections of aileron, elevator, and rudder are denoted by δa, δe, and δr, respectively.

The specific force vector

f b =
1
m

([
FT 0 0

]T
+ Cb

w

[
Fw

x Fw
y Fw

z

]T
)

(16)

is composed of these four components divided by the mass of the UAV, and the moments vector

Mb =
[

Mb
x Mb

y Mb
z

]T
(17)

is composed of these three components. Equations (4)–(7), together with (9)–(17) form the VDM for
the sample fixed-wing UAV.

1.4. Estimation Scheme

The navigation system utilizes VDM as main process model within a differential filter, along with
other necessary models for augmented states. An Extended Kalman filter (EKF) [11] is chosen
to estimate corrections to the states (δX) and associated covariance matrix (P). Other types of
filters/estimators, such as unscented Kalman filter (UKF), could also be used. EKF utilizes a linearized
version of process model (via F = ∂Ẋ/∂X, with X being the state vector) and a linearized version of
observation model (via H = ∂Z/∂X, with Z being the observation vector) to perform prediction on
covariance matrix P and update on both state vector X and covariance matrix. Prediction on states is
done via a nonlinear process model, i.e., via Equations (4)–(17).

As depicted in Figure 2, VDM provides the navigation solution (Xn, not shown in Figure 2), as
part of the augmented states vector (X), which is updated by the filter based on available observations.
Hence, IMU data are treated as observations, just the way data from other sensors such as GNSS
receiver, barometer, and airspeed sensor are when available. It is important to note that IMU
observations are related to system states via the VDM. Any other available sensor, such as optic
flow sensor and magnetometer, can also be integrated within the navigation system as additional
observation sources. Nevertheless, only GNSS and IMU data are used for the simulated scenarios in
this study and they are part of the observations vector Z in Figure 2.

The VDM needs to be fed with actuator states. If internal dynamics of the actuators is ignored,
actuator states will be equivalent to the control input (U). Otherwise, the control input is fed to
associated models for actuator dynamics, which provide actuator states to the VDM. The parameters
of actuator dynamics model may also be part of the augmented state that is estimated within the
filter. Another needed input for the VDM is the wind velocity (Xw, “Other models” block, not shown
in Figure 2), which is estimated within the navigation system with or without the aid of airspeed
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sensor(s). Reliable airspeed data is expected to improve the redundancy and possibly the accuracy of
wind estimation.

Finally, the parameters of VDM, which represents the physical properties of the UAV, are required.
Pre-calibration of these parameters and their application as fixed-known values is an option. However,
to increase the flexibility and accuracy of the proposed approach while minimizing the effort in
calibration (e.g., in a wind tunnel), in-flight estimation/refinement of VDM parameters (X p) is

proposed as an augmented state X p =
[
S, c̄, b, D, CFi , CMj , τn

]T
, where i = 1:10 and j = 1:11 correspond

to the coefficients, in order of appearance, related to forces and moment in Equations (9)–(12) and
Equations (13)–(15), respectively.

VDM

Other models:

- Actuator dynamics

- VDM parameters

- Actuator parameters

- Wind velocity

- Sensor errors

- Sensor misalignments

- ...

IMU

Other sensors:

- GNSS receiver

- Barometer

- Airspeed

- ...
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Figure 2. Generalized vehicle dynamic model (VDM)-based navigation filter [5].

Last but not least, time-correlated IMU errors (Xe) are also modeled and estimated within the
navigation system. For this implementation, the states (Xe) will only be composed with accelerometer
and gyroscope bias for each axis:

Xe =
[
bAx , bAy , bAz , bGx , bGy , bGz

]T
(18)

For this work, the system states vector is therefore:

X =
[
Xn, X p, Xe, Xw

]T (19)

The continuous states derived by the models ˙̃X are integrated to obtain the system state further
used in an estimator, here an EKF. The predicated state X̃ is combined with observations from the
different sensors Z to update and obtain the state X̂ depicted in Figure 2. The different observation
models Ẑ can thus correct the sensor measurements thanks to additional models (“Other models”).
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2. Simulation Setup

In the following parts, we first present the methodology of the calibration procedure.
Afterwards, we assess the quality of the VDM parameter determination with respect to (a) parameter
error, (b) its predicted incertitude, and (c) correlation to other parameters. Finally, we discuss a
combination of maneuvers for an “optimal” in-flight calibration procedure.

Figure 3 depicts the steps of the calibration methodology. As the condition of calibration can
be chosen we assume that GNSS observations are available and we suppose the wind to be zero or
negligible. Thus, the wind is not estimated in the navigation solution. The reasoning is to isolate the
influence of the trajectory dynamic into the coefficients determination without adding extra parameters
(Wind, three components) to be estimated.

���������	
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Figure 3. Calibration Method.

2.1. Trajectory Definition

Some aspects considered in the trajectory definition are execution time, the feasibility of
maneuvers for the autopilot, and/or the drone operator and continuity of GNSS signal tracking.
Therefore, the designed trajectories last less than five minutes and avoid steep turns and attitude
changes that could lead to a loss of GNSS signal reception.

Seven trajectory-segments are defined and separated into three categories. These are: straight
line, circular orbit (loiter), and “figure-eight” or “infinite” loop. The last trajectory is a combination
of different maneuvers. A straight line is characterized by two waypoints defining its start and
end. The actual path is not a straight line per-say because the autopilot tries to reach the waypoints
by compensations of different actuators. The resulting behavior depends on a particular control
parameters, but generally resembles some oscillations around the straight segment, as presented on
the first raw in Table 1.

Two categories of orbit/loiters are considered, as shown in the second raw in Table 1: manual
and autopilot controlled. The former is performed by setting the control surfaces to a constant
value, while the latter is executed by autopilot guidance following waypoints distributed along a
circle. The infinity loop concatenates two complete orbits controlled with the autopilot in the opposite
direction, with or without forced changes in altitude. These two segments are presented at the
bottom of Table 1. The last trajectory type is a concatenation of the above-mentioned segments with
the addition of velocity changes. The user defined waypoints are represented in pink crosses on
the different figures and the axes (xE, xN, and xU) belong to a local-level frame in East-North-Up
orientation (ENU).

2.2. Flight Simulation

Once the trajectory shape is defined, the corresponding dynamics follows from the guidance and
control acting on a particular platform. The implementation here is inspired from the model that is
presented in [8] while considering small fixed-wing aircraft described in [5] .

The VDM-based navigation stemming from aerodynamic model can only be performed during
in-flight conditions, i.e., after takeoff and prior touch-down. Practically, this can be achieved
by transferring the navigation states from inertial-based navigation after take-off. Within the
simulation, the platform is initialized airborne with chosen heading and velocity at the first waypoint.
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The guidance uses waypoints coordinates expressed in a local-level frame relative to the first waypoint
together with a desired velocity and attitude of the platform at each of them.

Table 1. Categorization of considered trajectories (and combinations) into seven types.

St
ra

ig
ht

Li
ne

Level Level Descending Level Ascending

O
rb

it

Controlled Auto pilot

In
fin

it
y

Lo
op

Level Descending / Ascending

The waypoints are considered to be reached (cleared) when the platform is within a radius of 15 m,
then the next waypoint is activated. The guidance dictates the action of actuators to be taken directing
the plane to the next waypoint. The controller generates the actuator states (i.e, the elevator, aileron
and ruder angles, and propeller speed) and together with ideal VDM parameters, they define the
nominal forces and moments following the model described in Section 1. The ideal-reference trajectory
follows from rigid-body motion. Simultaneously, the ideal sensors output is generated at a desired
frequency, i.e., in Equations (16) and (17) for the IMU and from the derived states rl

e as presented in
Equation (3) for GNSS. parentheses The ideal trajectory is saved as a reference, whereas the generated
sensors and actuator commands are used in the following step. The generated control commands
are delay-free, implying the absence of time stamping errors in the data or delay of actuators when
reaching the desired state. The influence of time-delay errors has been investigated in [12].

2.3. Sensor and VDM Parameter Errors

At this stage, the software possesses all of the information to simulate the behavior of a platform
following a defined trajectory and, most importantly, the sensors and actuator outputs at each discrete
step. The ideal sensors readings (accelerometers, gyroscopes) are first corrupted with errors such as
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random bias, 1st order Gauss–Markov process and white noise. The considered error characteristics
are summarized in Table 2. Their values correspond to a small MEMS-IMU [13] that was employed
in an experimental scenario [5] with noise characteristics analyzed in [14]. The considered GNSS
observations corresponds to single-point-positioning.

In the simulation environment, no residual imperfections are considered to be related to the
knowledge of sensor position and alignment with respect to body frame.

The initial uncertainties for the VDM parameters X p are fixed to 20 percent of their reference values
(1σ). Such uncertainty is reflected in the initial covariance matrix, while 100 runs of Monte-Carlo are
simulated for each trajectory to diversify the initial error in parameter values. Similarly, the realization
of stochastic processes in the simulated sensors (IMU, GNSS) is part of Monte-Carlo simulations.
The choice for 100 runs was revealed to be sufficient to qualitatively capture the stochastic distribution
among the different runs. This number could be increased to have a better quantitative perception
about the errors. The initial uncertainties for the navigation states Xn correspond to the simulated
sensor quality and are summarized in Table 3.

Table 2. Noise errors added to the sensor data.

Error Type Notation Value [Units]

Gyro. bias bG 720 [deg/h]
Gyro. correlated noise σGPSD

GM1
0.0028 [deg/s/

√
Hz]

1/βG 200 [s]
Gyro. white noise σGPSD

WN
0.18 [deg/

√
Hz]

Acc. bias bA 8 [mg]
Acc. correlated noise σAPSD

GM1
0.05 [mg]

1/βA 200 [s]
Acc. white noise σAPSD

WN
50 [mg/

√
Hz]

GNSS white noise (each direction) σGNSS 1 [m]

Table 3. Initial navigation state uncertainties.

Navigation States Values Units

Position - all axis 1 [m]

Velocity - horizontal 1 [m]
- vertical 0.5 [m]

Attitude - roll/pitch 3 [deg]
- yaw 5 [deg]

Angular rate - all axis 1 [deg/s]

In the simulation environment, the guidance and control is considered to be independent from
the navigation. In other-words, the guidance is based on “error-free” sensors and VDM-parameters,
reason for which the realized trajectory for each simulation may differ more from the ideal-desired
trajectory. However, this fact is less important to examine the parameter estimation evolution with
respect to real model values.

3. Analysis and Discussion

The main subject of these investigations is to observe how flight dynamic influences the estimation
quality of VDM-parameters (aerodynamic coefficients). Such quality can be analyzed in terms of (i)
the remaining parameter errors and the reduction of the estimated parameter uncertainty and (ii)
the residual correlations among the parameters among themselves and with respect to other states.
The outcome of such analysis is presented in the following sections.
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3.1. Parameter Estimation

As already mentioned, a higher dynamic helps the estimation of the VDM parameters. It excites
different groups of parameters and improve their estimation by (i) decreasing the variance and (ii) by
decreasing their dependence on auxiliary states. Table 4 accentuates this fact by showing the % of
remaining error in groups of VDM parameters after different type of maneuvers.

The different groups are: thrust force FT , forces along x, y, and z body axis given by Fx, Fy, and Fz,
respectively, and the three moments Mx, My, and Mx around the three body axis. These have been
defined from Equations (9)–(15).

It is easily identifiable that better estimation is achieved with more complex trajectories, but that
each maneuver-type influences different (groups of) coefficients. Hence, a sequence of maneuvers
is needed for in-flight parameter calibration. Additionally, the lack of velocity changes in the
suggested trajectories explains the relatively poor estimation of the thrust force group (FT). Therefore,
velocity variations should be considered during each maneuver.

Table 4. Group of VDM parameter error per trajectory [in %] at the end of a maneuver.

Trajectory per VDM Category (Lowest to Largest) Total

Descend. Straight L. Fy : 15.3% < My < Mz < FT < Fx < Fz < Mx : 26.4% 18.4%
Straight line My : 10.0% < Fy < FT < Fz < Mx < Mz < Fx : 17.6% 13.8%
Climbing Straight L. My : 9.1% < Fy < FT < Fz < Mx < Mz < Fx : 17.4% 13.7%
Controlled Orbit My : 11.2% < Fy < Mz < Mx < Fz < Fx < FT : 20.0% 13.5%
Orbit w. AutoPilot My : 10.8% < Fy < Mx < Mz < Fz < Fx < FT : 17.9% 13.2%
8 Loop w. Alt. fix Mz : 8.3% < Mx < Fy < My < Fz < Fx < FT : 17.5% 11.1%
8 Loop w. Alt. var. Mz : 8.3% < Mx < My < Fy < Fz < Fx < FT : 16.8% 10.9%

3.2. Parameter Correlation

For a subset of trajectories, the correlation between all estimated states is shown in a grey scale of
correlation matrix on Figure 4 at the end of the simulated trajectory.

In these figures, the diagonal elements represent the normalized variances of the estimated
parameters, i.e., these have always value 1 and white color. The correlation coefficients
(i.e., off-diagonal elements) are depicted by the varying grey scale from 0 to 1. As presented in Section 1
the state-vector X is categorized in different groups, namely: navigation error states Xn, the VDM
parameters X p, the sensor errors Xe and the wind states Xw. The first thirteen elements consist of
navigation (position, velocity, attitude and angular rate) along with the estimated propeller speed n.
The next 26 states correspond to the VDM parameters X p. The next six states Xe are the accelerometer
and gyroscope biases estimated for each axis (The estimation of time-correlated errors only is the
dominant part, even though other types of noise are added to the observations). The last three states
are the wind components Xw, equal to zero as no wind condition is assumed. The distinguishable
main square of 26 × 26 elements in the middle of the correlation matrix corresponds to the VDM
parameter cross-correlation elements.

The correlation matrices show that trajectory directional dynamics increase the correlation among
VDM parameters themselves and with the navigation states, which is initially set to zero. This is
important, as VDM parameters become observable through such correlation when corrections to
navigation states are made during GNSS update. At the same time, however, certain dynamics decrease
the correlation of VDM parameters w.r.t. auxiliary states (i.e., other states than VDM coefficients).
In other words, the group of VDM parameters stays correlated among them-self (the correlation among
them is related to model definition. In this particular case the chosen polynomials are non-orthogonal,
therefore their terms remain correlated implicitly), but become less dependent to auxiliary quantities
(e.g., sensor errors) in the state-vector. This is important pre-requisite for their employment outside the
calibration scheme. Table 5 presents the VDM parameter pairs highly correlated (>90%) for a subset
of trajectories.
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(a) (b)

(c) (d)
Figure 4. Normalized correlation matrix P between state-vector elements at the end of a maneuver:
(a)—Level flight, (b)—Controlled Orbit (c)—Infinity loop, (d)—Combination of segments

Table 5. Highly correlated VDM parameter pairs for particular trajectories.

Level Flight Asc. Straight Flight ‘8 loops’ with alt. Changes Combination

CMy1 - CMyα 93.6% CMy1 - CMye 90.4% CMye - CMyα 90.2% CFzα - CFxα2 90.9%
c̄ - CMyω̃y 96.7% D - CFT1 90.6% CMxω̃x - CMxω̃z 90.9%

CMy1 - CMyα 97.8% CMy1 - CMyα 92.2% CMzδr - CMz β 95.2%
CMzδr - CMz β 95.4% S - CFzα 97.1%

c̄ - CMyω̃y 96.1% CMy1 - CMyα 97.5%
S - CFzα 96.4% CMye - CMyα 97.5%

CMye - CMyω̃y 96.7% CMy1 - CMye 97.9%
CMxα - CMx β 98.2%

D - CFT1 99.4%

For a particular trajectory, some VDM parameter pairs highly correlate, but not necessarily for
another trajectory with different dynamic, i.e., the pair c̄− CMyω̃y , which converges with a correlation
higher than 90% for a ascending straight line and “infinity loop” with altitude changes trajectory but
its correlation decreases for a more complex one. Or, the pair CMy1 − CMye, which is well correlated for
both the climbing line and the combination of trajectories, is not for the level and “infinity loop” ones.
With these pairs, the highly correlated VDM parameters are good candidates to be re-unified within
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the Kalman filter into a common state. Such "parameter lumping" may prevent potential singularities
and save processing power by reducing the states vector size and related matrices. Also, it may better
to eliminate the geometrical parameters c̄, S from unknowns and obtain their values from CAD models
or other measurements.

3.3. Initial VDM Parameter Uncertainty

The state estimator, here an EKF, requires that the process model (described via VDM) fits
adequately the physical behavior of the aircraft, otherwise it becomes unstable and can diverge [7].
Hence, the initial approximation of the VDM parameters (X p) need to be at some separation to the
true, while in real scenarios, the true is unknown. The previous results have been conducted with
randomly distributed initial uncertainty among the VDM parameters of 20 percent (1σ). Now, we alter
such percentage with different values that range from 10 to 100. Subsequently, we count the number of
Monte-Carlo simulations converging for all performed trajectories. The stability criteria is based on
the navigation completion along the defined trajectory (reaching the last waypoint). This provides a
sketchy idea on the required quality of initial coefficients (values and covariance).

Table 6. Number of successful navigation runs per initial error in VDM parameters per trajectories
(Monte-Carlo 100 runs).

Initial VDM Parameter Error 1σ

Trajectory 10% 20% 30% 40% 50% 75% 100%

Descend. Straight L. 100 92 74 59 55 36 28
Straight line 100 98 71 56 53 36 26
Climbing Straight L. 100 98 87 70 60 40 31
Controlled Orbit 100 100 100 95 83 61 40
Orbit w. AutoPilot 100 99 95 79 57 31 19
8 Loop w. Alt. fix 100 100 99 86 73 43 31
8 Loop w. Alt. var. 100 100 98 79 66 41 21
Combinations 100 91 74 56 43 22 13

Although 100 Monte-Carlos runs is a rather small number to generalize the findings, a trend can
be observed from Table 6. Already from 20 percent of initial error (1σ), the filter stability can not be
always guaranteed. The "controlled orbit" maneuver seems to be the more robust to initial error and is
presented in light green. An explanation is that during this maneuver, the control inputs (actuators) are
fixed and thus avoid instability due to a ‘contradiction’ between flight control inputs and the current
(potentially ‘incorrect’) states.

A conclusion from Section 3.1 was, the higher the maneuver dynamic, the better the coefficients
estimation. However, if the initial VDM parameter values are too far from the true ones,
"higher-dynamic" maneuvers have higher non-linear impact on the divergence. This is particularly
true for the combination of maneuvers, which possesses the lowest number of successful runs for
almost all different scenarios. The smallest number of successful runs for the different trajectories for
each initial error are presented in red in Table 6.

The remaining average VDM parameter error at the end of accumulated successful runs for
different trajectories are depicted in Figure 5 and the filter divergence based on successful runs can be
observed as a function of initial errors.

The black dashed-lines represent the initial VDM parameter error (1σ) applied randomly to the
true values. Until 20 percent of initial error, as seen in Figure 5a, all trajectories converge to an average
error bellow the initial value. Above about 35 percent, the remaining inaccuracy starts to be larger than
their initial quantity. From 50 percent, the successful runs possess an average error above the initial
values for all trajectories, suggesting the instability is reached (see Figure 5b). As a qualitative summary,
in order to guarantee the filter stability and adequate navigation results, the initial uncertainties and
errors in the VDM parameters should remain bellow 30 percent. Obviously, the better prior knowledge
of the VDM parameters, the better for the filter stability and navigation performance. However,
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for real case scenarios, where the aerodynamic coefficients of an aircraft are not known or roughly
approximated, this becomes a complex estimation challenge.
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Figure 5. VDM parameter error in percentage, averaged among all successful runs at the end of the
different trajectories for several initial parameter uncertainty, for the whole range (a) and zoomed (b).

3.4. Sequence of Maneuvers

The previous analysis pointed out how different maneuvers contribute to the improved estimation
of sub-groups of the VDM parameters. Therefore, the idea is to combine the segments of different
shape into a "global" calibration maneuver. The proposed trajectory possesses a combination of the
aforementioned trajectories with accelerations and de-accelerations, as well as upward and downward
sections. The trajectory is depicted in Figure 6. The beginning of the trajectory, denoted with a red
circle, starts with a climbing straight line, and the total flight time lasts around 3 min.

Figure 6. Combination of maneuvers.

The effects of such a compound maneuver on the estimation of the VDM parameter CFxα is shown
in Figure 7b with respect to a simple level flight, as seen in Figure 7a.
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Figure 7. Error estimation evolution versus 1σ during a specific trajectory: (a)—Level flight,
(b)—Combination of maneuvers

The uncertainty of this parameter represented by the estimated standard deviation (upper curve
on both plots) is unchanged in the straight line, while reduced to 40% after maneuver sequencing.
The latter case also removes approximately 50% of the parameter error (lower line), while the
improvement of the former remains marginal. These investigations are generalized for every VDM
parameter in Figure 8.

On this plot, the error for each VDM parameter is compared with the calibration result after a
level flight in a constant direction for two types of sequences: an "infinity loop" at constant altitude
and the previously described global calibration maneuver. The latter decreases the uncertainties in all
VDM coefficients.

Although the (self-)imposed limitations on calibration duration (less than 5 min., Section 2.1) can
be extended, it is observed that the absolute flight duration influences the obtained accuracy of the
VDM parameters only marginally.
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Figure 8. Estimation error of VDM parameters at the end of three calibration maneuvers.

3.5. Brief Discussion on the Observability of VDM Parameters

A dynamic system is observable if its states can be uniquely established from the available
sequence of observations. In the VDM-based navigation implementation, the state-vector is relatively
large (>50) and its observability can be a concern.

We base the following discussion on the analysis of the obtained covariance matrices,
residual state errors, and uncertainties.
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The system is not completely observable at any time t. This is an unambiguous interpretation of
the covariance matrix at the end of the level trajectory (Figure 4a). The lack of correlation among groups
of coefficient reveals the lack of observability in the system for the considered case. Nevertheless,
from Figure 8, we witness a relative reduction of the VDM parameter errors as the dynamic of
the trajectory increases. This, in turn, suggests that the VDM parameters become observable (or
their sub-groups) over a certain time interval with sufficient dynamic. This is equally applicable
to the uncertainty reduction (standard deviation, 1σ), as observed in Figure 7 for the coefficient
CFxα. Here, the time influence is perceptible and the same tendency is pertinent to all coefficients.

The correlation/decorrelation behavior of groups of coefficients depend on the trajectory shape
as presented in Table 4. This fact is further supported by the covariance matrices (Figure 4) that shows
different maneuvers with velocity changes need to be performed to observe all VDM parameters Xp.

The referred figures represent an average among the Monte-Carlo runs, but the stochastic aspects
that are discussed above are also identical for each run.

4. Conclusions

We investigated the influence of maneuvers on the ability of self-calibrating model parameters
in VDM-based navigation. We described the scenario of Monte-Carlo simulation while considering
seven of typical flying scheme. The trajectory elements and necessary actuator states were generated
while using simple guidance and control. From these, ideal sensor (INS/GNSS) outputs were obtained.
Actuator and sensor readings were later corrupted by noise with different levels of correlation.
The resulting data were processed by the VDM-based integration scheme, employing an Extended
Kalman Filter as the principal estimator.

The analysis revealed that complex maneuvers alleviate the formation of correlation within
groups of VDM parameters while accentuating their relations with navigation error states. Both facts
improve the convergence to their true values. Indeed, a trajectory that combines different maneuvers
emphasizes the dynamic changes during a calibration procedure that helps to fine-estimate the
aerodynamic coefficients of a small UAV. The remaining highly correlated coefficients could be lumped
into a common parameters. This would reduce the size of the state vector, which will, in turn, speed
up filter execution—a fact to consider in real-time implementation. The removal of geometrical
parameters (S, b, c̄) is also possible when their values are obtained from direct measurements with
sufficient accuracy.
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Abbreviations

The following abbreviations are used in this manuscript:

CDF Computational Fluid Dynamic
ECEF Earth Centered Earth fixed
ECI Earth Centered Inertial
EKF Extended Kalman Filter
ENU East North Up
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit



Drones 2020, 4, 32 15 of 15

INS Inertial Navigation System
UAV Unmanned Aerial Vehicle
VDM Vehicle Dynamic Model
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