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Abstract: The reduction of the production cost and negative environmental impacts by pesticide
application to control cotton diseases depends on the infection patterns spatialized in the farm scale.
Here, we evaluate the potential of three-band multispectral imagery from a multi-rotor unmanned
airborne vehicle (UAV) platform for the detection of ramularia leaf blight from different flight heights
in an experimental field. Increasing infection levels indicate the progressive degradation of the
spectral vegetation signal, however, they were not sufficient to differentiate disease severity levels.
At resolutions of ~5 cm (100 m) and ~15 cm (300 m) up to a ground spatial resolution of ~25 cm
(500 m flight height), two-scaled infection levels can be detected for the best performing algorithm of
four classifiers tested, with an overall accuracy of ~79% and a kappa index of ~0.51. Despite limited
classification performance, the results show the potential interest of low-cost multispectral systems to
monitor ramularia blight in cotton.

Keywords: disease severity assessment; ground cover; UAV; ramularia areola; remote sensing

1. Introduction

Remote sensing has been proven to be a key technology in monitoring cotton (Gossypium hirsutum L.)
crop yields [1,2], nutrient status [3,4], water stress [5,6], and diseases [7–11]. Up to now, the focus has
been mainly on the application of field spectroscopy at the canopy scale [8,12–16] and manned airborne
systems [2,17] to support precision farming approaches. However, specific cotton-related orbital remote
sensing studies are rare [18–20]. Most satellite-based approaches, including the identification of cotton
crops, are broader land-use and land-cover studies or biomass estimates without the characterization
of the physical, biological, or chemical conditions of the crop [21,22]. Furthermore, previous studies on
remote pest detection mainly focused on cotton rot [17,23] or the identification of crop diseases on the
leaf scale [24].

Ramularia leaf blight, also known as false or grey mildew, includes the fungus ramularia areola
Atk. as an etiologic agent and is the most important foliar cotton disease. In Central-west Brazil,
yield losses of ~20–30% have been reported, which can exceed 70% without control measures in other
production regions such as India [25]. Infection can cause boll abortion, malformation of bolls, and
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lower fiber quality. For effective control measures, up to nine fungicide applications may be necessary,
which cause the increase in production costs and additional negative ecological impact of the culture
on natural resources.

As a quickly emerging remote sensing technology, triggered by the advanced miniaturization
of electronic devices (sensors, modems, processors, servos, batteries, etc.) [26], a low-cost unmanned
airborne vehicle (UAV) has been applied to fine-scale monitoring of the crop development, parameters
of fertility and physical soil conditions, and precision farming and pest control [27–31]. The UAVs
can be operated quickly and economically. They fly below the cloud layer and require little logistic
resources and planning time as compared with photogrammetric aircraft campaigns. High spatial
resolution imagery allows the examination of individual plants and sub-metric spatial patterns [32,33].
One of the most common classifications of UAVs, besides their size and weight, is based on their flying
principle. Rotor wing systems were found to be more flexible in operation, whereas fixed-wing systems
allow a quicker coverage of larger areas [34].

Crop diseases alter the multispectral reflectance of plants at different damage levels. In the absence
of visual symptoms such as leaf lesions, plants can react to the presence of a pathogen with physiological
mechanism such as the reduction of the photosynthesis rate [35], increasing reflection in visual
wavelengths, and decreasing near-infrared reflection. Regardless of their potential [30] and supported
by results of non-imaging spectroscopy measurements of cotton plants [7], image classification of
cotton leaf [36], spectroscopic approaches in different scales for leaf diseases identification in different
crops [37–39], and peer-reviewed studies on the application of UAV for cotton disease monitoring
are extremely scarce. In our review, no previous studies on the applicability of air- or spaceborne,
multispectral remote sensing techniques for the detection of ramularia blight could be identified.

Initially considered only a secondary phytosanitary problem and occurring only at the final stages
of the production cycle, highly productive cotton cultivars are now affected as well in initial stages.
In conjunction with a possible increasing resistance against fungicides [40], an effective corrective
measure can demand up to ten repetitive applications [25], requiring the detection and mapping of
ramularia blight imperative as early as possible.

Here, we examine the performance of multispectral imagery from a low-cost, low-flight multi-rotor
UAV platform for the differentiation of ramularia infection levels in cotton on the farm scale.
Furthermore, we evaluate how different flight heights affect the separability measures between
infection classes to guide potential users in balancing between adequate spatial resolution and terrain
coverage during UAV operation.

2. Materials and Methods

2.1. Study Area

Field data were obtained from a research field station of the Cotton Institute of Mato Grosso
(IMAmt), in the Primavera municipality, in one of the most important cotton farming regions of the
Neotropics in the Central Brazilian Highlands (Planalto Central). It is located at ~54◦11′46” W and
15◦32′12” S, ~210 km east of the Mato Grosso state capital, Cuiabá (Figure 1). The average annual
temperature of the region is ~22 ◦C and the average annual rainfall precipitation is ~1650 mm with a
rainy season between November and April and a dry season from May through October. As large
parts of the crop farming regions of the Central-western Brazil, experimental sites are installed over
tertiarian sandstones on a gently rolling relief, where deep oxisols develop.
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Figure 1. (a) Experimental test site of the IMAmt, (b) parcel structure with inner buffer, and (c) plant 

lines in a SL camera true-color image and multispectral RGB-composites with inner buffers used for 

signature extraction as obtained from four flight heights with the value of spatial resolutions at 

ground (SRG) of each image. 

2.2. UAV System, Image Acquisition, and Data Preprocessing 

The UAV system we used was composed of a vertical takeoff and landing, eight-rotor 

oktokopter (model MK Okto XL 6S12, HiSystems GmbH, Moormerland, Germany) and a lightweight 

(200 g), multispectral TetraCam ADC camera (Tetracam Inc., Gainesville, FL, USA) with a 3.2-

megapixel CMOS sensor (2048 x 1536 pixels) and 8.0 mm focal lens (Figure 2). The MK Okto platform 

included an ARM processor equipped with a mainboard and a navigation mainboard (NaviCtrl) with 

compass and GPS modules. 

The NaviCtrl in conjunction with a pressure sensor enabled predefined autonomous flights. A 

lithium polymer battery with up to 6600 mAh capacity allowed flight durations of approximately 15 

minutes. A standard 2.4 GHz transmitter remote control with additional channels for steering 

mechanisms and camera triggering was used for flight control. The ADC camera was mounted on a 

digital gimbal with biaxial roll and pitch control for flexible camera configurations. 

The TetraCam ADC camera was sensitive in the spectral range between 520 nm and 920 nm and 

was operated with an 8-bit data depth. The three available bands simulated the Landsat TM sensor 

bands 2, 3, and 4 (OLI sensor bands 3, 4, and 5) at wavelengths of 520–600 nm (green band), 630–690 

nm (red band), and 760–900 nm (near-infrared band). 

A waypoint-programmed vertical flight was realized on 30 May 2014, between approximately 

14:00 and 15:00 local time under clear weather conditions, with an air temperature of 30.6 °C and 

Figure 1. (a) Experimental test site of the IMAmt, (b) parcel structure with inner buffer, and (c) plant
lines in a SL camera true-color image and multispectral RGB-composites with inner buffers used for
signature extraction as obtained from four flight heights with the value of spatial resolutions at ground
(SRG) of each image.

2.2. UAV System, Image Acquisition, and Data Preprocessing

The UAV system we used was composed of a vertical takeoff and landing, eight-rotor oktokopter
(model MK Okto XL 6S12, HiSystems GmbH, Moormerland, Germany) and a lightweight (200 g),
multispectral TetraCam ADC camera (Tetracam Inc., Gainesville, FL, USA) with a 3.2-megapixel CMOS
sensor (2048 × 1536 pixels) and 8.0 mm focal lens (Figure 2). The MK Okto platform included an
ARM processor equipped with a mainboard and a navigation mainboard (NaviCtrl) with compass and
GPS modules.

The NaviCtrl in conjunction with a pressure sensor enabled predefined autonomous flights. A
lithium polymer battery with up to 6600 mAh capacity allowed flight durations of approximately 15 min.
A standard 2.4 GHz transmitter remote control with additional channels for steering mechanisms and
camera triggering was used for flight control. The ADC camera was mounted on a digital gimbal with
biaxial roll and pitch control for flexible camera configurations.

The TetraCam ADC camera was sensitive in the spectral range between 520 nm and 920 nm and
was operated with an 8-bit data depth. The three available bands simulated the Landsat TM sensor
bands 2, 3, and 4 (OLI sensor bands 3, 4, and 5) at wavelengths of 520–600 nm (green band), 630–690 nm
(red band), and 760–900 nm (near-infrared band).
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respectively. The preprocessing of the images accounted for vignetting and sensor-related 

radiometric distortions corrections and was carried out using the PixelWrench 2 software (Tetracam 

Inc.). 

 

Figure 2. An eight-rotor oktokopter, model MK Okto XL 6S12, and a docked TetraCam ADC Lite 

multispectral camera. 

During the flights, the Tetracam ADC camera was in automatic exposure mode, and therefore, 

the images were acquired with the following different integration times: 0.860 ms (at 100 m flight 

height), 0.946 ms (at 300 m flight height), and 1.032 ms (at 500 m and 700 m flight height). To minimize 

image distortions, the UAV platform was programmed to remain stable for 30 sec at respective flight 

heights. To compare the digital counts (or grey levels) of the acquired images with different exposure 

times, we applied a time normalization to the data by dividing each image by its exposure time, 
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Figure 2. An eight-rotor oktokopter, model MK Okto XL 6S12, and a docked TetraCam ADC Lite
multispectral camera.

A waypoint-programmed vertical flight was realized on 30 May 2014, between approximately
14:00 and 15:00 local time under clear weather conditions, with an air temperature of 30.6 ◦C and
relative humidity of 51%. The cotton crops at the experimental site were in the maturity stage. Images
were acquired at four different flight heights: 100 m, 300 m, 500 m, and 700 m, at a nominal ground
sample distance and spatial resolutions at ground (SRG) of ~5 cm, ~15 cm, ~25 cm, and ~35 cm,
respectively. The preprocessing of the images accounted for vignetting and sensor-related radiometric
distortions corrections and was carried out using the PixelWrench 2 software (Tetracam Inc.).

During the flights, the Tetracam ADC camera was in automatic exposure mode, and therefore, the
images were acquired with the following different integration times: 0.860 ms (at 100 m flight height),
0.946 ms (at 300 m flight height), and 1.032 ms (at 500 m and 700 m flight height). To minimize image
distortions, the UAV platform was programmed to remain stable for 30 sec at respective flight heights.
To compare the digital counts (or grey levels) of the acquired images with different exposure times, we
applied a time normalization to the data by dividing each image by its exposure time, where DCexp
are the time-normalized data in DC/s (Digital counts per seconds), according to Equation (1):

DCexp =
DCa

x
T′

, (1)

where DC is the digital count in a specific band x, a is the flight height, and T′ is the image exposure
time in seconds.

In addition to time normalization, radiometric normalization was required for the comparison
because weather conditions, solar illumination geometry, and atmospheric scattering and absorption
variations differed for each flight height. For that purpose, we identified 26 semi-invariant radiometric
sites in the scenes. The grey levels of a semi-invariant radiometric site were supposed to not change
from scene to scene, except for differences in atmospheric scattering, absorption, relief, or illumination
and viewing geometry conditions. We selected 26 bare soil sites to spread all over the study area and
calculated their average digital count per second at each of the different flight heights. Using the 100 m
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flight height image as the reference, we calculated a radiometric normalization factor (fa), according to
Equation (2):

fa =
MED100

MEDa
, (2)

where MED100 is the bare soil pixels average of the 100 m flight height image, and MEDa is the average
of the bare soil pixels at other flight heights.

When multiplying each of the images acquired at flight heights of 300 m, 500 m, and 700 m
with the respective factors, we radiometrically normalized them to the image acquired at the 100 m
flight height. Therefore, the time and radiometrically normalized images in digital counts per second
(DCnor) were obtained using Equation (3):

DCnor = DCexpa
x ∗ fa, (3)

where DCexpx is the exposition time-corrected digital count value at a specific band and flight height,
a is the flight height, and fa is the atmospheric normalization factor.

2.3. Spatial Arrangement of Field Experiment and Assessment of Ramularia Blight Infection Levels

The field experiment for assessment of ramularia blight infection levels at IMAmt totaled an area
of about 1.09 ha, subdivided in 78 plots, each with an extension of 16 m × 7 m, with management
corridors of 2 m (Figure 1b). Plots were further divided into nine parcels of 7 m × 1.8 m, of which each
included two plant lines of identical genotype (exact specifications were maintained under business
confidentiality of IMAmt) and fertilizer and pesticide applications.

Single crop cotton genotypes, which result in the highest yields and quality, are seeded in central
Brazil at the end of October and yielded mostly in June or July. Infection commonly surges during
advanced phenological development. Small angular leaf lesions of 3–4 cm surge in the initial phases of
infection, whereas lesions become necrotic with severe chlorosis during advanced stages, causing the
premature death of leaves. In general, infection is initiated in lower leaf layers at the leaf downside.

The technical staff of the IMAmt examined the cotton infection levels of ramularia blight at the
experimental site. Individual cotton plants were classified using a five-level key (Figure 3).
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Figure 3. Classification key for the ramularia blight infection severity of cotton leaves. For comparison
with unmanned airborne vehicle (UAV) imagery, individual plant classification was averaged, rounded
by parcel, and labeled with the same key. (a) 0: without symptom; (b) 1: ≤5% of the leaf area infected,
without incidences in the middle layer; (c) 2: 5–25% of the leaf area infected, incidences in the middle
layer; (d) 3: 25–50% of the leaf area infected, incidences in the upper layer; and (e) 4: >50% of the leaf
area infected, incidences in the upper layer, leaf loss.

For comparison with UAV imagery, individual plant classifications were then averaged by parcel.
The average was rounded to the 5-level key. Infection levels were initially spatialized by vectorization
of parcel limits over a real-color orthophoto mosaic taken during a previous low-altitude flight at
50 m using a photogrammetric pipeline based on bundle adjustment, which had been georeferenced
by 20 control points installed at the test site. Because the control point adjustment of multispectral
imagery from the different flights achieved only an absolute spatial accuracy of 0.44 m (RMS) on
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average, parcels had to be individually adjusted for every flight height to guarantee an accurate
signature extraction over the linear parcels. In order to exclude mixed pixels and reduce neighborhood
effects of adjacent pixels of the management corridors, only pixels from a 50 cm inside buffer were
considered in the data analyses (Figure 1c). Therefore, the number of extracted pixels for each inside
buffer varied between approximately 2500 at the 100 m flight height and approximately 50 at the 700 m
flight height. The values of the pixels were then averaged for each buffered parcel and spectral band,
resulting in 154 instances for each flight height. This number was inferior to the number of parcels
originally planted in the experiment, as some of the parcels were not entirely imaged in the 100 m
flight height and others had to be excluded from analysis due to incomplete crop development caused
by waterlogging and soil degradation.

2.4. Data Analysis

The distribution of class-wise DCnor values was tested for normality using the Kolmogorov–
Smirnov test for every spectral band and flight height. The separability between DCnor cotton pixel
values for each band from different flight heights and DCnor values of ramularia wilt infection classes for
each band and flight height was evaluated by exploratory data analysis, and according to the normality
tests, by the nonparametric, unpaired Mann–Whitney test (MWT). Adjacent remote sensing imagery
pixels were autocorrelated [41] and could not be considered as independent samples. In order to avoid
the inflating of test statistics, we averaged DCnor values by parcel to test group differences. Furthermore,
multispectral classifications were conducted using four nonparametric classifiers as implemented in
the WEKA data mining software [42]: (1) multinomial logistic regression (MLR) [43], (2) multinomial
logistic regression with boosting (MLRb) [44], (3) Support Vector Machine (SVM) [45], and (4) random
forest tree (RFT). We did not focus on the comparison of classifier performances but instead focused
on the application of different algorithms to minimize the possibility that the obtained performance
of infection level classification outcomes may be caused by specifications of a single classifier. The
selected algorithms have been widely applied in remote sensing imagery classification [46–48] and
were known to have different requirements with respect to the training data input and complexity of
the parameter adjustment needed to achieve a sufficient generalization performance.

The MLR used a linear predictor function and required a relatively small number of training data
to estimate the parameters necessary for classification. Furthermore, there was no need for predictors
to be statistically independent of each other as compared with, for example, the Bayes classifier [49].
The SVM techniques performed well in the multispectral remote sensing classification, even with a
modest amount of training data [46]. However, the SVM may have been subjected to overfitting the
dataset because it adjusted to nonlinear class predictor relations [50]. The other two approaches were
affected more by overfitting of training data or higher amounts of training data demanded, that is,
MLRb because of its underlying boosting [51] and RFT because it was an ensemble approach based on
bootstrap aggregating (bagging) [52].

For classification and validation, the dataset (n = 154) was split, two-thirds for training and
one-third for validation. The overall accuracy and kappa indices were then determined using a 10-fold
cross-validation approach.

3. Results

The empirical flight height normalization factors increased with flight heights in both bands of
the visual spectrum (GREEN, RED), whereas they decreased slightly or remained almost stable in
the near-infrared (NIR) range (Table 1). The modest fa increased in the visual bands and the slight
reduction in the NIR were caused by higher sensor exposure times at higher flight heights, which
reduced the DCnor estimates and thus compensated for increasing path radiance.

The DCnor values of extracted cotton pixels increased slightly in the GREEN and RED bands
with flight height and decreased in the NIR.
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Table 1. Spatial resolution at ground (SRG), atmospheric normalization factor ( fa), and descriptive
statistics of cotton pixel values after atmospheric normalization (DCnor) for the three spectral bands
and different flight heights. The trends of the statistical parameters do not change and an identical
pixel number (n = 6102) is generated for all flight heights by random sampling. According to the
Mann–Whitney test (MWT), all distributions of the band-specific DCnor from different heights are
significantly equal (p > 0.05).

Band Height (m) SRG (cm) fa N Mean Median SD AmplitudeMin Max

GRE

100 ~5 1.000 332,345 43.16 43.02 8.40 62.79 13.95 76.74
300 ~15 1.011 36,647 43.57 43.82 6.54 49.16 22.44 71.60
500 ~25 1.027 12,949 43.84 43.79 5.88 38.81 24.88 63.70
700 ~35 1.085 6102 45.64 45.20 5.74 38.90 27.33 66.23

RED

100 ~5 1.000 332,345 8.23 8.14 6.30 75.58 0.00 75.58
300 ~15 1,066 36,647 9.29 9.01 6.19 46.18 0.00 46.18
500 ~25 1.150 12,949 9.67 8.92 5.89 33.44 0.00 33.44
700 ~35 1.334 6102 12.65 12.93 7.07 49.12 0.00 49.12

NIR

100 ~5 1.000 332,345 122.96 124.42 23.97 160.47 41.86 202.33
300 ~15 0.994 36,647 121.47 122.92 18.28 119.77 57.78 177.56
500 ~25 0.969 12,949 116.08 117.41 15.67 101.44 68.56 170.00
700 ~35 0.963 6102 110.58 111.95 14.53 83.03 69.97 153.00

The dispersion decreased with flight heights in all spectral bands, except in the case of the RED
band between 500 and 700 m. Due to the reduced spatial resolution, zero values recorded at all flight
heights had a lower relative percentage (700 m: 1.6%, 500 m: 2.4%) than those at lower heights (100 m:
4.9%, 300 m: 3.2%), increasing relatively central tendencies. The reduction in the variability is a
function of the spatial resolution. At lower flight heights, both higher maximum (e.g., pure open soil,
directionally reflecting leaves) and minimum (e.g., shadows) DCnor values were registered. On the
basis of the Kolmogorov normality test, the distribution of cotton DCnor values differed significantly
from the normality, mainly in the RED band with zero values occurring at all flight heights.

On average, the parcels of all infection levels showed a vegetation signal with expressive NIR
values and higher values in the GREEN than RED band. The DCnor values of the cotton parcels with
lower yields [2] and the canopies infected with verticillium wilt [7] decreased in the GREEN and NIR
bands with an increased infection level (Figure 4) and increased in the RED, which corresponded to
a reduction of the “red edge” in the plant leaf reflectance [53]. In general, these characteristics were
maintained at all flight heights. Absolute values within the classes had the same trends at different
flight heights and dispersion levels were observed for the entire dataset (Table 2), with values increasing
slightly in the visible wavelength range, decreasing in the NIR, and decreasing variance with increasing
flight height.

The median differences between successive infection levels are lower at higher classes (3–4, 4–5)
than at lower ones (1–2, 2–3) throughout the spectral bands.

Visual inspections were underpinned by the separability analysis based on the p-values of the
unpaired MWT test (Table 2). Independent from the flight height and spectral band, the separability of
class pairs with a more severe infection level (2–4, 3–4, 2–3) was higher than that of classes with a low
infection level (0–1, 1–2). This was directly linked to the classification key applied for the ramularia
infection field surveys [54], where affected leaf areas are not scaled linearly in the classes (see Table 1).
Parcels without symptoms (class 0) could not be separated from those of class 1 (affected leaf area < 5%)
at any of the flight heights. Even separation from class 2 (affected leaf area < 15%) was mostly
impossible in the 95% confidence interval for different bands and flight heights. Furthermore, partial
leaf loss, which caused a stronger influence of reflection on the underlying soil, only occurred at the
most severe level of ramularia wilt infection (class 5). In general, most pairs with a two-level difference
between their classes showed a significant difference in all bands and flight heights, however, there
was a better performance for pairs of high (e.g., 2–4) than low infection levels (e.g., 1–3).



Drones 2019, 3, 33 8 of 14

Figure 4. Band-wise DCnor values at different UAV flight heights, (a) green, (b) red, and (c)
near- infrared.

Table 2. P-values of the unpaired MW test for the comparison between ramularia areola infection levels
of different flight heights.

0 1 2 3 4
GRE RED NIR GRE RED NIR GRE RED NIR GRE RED NIR

0

100 m 0.564 0.974 0.519 0.094 0.011 0.103 0.000 0.000 0.000 0.000 0.000 0.000
300 m 0.393 0.205 0.208 0.058 0.304 0.017 0.000 0.000 0.000 0.000 0.000 0.000
500 m 0.167 0.390 0.411 0.015 0.255 0.063 0.000 0.004 0.000 0.000 0.000 0.000
700 m 0.255 0.339 0.623 0.248 0.380 0.759 0.000 0.006 0.000 0.000 0.000 0.000

1

100 m 0.152 0.013 0.142 0.000 0.000 0.000 0.000 0.000 0.000
300 m 0.501 0.817 0.598 0.001 0.016 0.001 0.000 0.000 0.000
500 m 0.522 0.855 0.724 0.000 0.043 0.004 0.000 0.000 0.000
700 m 0.844 0.688 0.881 0.016 0.205 0.016 0.000 0.000 0.000

2

100 m 0.000 0.014 0.000 0.000 0.000 0.000
300 m 0.000 0.001 0.000 0.000 0.000 0.000
500 m 0.000 0.029 0.000 0.000 0.000 0.000
700 m 0.000 0.025 0.000 0.000 0.000 0.000

3

100 m 0.009 0.001 0.016
300 m 0.009 0.000 0.006
500 m 0.003 0.003 0.003
700 m 0.006 0.000 0.002

4

Decreasing variability in the signatures partially improved the class differentiation at intermediate
flight heights. The cotton signal in the imagery of the 100 m flight height with a nominal spatial
resolution of ~5cm was influenced more by reflectance variations, due to biotic and abiotic factors such
as reflection differences between different plant parts and plant structure causing shadowing, than
by symptoms caused by infection (leaf necrosis). The separability was slightly reduced at a height of
700 m.

Because the band-wise separability was not viable, at least between the two lowest infection
classes, test classifications were conducted for three-keys (Figure 5): (i) a four-class key (class 0 and 1
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aggregated), (ii) a three-class key (class 0 through 2 aggregated), and also (iii) classes 0 through 2 and 3
and 4 aggregated.

Figure 5. Overall accuracy and kappa index for three-band classifications of four, three, and two
ramularia blight infection levels. The cotton pixel DCnor values have been averaged by parcel (median)
for the classifications.

The overall classification accuracies range between ~30 % and 79 % and kappa indices between 0.02
and 0.51, respectively. As expected, the successive reduction from four to three and then to two classes
improved both the accuracy measures independent of classifier and imaging height. The classifiers
performed similarly, on average through flight altitudes and number of differentiated infection levels,
with a slight advantage of the LR, an inductive linear approach that is known to be less sensitive to
smaller amounts of training data. The RF, a machine learning ensemble classifier approach, which
tends to overfitting, underperformed in the classifications with four infection levels and for the 300 m
and 700 m flight heights of the three-level classification key. In the two-class aggregations, the three
classifiers with higher demand for training data (LB, RF, VM) performed at least as well as LR. The
best single classification performance was obtained for VM, classifying the 500 m flight height imagery
in two infection levels.

4. Discussion

Multispectral imagery from a vertical flight of a multi-rotor UAV platform was evaluated with
respect to the applicability for the identification of ramularia blight infection levels in cotton. The DC
signature separability and classification performance were based on a detailed controlled phytosanitary
field experiment in one of the major regions for cotton cropping worldwide.

For the comparison of DC values from four flight heights, a relative radiometric adjustment was
conducted to normalize different camera exposition times and to increase atmospheric interferences of
the imagery. Such a procedure was chosen because the reliable transformation of DC values, from
UAV-transported moderate costly lightweight CCDs such as the Tetracam ADC Lite to reflectance



Drones 2019, 3, 33 10 of 14

values is not trivial due to the lack of exact information on sensor calibration and viewing geometry
caused by platform instability. In fact, standard tools that do not require ground measurements for
the transformation of DC to reflectance values are not available [55]. After normalization, the DCnor
distributions from the flight heights were not found to be significantly different.

From a practical viewpoint, the applied procedure seems to be much more reliable than extensive
and time-demanding radiometric preprocessing and transformation to reflectance values, which would
further make it difficult to obtain necessary input data (exact flight geometry, atmosphere parameters,
etc.) and may be less viable for operational application by farmers. Nevertheless, future developments
for radiometric calibration and correction of UAV-borne imagery and equipment refinement would
allow the calculation of comparable vegetation indices throughout the phenological development.
Such indices are known to be important in early disease detection, the differentiation of diseases, better
differentiation of disease severity [7,56,57], as well as their upscaling to satellite imagery for large-scale
monitoring. More recently, released multispectral camera systems such as the Parrot Sequoia+ (Parrot
Drones SAS) or the Micasense Rededge MX (MicaSense, Inc.) allow for absolute reflectance calibration
with or without a calibration target.

The classification accuracies were found to be similar to those obtained in vegetation mapping [34]
and modest in comparison with results obtained during the assessment of other cotton diseases. In a
study on the mapping of cotton root rot from airborne multispectral cameras [23], overall classification
accuracies of more than 90% were achieved for the differentiation between infected and non-infected
zones. For a binary key, we obtained the best classification at an OC of 79.1% (VM, 500m flight height).
Other than ramularia wilt, which gradually affects the leaves canopy, plants infected with root rot
die within several days, drastically changing multispectral reflection patterns and improving the
differentiation from non-affected crops. The authors further emphasize that the detection is much less
effective if plants are newly infected with a small level of damage, while newly infected plants without
notable symptoms may not be detectable. Similar findings have been obtained for the detection of leaf
diseases of other crops [57]. However, as shown for sugar beet leaves [58] changes in spectral reflectance
may occur from impairments in the leaf structure, the chemical composition of the tissue-specific
in the pathogenesis of different leaf diseases, or may even be due to abiotic stress [57], aspects not
examined in the present study. As shown, for example, for barley diseased leaves with net blotch,
rust, and powdery mildew [57], spectra alterations of diseased leaves are prominent in well-defined
wavelengths. Therefore, hyperspectral approaches [59] or at least the utilization of camera systems
with additional and/or narrower spectral bands [60] such as from the “red edge” (available for example
through the Parrot Sequoia+ or the Micasense Rededge MX sensors) will be imperative to improve
detection performance.

Spatial resolution has a known influence on pathogen mapping. In general, improved spatial
resolution is expected to improve detection [61]. Leaf disease mapping in other crops, such as the
powdery wilt of wheat, showed that the detection by multispectral satellite imagery is not trivial [62].
Using multispectral SPOT 6 data, the authors achieved a dichotomous classification for healthy and
infected stands with OC and kappa values of ~77% and 0.55, respectively, similar to those obtained in
our study.

Classification performances, for the 100 m (SRG = ~5 cm), 300 m (SRG = ~15 cm), and 500 m
(SRG = ~25 cm) flight height imagery, were found to be almost equivalent, whereas performance
decreased for the 700 m flight height (SRG = ~35 cm). As observed in a UAV-based weed seedling
mapping from flight heights between 40 m and 100 m [63], the best detection performance does not
always occur at the highest spatial resolution, which can improve with higher altitudes, if plant size
is large. They further emphasized that tailored object-based image classification schemes must be
elaborated in order to take full advantage of very high spatial resolution imagery. The non-equal
spacing of the percentages of the affected leaf area in the applied infection level key decreased the
performance of class differentiation and classification. The first three of the five classes include plants
with up to only 15% of their total leaf area affected by necrosis (see Figure 2). Because similarly spaced
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keys are utilized in other farming regions, such as India [64], it should be evaluated if alternative
field-scale keys could be developed, which may be better for infection detection using remote sensing
methods. In addition, the spatial arrangement of the field experiment was not specifically developed
for remote sensing studies. Spatial units with unique infection levels had an unfavorable length to
width ratio of ~1:3.9. Principally, this linear design leads to a high percentage of mixed pixels and
border effects at higher flight heights than for approximately quadratic parcels.

Furthermore, it must be pointed out, that the applied validation approach, as imperative by
the available phytosanitary field survey, tends to underestimate real classification accuracies. Inside
the parcels, individual cotton plants, or even different leaves of a unique plant show different leaf
necrosis levels, which are not expressed by the unique classification given for each parcel. Considering
diameters of 60–90 cm of a fully developed cotton crop and given nominal spatial resolutions between
5 cm and 35 cm, one specimen is represented by several pixels, and in the case of the lowest flight
heights, one pixel represents a singular leaf. Therefore, possible false positives or negatives partially
originated from the generalized ground truth.

5. Conclusions

The potential of three-band multispectral imagery from a multi-rotor UAV platform for the
detection of ramularia blight from different flight heights was evaluated. Increasing infection levels
have led to the progressive degradation of the spectral vegetation signal, however, they were not
sufficient to differentiate finer-scaled disease severity levels. The findings, such as that the separability
and classification accuracies did not decrease up to a monitoring height of 500 m, and that empirical,
relative radiometric adjustment maintains multispectral DC signatures similar to flight heights with
almost no atmospheric interference (100 m), have practical relevance. This means that the higher flight
heights used in property scale disease monitoring and precision farming can equilibrate the major
limitation of multi-rotor mini UAV with respect to their restricted autonomy and coverage as compared
to fixed-wing systems without bias foliar disease detection. Limited classification performances have
motivated our ongoing efforts to apply a camera system with a higher spectral resolution (Micasense
RedEdge M) and its combined use with a thermal imaging system FLIR 420T (FLIR Commercial
Systems). Recent field campaigns include very low altitude imaging (<100 m) for the acquisition of
improved spatial resolution imagery and multitemporal approaches for mapping ramularia blight and
other diseases in cotton.
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