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Abstract: Understorey vegetation plays an important role in many ecosystems, yet identifying and
monitoring understorey vegetation through remote sensing has proved a challenge for researchers
and land managers because understorey plants tend to be small, spatially and spectrally similar,
and are often blocked by the overstorey. The emergence of Unmanned Aerial Systems (UAS) is
revolutionising how vegetation is measured, and may allow us to measure understorey species
where traditional remote sensing previously could not. The goal of this paper was to review
current literature and assess the current capability of UAS to identify and monitor understorey
vegetation. From the literature, we focused on the technical attributes that limit the ability to monitor
understorey vegetation—specifically (1) spatial resolution, (2) spectral sensitivity, (3) spatial extent,
and (4) temporal frequency at which a sensor acquires data. We found that UAS have provided
improved levels of spatial resolution, with authors reporting successful classifications of understorey
vegetation at resolutions of between 3 mm and 200 mm. Species discrimination can be achieved by
targeting flights to correspond with phenological events to allow the detection of species-specific
differences. We provide recommendations as to how UAS attributes can be tailored to help identify
and monitor understorey species.

Keywords: UAV; drone; sub-canopy; understory; vegetation; remote sensing; spatial resolution;
spectral sensitivity; spatial extent; temporal frequency

1. Introduction

The interaction of plant species occurrence, diversity, distribution, and abundance result in
particular vegetation assemblages. Disturbances to these different vegetation assemblages can affect
vegetation condition, including cover and structure, which reflects the environmental health of
most ecosystems [1,2]. The structure of vegetation is associated with its spatial distribution and
is composed of horizontal and vertical attributes of species within each habitat [3,4]. Structure refers
to both the distribution of species in horizontal space and the vertical subdivision of multiple strata,
with the number of strata dependent upon the complexity of the vegetation. In woody ecosystems,
the overstorey is the uppermost layer of vegetation, often represented by the canopies of the tallest
trees. All vegetation that falls under the overstorey represent classes of the understorey, and includes
non-emergent individuals of overstorey tree species, smaller stature trees, climbers, shrubs, forbs, and
grasses. Most woody biomass is stored in overstorey species, while the understorey generally has
higher biodiversity, and plays a critical role in forest nutrient cycles, soil carbon accumulation, and
stand development [5–7]. As such, understorey vegetation is a vital component of most terrestrial
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woodland and forest ecosystems, although monitoring its dynamics remains challenging for researchers
and land managers globally.

Methods to monitor vegetation depend on the specific goals of the research or management
activities. The traditional, and most prevalent, methods involve hands-on fieldwork [2]. However,
the spatial extent at which fieldwork can be conducted is usually limited due to its high logistic
cost, in terms of time, money, and site access. Therefore, field-based methods have been considered
‘impractical’ for the monitoring of large areas [2,8,9]. The spatial extent problem has been overcome
to a certain extent by the emergence of remote sensing methods since the 1970s [2]. For example,
Breckenridge et al. [1] reported that their remote sensing method required 22% of the time that would
have been needed to sample their sites using the point-frame field method. Remote sensing is based
on the use of sensors to detect different properties of the environment from a distance and this data is
often trained or verified with comparatively minimal fieldwork. The identification of plant species
and their patterns can be achieved through remote sensing due to the inherent differences between
species in terms of distribution, extent, structure, colour, and texture [2,10].

Remote sensing of vegetation cover has been mostly limited to monitoring the overstorey, while
the understorey and its contribution to the environment has been greatly overlooked due to the
challenges it represents. Individual understorey species tend to be smaller than canopy trees, requiring
finer spatial resolution for successful detection and identification through remote sensing technologies.
Many understorey species can also have short lifecycles, making the timing of data collection crucial for
detection. Traditional remote sensing systems have generally failed to detect and monitor understorey
species due to limitations of platforms and sensors used for data acquisition. Platform and sensor
limitations are evident when considering cloud cover or the angle of the sun at the time of data
acquisition. The associated effects of shadows from clouds, and the overstorey on the understorey,
can alter spectral signatures or obscure understorey species altogether [11,12]. Although sensors are
designed to account for them to some extent [10] and there are desktop methods to correct the radiance
of shaded areas (e.g., Yamazaki et al. [11]), prevention of shadows is preferred in most cases.

1.1. Sensors

Remote sensors can acquire data passively or actively, with passive sensors detecting the reflection
of the sun’s radiation [13,14], and active sensors sending a signal and measuring the return to detect
different properties [2,14], most commonly through laser or microwave signals [15]. The most common
form of passive sensors involves image acquisition and their analyses, where vegetation is classified or
identified based on colour, texture, and, to a limited extent, structure, with each pixel of the image
capturing the light reflectance of the species closest to the sensor [2,16]. Differences in vegetation colour
are driven by slight variations in the proportion of pigments within their cells, such as chlorophyll,
carotene, and anthocyanin [2,16]. Structural differences include the distribution of cellular components
such as the spaces between organelles or between cells that may hold different proportions of air
and water, resulting in different light reflectance properties [2]. Differences in vegetation colour and
structure lead to species-specific combinations of light reflectance across the spectrum, known as
spectral signatures [2,16]. However, healthy vegetation most commonly reflects light in the green and
near infrared portions of the spectrum, leading to similar spectral signatures that are overlapping for
species with similar characteristics.

The most prevalent active sensors currently used are Light Detection and Ranging (LiDAR)
sensors, which send many pulses per second that bounce back (return) after finding a surface (barrier)
and use the temporal axis to determine the distance and angle of objects, resulting in a 3-Dimensional
cloud [4,13,17]. The number of returns acquired can be discrete (usually 4 returns) or continuous
(full-waveform) [17]. LiDAR signals can penetrate lower strata [7]. However, the proportion of pulses
that reach lower strata and return to the sensor are lower, for example, Hamraz et al. [6] found that
90% of the pulses reached the forest overstorey whilst only 60% of the pulses reached the understorey.
The issue with sensors and detection of vegetation is most apparent when considering that passive



Drones 2019, 3, 9 3 of 18

sensors capture multiple wavelengths of the layer closest to the sensor, generally represented by
overstorey species, while active LiDAR sensors reflect single-wavelength structural features, many of
which are not species-specific.

1.2. Platforms

Along with the sensor type, the remote sensing platform plays an important role in the ability to
detect understorey vegetation, with trade-offs between cost, spatial extent, and spatial and temporal
resolution. Traditional systems are delivered through satellite, aerial, or terrestrial technologies.
Satellites have allowed the surface of the whole world to be monitored (actively and passively) and
many provide freely available data, but have coarse spatial resolutions and are monitored based on
set schedules that do not consider the needs of each project. Aircraft systems offer increased spatial
resolution, but the cost is prohibitive for most projects, often exceeding ~USD$20,000 per flight [18,19].
Terrestrial delivery methods, such as hand held laser scanning devices or cameras mounted on tripods,
offer high spatial resolution, but are extremely limited in spatial extent and site accessibility. Satellites
and aircraft capture images at a distance of typically >400 m from target vegetation, where the spatial
resolution is generally too low to discriminate understorey plants. Conversely, small Unmanned Aerial
Systems (sUAS, referred as UAS from here on) can fly just above the canopy, which increases the
spatial resolution considerably, possibly allowing the discrimination of small understorey plants.

Also known as drones or Unmanned Aerial Vehicles (UAVs), UAS can produce high resolution,
relatively low cost (starting from ~USD$300), imagery at a moderate spatial scale (1–1000 hectares) and
user defined collection timing [19,20]. The development of UAS has been met with the development
of small, lightweight, active and passive sensors (e.g., LiDAR, hyperspectral, and multispectral) that
have been historically restricted to aerial and satellite remote sensing. One of the biggest influences
of UAS technology to remote sensing has been the concomitant creation of 3D point clouds based on
passive sensors, using Structure from Motion (SfM) algorithms. Although the combination of spectral
and structural information from traditional remote sensing systems was possible, it was infrequently
done, as it required matching data from different sources, with different extents, alignments, and even
scales [18,21]. In contrast, SfM algorithms combine spectral information acquired from image sensors
with structural information gathered from the movement and positioning of the UAS itself [4,18].
The structural portion of SfM requires the acquisition of overlapping images, covering as much of the
surface as possible from different angles [22], which are then matched through ‘image feature detector’
algorithms [21].

UAS exist with many shapes and flight attributes, however, they are mainly subdivided into two
groups: fixed-winged (the UAS-equivalent of airplanes) and multi-rotor (the equivalent of helicopters)
platforms. In order to fly, fixed-wing systems must keep moving forward and have horizontal
take-off and landing requirements (with some exceptions), while multi-rotors can hover and have
vertical take-off and landing capabilities. The main difference among multi-rotors is the number of
rotors, which can vary between one and sixteen. Most commonly, multi-rotors have four (known as
quadracopter), six (hexacopter), or eight (octocopter) rotors. Fixed-winged systems are more efficient at
flying, flying faster (speeds can exceed 80 km/h) can cover larger areas, and can carry heavier payloads
and therefore have bigger sensors and more stored energy (batteries/fuel). However, multi-rotor
systems have many advantages, including the ability to take-off and land in confined spaces, hover,
and manoeuvre through tight spaces. These characteristics can represent advantages or limitations
for each UAS type, depending on the requirement of the project. The industry has recognised the
different platforms strengths and weaknesses, such that a new wave of vertical take-off and landing
(VTOL) UAS are currently attempting to bridge the gap between efficient flight and manoeuvrability
(e.g., [23,24]). However, any of these UAS can be flown at user defined intervals to correspond with
cues in phenology such as flowering [25] and senescence. As a result, UAS have the potential to
overcome many of the difficulties faced when attempting to monitor understorey using traditional
remote sensing techniques [26].
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1.3. Vegetation Classification

Through remote sensing, vegetation is commonly classified using unsupervised or supervised
methods, based on pixels or objects [27], that rely on different algorithms such as maximum likelihood,
nearest neighbour, or machine learning (e.g., support vector machines, neural networks) [10,28–30].
With unsupervised classification, the user has no input, allowing software processing to detect
a user-defined number of classes that are defined throughout the image [10]. Conversely, with
supervised classification, the user provides information on the signature of the different classes [10].
This information is usually provided as a geographic area (polygon), with background processing that
allows the spectral signature or feature to be extracted and extrapolated (trained) to detect similar
characteristics across the image. Pixel based classification considers each pixel of an image as a separate
entity, each with the same probability of being casted as any of the available classes [27,31]. Object
based classification uses information of particular objects (clusters, known as segments, of pixels
with characteristics) and its neighbours to assign them to one of the classes available, incorporating
information on shape and texture [27,28,31].

Both supervised and unsupervised methods can be used for spectral (e.g., multispectral) and
structural (e.g., LiDAR-derived) data. When spectral data is used, the classification methods are based
on reflectance values or the relationships among different bands; where ratios and indices, such as
the widely used Normalized Difference Vegetation Index (NDVI), that enhance spectral differences
can be calculated [10,32,33]. Having a greater number of bands increases the probabilities of finding
species-specific spectral signatures, which becomes more important when trying to identify species
with high spectral overlap. Therefore, hyperspectral data can be expected to outperform multispectral
data (with more than three bands being better than the traditional red, green, and blue –RGB- data).
When structural data is available, the classification methods are based on shapes and other structural
features such as vegetation height and percent canopy [34]. The SfM methods have been shown to
deliver 3D point clouds that are comparable to those acquired through LiDAR [4], which can also
have spectral and structural information comparable to that acquired by complementing LiDAR with
fieldwork [18]. Therefore, SfM methods allow a reliable integration of spectral information with
structural attributes.

1.4. Objective

The goal of this paper was to review the current literature and assess the current capability
of UAS to monitor understorey vegetation. We focused on the technical attributes that limit our
ability to identify and monitor understorey vegetation, as identified by Sanders [16], which include
(1) spatial resolution, (2) spectral sensitivity, (3) spatial extent, and (4) temporal frequency at which a
sensor acquires data from the literature. Spatial resolution limits our ability to differentiate species or
features, with coarser resolutions resulting in a higher proportion of mixed features (i.e., mixed pixels).
As derived from spectral sensors, spectral sensitivity relates to the proportion of the light spectrum
that is measured, which plays a vital role in discriminating species with similar spectral signatures.
Spatial extent refers to the area covered, and temporal frequency refers to the number of times and
the times of the year a particular area is surveyed and monitored. Through this process, we hope to
highlight the successes or limitations of various studies, to help guide those attempting to use UAS to
conduct species composition surveys and monitor understorey vegetation.

2. Materials and Methods

We used the systematic quantitative literature review method developed by Pickering and
Byrne [35], which involves a methodical search of previous research. Between 13 and 16 November
2017, we searched in databases including Web of Science, Science Direct, and Google Scholar, using the
following keywords: “UAV understorey”, “UAV understory”, “UAS understorey”, “UAS understory”,
“drone understory”, “drone understorey”, “UAV subcanopy”, “UAV sub-canopy”, “drone subcanopy”,
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and “drone sub-canopy”. Using the same keywords, we searched again on the 15th of October 2018,
this time refining the search to include only results from 2017 and 2018 to account for most recent
publications that could have occurred after the original search (i.e., publications made on or after
November 2017).

We only considered original-research papers published in peer-reviewed journals available online.
We eliminated articles that did not include any information on UAS. Displaying ten articles per results
page, we stopped searching after looking on five pages that did not have relevant information. By this
point, only one of the search words was detected in the results. Articles were re-checked to assess their
relevance in the context of monitoring understorey vegetation using UAS. We excluded articles that
were not related to the subject, that used the term ‘understorey’ only as part of the site description,
or those that were not related to the subject. We extracted information on year of publication, objective,
whether the understory was a main part of their study or not (understory assessment), geographic
location and ecosystem, platform and spectral range, whether they had any measure of validation on
the field and its type (field validation), flight frequency and season, extent covered (ha) and spatial
resolution (mm), and findings/conclusions.

3. Results

Our search keywords found anything between zero and 656 results. Based on the original search
(November 2017), Web of Science had the fewest search results with zero hits on four of the ten
keyword combinations, Science direct had between one and 20 search results, and Google Scholar had
the most search results ranging between 77 and 656. Google Scholar included results with different
spellings of the keywords and included results with one keyword rather than the two. The second
search (October 2018) had similar patterns per webpage, but with more zero-result keywords attributed
to the temporal filter applied to the search.

In total, we downloaded 131 articles that were then re-checked to assess their relevance. Ultimately,
we only found 18 original-research articles that assessed both understorey vegetation and used
high resolution remote sensing (Table 1; [1,18,19,22,36–49]). We reviewed all of them. Of the
18 original-research articles, six did not have understorey species as their main objective, but were kept
due to a partial inclusion of understorey in their objectives or analyses. The article by Lopatin et al. [41]
had a terrestrial delivery mechanism (2.5 m scaffold) rather than using a UAS, but was retained because
their purpose was to simulate UAS imagery. Half of the articles conducted fieldwork (n = 10), and
eight reported taking ground control measurements. Research by Ahmed et al. [36] and Leduc and
Knudby [40] reported the use of colour controls to calibrate imagery. The article by Weil et al. [49]
clumped most understorey species as ‘herbaceous patches’, but was kept because they identified
several shrub species.
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Table 1. Journal articles reviewed and relevant characteristics observed [1,18,19,22,36–49]. Objective (Short) refers to a condensed version of their main goal. ND =
not determined.

First Author; Year Title Objective (Short);
Understorey Assessment

Geographic Location;
Ecosystem; Field
Validation; Platform

Spectral Range;
Spatial Resolution (mm
for Spectral, Points per
m2 for laser);
Extent Covered (ha)

Flight Frequency;
Season

Findings/Conclusions

Ahmed;
2017
[36]

Hierarchical land cover and
vegetation classification
using multispectral data
acquired from an
unmanned aerial vehicle

Different classification
methods to assess land
cover with UAS;
partial

Canada;
forest, agricultural;
spectral calibration;
fixed-wing

RGB, RGB+NIR+RE; ND;
1450

once;
summer

They successfully classified land cover using spectral
information along with texture and structure. They had
95% accuracy at broadest level (i.e., forest, shrub,
herbaceous), 82% identifying overstorey species, tall or
short shrubs, and grasses or crops, and 89% identifying
shrub tree species and crop types.

Bedell;
2017
[37]

Unmanned aerial
vehicle-based structure
from motion biomass
inventory estimates

UAS-based imagery and
SfM algorithms to estimate
over- and understorey
biomass; partial

United States;
riparian;
vegetation,
geoposition;
quadcopter

RGB;
ND;
0.8

ND;
ND

They were able to count stems at a more spatially
representative scale than fieldwork alone. Their use of
Structure from Motion (SfM) resulted in a 3D cloud
comparable to LiDAR and field-based methods.

Breckenridge;
2012
[1]

Using unmanned
helicopters to assess
vegetation cover in
sagebrush steppe
ecosystems

Assess the use of UAS to
collect vegetation cover
data;
yes

United States;
semi-arid;
vegetation;
helicopter

RGB;
ND;
0.0084 UAS, 0.00045
traditionally sampled

once;
summer

Comparing UAS-imagery and fieldwork, they found
similar cover areas of grass, litter, bare ground, and
dead shrub. However, their UAS method overestimated
shrub cover by misclassifying forbs. They concluded
that UAS are cost-effective techniques to assess
vegetation cover.

Chisholm;
2013
[38]

UAS LiDAR for
below-canopy forest
surveys

Use UAS LiDAR for
understorey;
yes

Singapore;
roadside;
vegetation;
quadcopter

laser;
ND;
0.04

ND;
ND

They reliably detected and measured trees with a DBH
>200 mm. They had issues with GPS reading in
understorey vegetation, and suggest that monitoring
understorey vegetation will be best in ‘forests on flat
terrain with an open understorey and large
regular-shaped trees’.

Cunliffe;
2016
[22]

Ultra-fine grain
landscape-scale
quantification of dryland
vegetation structure with
drone-acquired
structure-from-motion
photogrammetry

SfM photogrammetry
(point cloud) to quantify
biomass in semi-arid
rangelands;
yes

United States;
semi-arid;
no;
hexacopter

RGB;
10;
10

once;
autumn

Their use of SfM allowed the structural differentiation of
individuals from 20-mm grass tussocks to trees.

Dandois;
2013
[18]

High spatial resolution
three-dimensional
mapping of vegetation
spectral dynamics using
computer vision

The use of UAS to develop
SfM point clouds;
partial

United States;
forest, floodplain;
no;
hexacopter

RGB, laser;
20 to 67 SfM,
1.7 to 45 laser;
18.75

multiple
(16 months);
LiDAR leaf off,
UAS 16 month
period in all
seasons

They successfully used SfM to create 3-D point clouds
comparable to LiDAR but coupled with multispectral
information to identify and monitor vegetation based on
structural and spectral attributes, at a temporal
frequency that allows the assessment of phenological
variations.
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Table 1. Cont.

First Author; Year Title Objective (Short);
Understorey Assessment

Geographic Location;
Ecosystem; Field
Validation; Platform

Spectral Range;
Spatial Resolution (mm
for Spectral, Points per
m2 for laser);
Extent Covered (ha)

Flight Frequency;
Season

Findings/Conclusions

Getzin;
2012
[39]

Assessing biodiversity in
forests using very
high-resolution images and
unmanned aerial vehicles

The use of UAS to monitor
understorey biodiversity in
forest; yes

Germany;
forest;
vegetation;
fixed-wing

RGB;
70;
20

twice;
summer

They found that forest gaps can be used to assess
understorey biodiversity using high-resolution imagery.
They found a correlation between forest gaps and
vegetation diversity.

Leduc;
2018
[40]

Mapping wild leek through
the forest canopy using a
UAV

Assess if UAS-imagery can
be used to find and map
wild leek;
yes

Canada;
forest;
geoposition, colour
calibration;
quadcopter

RGB;
50;
8.6

once;
spring

They were able to identify wild leek with 76% accuracy,
but suggest this would not be possible in areas where
understorey species have similar spectral signatures and
phenology. They suggest getting acquainted to temporal
variations in phenological attributes of different species
to choose the appropriate flight times to identify
different species.

Lopatin;
2017
[41]

Mapping plant species in
mixed grassland
communities using close
range imaging
spectroscopy

Assess use of UAS to
identify grassland species;
yes

Germany;
botanical garden;
vegetation,
geoposition;
simulated UAS
(scaffold)

hyperspectral (61 bands
398 to 957 nm);
3;
6.87 × 10−5

once;
summer

They were only successful in areas with low structural
complexity and low canopy overlap. They had trouble
identifying species or individuals with great spectral
variation due to mixed signals, and suggested higher
spatial resolution could help resolve their issue.

Mafayana;
2017
[42]

Evaluating pixel and object
based image classification
techniques for mapping
plant invasions from UAV
derived aerial imagery:
Harrisia pomanensis as a
case study

Compare pixel vs. object
based classification for an
invasive species;
yes

South Africa;
semi-arid;
geoposition;
unspecified UAS

RGB;
36.5;
872

once;
winter

Through object-based classification, the authors
successfully identified invasive species based on their
phenological characteristics. They noted that their
classification was only possible in areas without
overstorey.

Mandlburger;
2016
[43]

Multi-temporal UAV-borne
LiDAR point clouds for
vegetation analysis-a case
study

Assess temporal change in
point cloud density (leaf on
vs. leaf off);
yes

Austria;
forest;
no;
octopter

laser;
267 to 517 on ground,
348 to 757 on canopy;
ND

twice;
winter, spring,
autumn

The method successfully collected data with similar
point cloud densities under leaf on and leaf off
conditions.

Mitchell;
2012
[44]

Unmanned aerial vehicle
(UAV) hyperspectral
remote sensing for dryland
vegetation monitoring

Compare classification
methods of vegetation
including shrubs, based on
UAS hyperspectral data;
partial

United States;
semi-arid;
vegetation,
geoposition;
fixed-wing

hyperspectral;
ND;
0.006

once;
spring

They were able to acquire composite images suitable for
classification from hyperspectral sensors, with
‘complications’ on data acquisition. To monitor shrub
cover, unsupervised classification performed better the
supervised methods. They recommended the
acquisition of ground-truthing data, and suggest the
acquisition of time series with a wide spectral range to
‘effectively’ identify understorey species.
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Table 1. Cont.

First Author; Year Title Objective (Short);
Understorey Assessment

Geographic Location;
Ecosystem; Field
Validation; Platform

Spectral Range;
Spatial Resolution (mm
for Spectral, Points per
m2 for laser);
Extent Covered (ha)

Flight Frequency;
Season

Findings/Conclusions

Müllerová; 2017
[45]

Timing Is Important:
Unmanned Aircraft vs.
Satellite Imagery in Plant
Invasion Monitoring

Assess temporal timing
and camera resolution
needed to detect invasives
based on phenology;
yes

Czech Republic; river
floodplain,
grassland?;
geoposition;
fixed-wing

multispectral (RGB +
modified NIR); 50;
225

multiple
(5 months);
summer-autumn

They successfully identified weeds (during leaf-off
conditions). They concluded that phenological stages
are tightly related to detection accuracy, and highlighted
the importance to monitor a wide temporal range to
evidence those phenological differences.

Perroy;
2017
[46]

Assessing the impacts of
canopy openness and flight
parameters on detecting a
sub-canopy tropical
invasive plant using a small
unmanned aerial system

Assess the use of UAS to
detect an understorey
invasive tree; yes

United States;
forest;
vegetation,
geoposition;
quadcopter

RGB;
13.7–53.1;
0.8

once;
summer

The authors successfully detected understorey trees at
flight altitudes between 30 and 40 m, but not higher.
Canopy openness >40% allowed detection of all plants,
while those at <10% were undetectable. They found that
the use of oblique photos increased detection rates.

Van Auken;
2017
[47]

Using a drone (UAV) to
determine the Acer
grandidentatum (bigtooth
maple) density in a relic,
isolated community

Count numbers of trees
(understorey and
overstorey) subject to
heavy grazing by
white-tailed deer
(Odocoileus virginianus);
yes

United States;
forest;
vegetation;
quadcopter

RGB;
40.64;
1520 ha UAS, 0.56 ha
traditionally sampled

once;
autumn to spring

Successfully identified Acer grandidentatum woodland
communities by monitoring phenological changes and
flying the UAS when the leaves were different.

Vepakomma;
2017
[48]

Potential of multi-temporal
UAV-borne LiDAR in
assessing effectiveness of
silvicultural treatments

Use of LiDAR to detect
changes in forest
treatments and laser
reaching the ground
through autumn foliage;
partial

Canada;
forest;
geoposition;
helicopter

laser;
ND;
10.5

twice;
summer, autumn

They suggest that understorey vegetation can be
monitored through LiDAR by removing the overstorey
information from the point cloud. They suggest that
monitoring understorey structure is possible, and their
method can be used to assess successional stages.

Weil;
2017
[49]

Optimizing the timing of
unmanned aerial vehicle
image acquisition for
applied mapping of woody
vegetation species using
feature selection

Asses UAS to identify
species, where herbaceous
patches were treated as an
item (no species identified);
partial

Israel;
forest;
vegetation;
self produced,
fixed-wing

multispectral
(RGB + NIR + RE);
200, on average;
10

five;
winter, spring,
summer

They successfully identified different tree and shrub
species as well as herbaceous patches by flying at
different times that were phenologically relevant for the
different species in their area. They conclude that flying
at multiple relevant times can substitute the need for to
obtain data on a wider spectral range.

Zahawi;
2015
[19]

Using lightweight
unmanned aerial vehicles
to monitor tropical forest
recovery

The use of SfM to assess
structural complexity of
restoration sites; partial

Costa Rica;
forest;
vegetation;
hexacopter

RGB;
ND;
13

once;
summer

They concluded that SfM methods couple spectral and
structural information that can be used to assess habitats
and forest dynamics, as well as to obtain biomass
metrics.
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Geographically, 17 of the 18 articles reviewed were conducted in the northern hemisphere and
one in the southern hemisphere. The majority of the UAS-understorey research has appeared in the
literature in recent years, with nine papers published in 2017, three in 2012, two in 2013 and 2016, and a
single article in 2015 and 2018. Most papers were conducted in forested environments, with 10 articles
reported in natural forests and one in a riparian area. Other ecosystems surveyed included semi-arid
environments (n = 4 papers), grassland (botanical garden, n = 1), floodplain (n = 1), and roadside
(n = 1). Most research acquired data only once (n = 12), while others collected data two times (n = 2),
three times (n = 1), five times (n = 1), six times (n = 1), and one did not specify. Based on the traditional
four seasons, the majority of research was conducted during summer (n = 11 papers), followed by
autumn (n = 6), spring (n = 5), and winter (n = 5). However, we note that seasonal variations closer to
the equator and closer to sea level are less abrupt and, therefore, less relevant.

Of the 18 articles, 15 used passive sensors (spectral devices) and three used active sensors (laser
scanning devices). Of the studies that used spectral sensors, ten articles reported analysis based on
the Red, Green, Blue (RGB) wavelengths, three reported multispectral acquisition (RGB + NIR), and
two reported on hyperspectral data. The spatial extent covered between 0.8 ha and 1520 ha, the latter
acquired over several plots. Only seven papers specifically stated the spatial resolution of the final
product, which ranged between 3 mm and 70 mm per pixel.

Measures of success in terms of the detection of understorey species depend greatly on the
objectives of each project, as well as the methods selected. With a sensor capturing RGB data at a
resolution of 40 mm per pixel, Van Auken and Taylor [47] were able to identify and count the number
of overstorey and understorey woody species in their area (18 ha). Müllerová et al. [45] used four
bands (RGB + NIR) with 50 mm pixel resolution to successfully identify two invasive weeds (each
located in a different area) during phenologically distinctive times (different for each species), with
ideal times recognised after comparing data from six temporally different UAS flights (three flights per
area). Mafanya et al. [42] used RGB data with a spatial resolution of 37 mm per pixel to identify an
invasive species occurring in open areas (i.e., ignoring individuals that could have occurred under the
canopy), during a phenologically relevant time, and compared classification methods. They found
that unsupervised classification methods were less accurate than supervised classifications, and were
explained by low spectral resolution (i.e., using RGB bands only). Lopatin et al. [41] worked with a
spatial resolution of 3 mm obtained from a hyperspectral camera mounted on a scaffold to simulate
UAS data, successfully classifying species and their cover in areas with low canopy cover and low
structural complexity. However, the authors noted that the classification would be hindered for species
with high intra-species variability or with similar structural signatures, or occurring under the canopy.
Cunliffe et al. [22] used RGB data with a pixel size of 10 mm, successfully assessing vegetation structure
through SfM methods (90% accuracy based on canopy height) to quantify biomass in heterogeneous
semi-arid rangelands, and stated they were able to overcome detection limitations of smaller vegetation
as associated with SfM precision levels identified in more complex habitats (e.g., forests). Leduc and
Knudby [40] reported 76% accuracy when identifying a phenologically distinctive understorey ‘spring
ephemeral species’, wild leek (Allium tricoccum), based on RGB imagery with a pixel size of 50 mm.
Getzin et al. [39] used RGB data with 70 mm resolution and correlated it with field work to successfully
assess understorey diversity within canopy gaps of deciduous and deciduous/coniferous forests of
Germany. Conversely, using RGB data to identify an invasive understorey tree in a tropical forest
of Hawaii, Perroy et al. [46] acquired data at different heights, with pixel resolution between 14 and
53 mm, with different camera angles and degrees of canopy cover, and found that their finest resolution
(flying at 30 m) only detected 41% of the tree stands, that oblique angles increased the detection rates,
but also that their methods failed to detect individuals under thick overstorey (<10% openness).

Research that used active sensors accounting for understorey species were sparse (n = 2).
Mandlburger et al. [43] used LiDAR sensors and found that their point clouds were similar during
leaf on and leaf off conditions, except in areas with a dense shrub layer that had lower point cloud
density. Chisholm et al. [38] also used LiDAR sensors to monitor vegetation on the side of a road,
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and successfully detected 73% of trees with a diameter at breast height (DBH) above 200 mm, but
were unable to reliably detect tree stems below 200 mm DBH, which would include the majority of
juvenile trees. Although success rates of these studies seem limited in their ability to detect understorey
species, technological advances are likely to allow this in the near future. However, the challenges
of signal penetration might continue to impede the full capabilities of LiDAR extraction of structural
information in areas with dense understorey. For example, in a dense forest of Canada, Vepakomma
and Cormier (2017) reported an acquisition of return signals of 10% in 2016 and only 2% in 2015,
explaining the decline of acquisition rates by the thick foliage of summer (2015) when compared to
autumn (2016).

4. Discussion

4.1. Spatial Resolution

Understorey species tend to be smaller and less spatially distinct than overstorey species, therefore
the detection and identification of understorey plants requires greater (i.e., finer) spatial resolutions.
Traditional platforms tend to have resolutions that are too coarse to identify understorey species,
with common, freely available, satellite-based resolutions historically ranging from 1 km to 30 m [26],
which have been improved by the recent emergence of satellites that deliver 3000 mm resolutions [50]
and aircraft-based resolutions, which, at best, deliver 100 mm resolution imagery. Consequently,
imagery-based remote sensing of understorey species pre-UAS was restricted to large forest gaps or
habitats without overstorey cover, with limited species identification capabilities derived from mixed
pixels (i.e., multiple objects with multiple spectral information per pixel).

UAS have made important contributions to improve spatial resolution, which enables the
acquisition of sub-meter and even sub-centimetre resolutions, allowing the identification of individuals
in the understorey. Successful classifications of understorey vegetation analysed during this literature
review reported resolutions ranging between 3 mm and 200 mm. A caveat of ultra-high resolutions
acquired by UAS lead to the hyper-differentiation of the parts of plants such as leaves, stems, and
trunks, which can complicate identification at the species level due to a wider range of single-individual
textures and spectral signatures [4]. As such, object based image analysis is preferred over traditional
pixel classification for UAS imagery.

It is important to note that due to their high resolution, UAS-derived data is very sensitive to
discrepancies in geographic positioning. Therefore, ground-truthing is an essential part of UAS derived
data. Spatial ground-truthing refers to the geopositioning of spectral signatures generated by marking
different species and several control points using high precision Geographic Positioning Systems, such
as differential GPSs (dGPS) or GNSS.

In terms of three dimensional point clouds, spatial resolution has also increased considerably.
For example, comparing platforms in a forested environment, McClelland et al. [9] found LiDAR
point clouds between 30 and 70 pts/m2 on manned aircraft, while those obtained from UAS ranged
between 500 and 1500 pts/m2 depending upon flight elevation. Moreover, SfM methods have also
been demonstrated in different environments (mixed forest, riparian, floodplain) with Dandois and
Ellis [18] finding SfM point clouds obtained by UAS (20 to 67 pts/m2) had a higher density than
those derived from manned-aircraft LiDAR data (1.7 to 45 pts/m2). However, the incorporation of
SfM methods with traditional imagery analysis has greater potential. Based on UAS-imagery of a
tropical forest of Costa Rica, Zahawi et al. [19] used SfM algorithms to combine structural and spectral
attributes and successfully estimated habitat and biomass characteristics of their restoration sites.
In a forest of Tasmania, Australia, Wallace et al. [4] used UAS to compare laser scanning and SfM
methods and found canopy cover estimates of 59% through fieldwork, 63% through LiDAR, and 50%
through SfM. The sub-estimation of canopy cover from SfM methods was interpreted as a result ‘visual
occlusion’ that prevented proper image overlap, especially at the edges of the plot [4]. Regardless,
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Wallace et al. [4] concluded that both LiDAR and SfM methods are comparable and result in an accurate
representation of the environment.

4.2. Spectral Sensitivity

Healthy vegetation strongly reflects green and near infrared wavelengths, resulting in many
species sharing reasonably similar spectral signatures [2,16]. This means that finer differentiation
of wavelengths (e.g., hyperspectral imagery) will be required to successfully discern spectrally
similar species. For this reason, there is the added need of spectral ground-truthing, which
includes the calibration of spectral signatures that are especially important for hyperspectral sensors.
The miniaturisation of sophisticated sensors has allowed their incorporation into UAS, which has
allowed the acquisition of fine spectral detail. An example of the improved species discrimination
achievable from greater spectral sensitivity is provided by Ahmed et al. [36], who compared RGB-only
and multispectral sensors mounted on a UAS and SfM algorithms to classify land cover and vegetation
based on three hierarchical levels. Vegetation classifications based on RGB-only imagery resulted in
lower classification accuracies compared to multispectral sensors, the latter acquiring accuracies of
82% for the detection of forest overstorey species, 89% for the identification of three crop classes, and
95% for the classification of broad land cover classes [36].

Nevertheless, sensors capturing only the RGB bands are sufficient in some instances. For example,
Leduc and Knudby [40] reported successful monitoring of understorey species based on RGB data
when easily distinguishable phenological characteristics were present, with an accuracy of 76%. Other
successful studies were the result of spectral information that was complementary to other information,
such as structural attributes derived from SfM. For example, Cunliffe et al. [22] successfully delineated
individual plants to account for biomass rather than species diversity, as species identification was
not part of their aims. The limited use of hyperspectral sensors on UAS has left a knowledge gap that
needs to be addressed. Although hyperspectral data provides more opportunities to find spectral
signatures with less overlap among species, the only two papers reviewed that used this type of data
reported only partial successes. Lopatin et al. [41] attributed their shortcomings to a relatively coarse
spatial resolution, while Mitchell et al. [44] attributed theirs to ‘complications’ on data acquisition and
suggested better results could be attained by using a wider spectral range and monitoring at different
phenological times.

4.3. Spatial Extent

Compared to traditional remote sensing platforms, the greatest limitation of widely available
UAS technology is related to the relatively low spatial extent they can cover. In contrast to worldwide
coverage of satellite imagery, research analysed during this literature review reported data acquisition
with an extent between 0.8 ha and 1520 ha. Despite the spatial limitation of UAS compared to
traditional platforms, UAS exceed the coverage capabilities of field-based methods. For example,
through intensive fieldwork conducted between November 2015 and June 2016, Van Auken and
Taylor [47] monitored vegetation using traditional field based methods over 0.56 ha, while they were
able to monitor 18 ha per flight, for a total of 1520 ha surveyed by UAS in November 2014.

The spatial extent that widely available UAS can cover is severely limited by intrinsic and
extrinsic factors. Intrinsic factors that limit the spatial extent are related the choice of platform and
flight settings, as well as to battery life, allowing flights of up to 10 to 18 min depending on the
system and weight of the mounted sensors. Extrinsic factors that can limit the area covered are
related to geographic and environmental conditions, but may also include regional laws and permits.
Geographic and environmental conditions might become a limitation when monitoring a larger area
due to slight changes in the position of the sun or the limited ability to maintain ideal environmental
conditions (such as those related to cloud cover and rain, as well as wind) when covering larger areas.
Nonetheless, relative to traditional platforms, monitoring with UAS allow greater control of unsuitable
environmental conditions. Legal regulations for commercial purposes (including research) in Australia
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and most international jurisdictions dictate that, unless a specific approval has been provided, UAS
can only be flown by a qualified pilot with an operator’s certificate, away from airports and air traffic,
at a maximum altitude of 120 m whilst maintaining visual line of sight with the aircraft, and not in
close proximity to buildings or people [51].

4.4. Temporal Frequency

The temporal frequency at which data can be acquired using UAS technology is more flexible
and cost effective than with traditional remote sensing platforms [45]. Satellites capture data on
defined paths and frequencies regardless of the environmental conditions on Earth. For example,
Landsat satellite covers the world every 16 days [52]. Manned aircrafts can have user defined temporal
frequencies, but are restricted by high economic and logistic costs [45]. On the other hand, UAS can
be flown multiple times at flexible temporal frequencies [45]. Temporal frequencies of UAS-derived
data are defined by the project’s needs. For example, Dandois and Ellis [18] used LiDAR data collected
by manned aircraft in summer 2005 and autumn 2011, as well as spectral UAS-imagery collected in a
19-month period covering all seasons from August 2010 to February 2012. However, given that UAS
collect a limited spatial extent and require on-site personnel, data is currently only collected on a needs
basis that restricts many possibilities of a posteriori data analyses.

Highly flexible temporal frequencies can help overcome three of the inherent difficulties in
understorey monitoring: canopy penetration (including the shadow effect), cloud shade effect, and
understorey species discrimination. Canopy penetration can be addressed appropriately by acquiring
data during leaf-off conditions of deciduous forests when the target species or species assemblages
are perennial (Figure 1). For example, Vepakomma and Cormier [48] monitored differences in forest
thinning with LiDAR, and found a decrease in signal penetrability during summer, attributed to
thicker foliage. The shadow effect of overstorey can be addressed by flying the UAS at, or close to,
solar noon. The effect of cloud shadows can be prevented by flying in clear sky or cloudy conditions to
provide more homogeneous targets.
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Figure 1. Identification and monitoring of understorey vegetation: challenges and suggestions
to overcome them. (1) illustrates key challenges involved with identification and monitoring of
understorey vegetation, which can be subdivided on (a) overstorey and its shadow blocking view of
understorey species and (b) intrinsic challenges of understorey identification as related to scale (smaller
species) and spatial and spectral overlap of understorey species. (2) Shows how flight parameters and
technical specifications can be manipulated to help overcome the challenges of understorey monitoring.
To overcome obscuration from the overstorey, users can (c) reduce the line spacing to increase side
overlap, and (d) reduce speed to increase the forward overlap. To help overcome the spectral overlap
of understorey species, (e) sensor spectral range can be increased, such as with the use of multispectral
and hyperspectral sensors. To assist with the detection of small understorey plants, operators can (f) fly
lower and (g) change the camera specifications by increasing sensor resolution and increasing the focal
length of the lens used. (3) Shows how UAS flights can be timed to overcome overstorey obscuration
and spectral overlap in the understorey. Overstorey obscuration can be overcome by (g) targeting “leaf
off” periods if working in deciduous environments. Spectral overlap can be overcome by targeting
understorey phenological events such as (h) senescence and (i) flowering.
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Species discrimination can be addressed by targeting UAS flights during particular events that
allow capturing phenological differences among species (i.e., by choosing the best season to acquire
UAS data). For example, Müllerová et al. [45] monitored invasive species between May and November,
and favoured classifications made during summer for giant hogweed (Heracleum mantegazzianum),
when they were able to identify hogweed by detecting their ‘large white inflorescences’, and during
autumn for knotweeds (Fallopia spp.), when they detected a ‘reddish-brown colouring of decaying
plants’. This also highlights that, given species-specific phenological cycles, multi-temporal images
may need to be acquired to identify different species. Moreover, in strongly seasonal environments or
those subject to seasonal fires, the whole array of understorey species may not be detected at certain
times of the year. For example, in the fire-prone open woodlands of northern Australia, which also
have strong variations between the dry and wet seasons, identification of species and monitoring of
understorey vegetation is most appropriate during the mid-wet season, when species are at their peak
biomass but before fire risk increases towards the end of the wet and early dry season.

4.5. Recommendations

The most important issues relevant to the assessment of understorey species can be the lack
of penetration of spectral sensors or partial penetration of active sensors (due to visual obstruction
or signal thinning by overstorey, respectively), and the intrinsic characteristics of species in the
understorey, an issue that has been reported by several authors [1,6,38,46,48,53]. In relation to
penetration, it is unsurprising that the main success stories of UAS-based understorey monitoring
occur in open environments where ‘above canopy’ images can be acquired without concealing
understorey species. In fact, the best conditions have been identified by Lopatin et al. [41] as those
with ‘low structural complexity and low canopy overlaps’. Thus, it is likely that using current
technologies environments most suitable for monitoring understorey species include savannas, desert
grasslands, and shrublands, as well as open forests and even deciduous forests during leaf-off
conditions. However, based on our findings, most attempts to monitor understorey species have been
in unsuitable environments (i.e., closed forests), where overstorey species block observations of the
understorey. Although there is an important knowledge gap regarding the use of this technology in
open environments, some understorey species identification has already been successfully conducted
in grasslands or during leaf-off conditions (e.g., Lopatin et al. [41] and Müllerová et al. [45]. Using UAS
technology, as well as understanding its capabilities and limitations for monitoring understorey species
in open environments becomes more evident when considering that most of the terrestrial ecosystems
on Earth are represented by open environments such as savannas, desert grasslands, shrublands,
and open forests. Thus, in this section, we provide suggestions and considerations for UAS-based
monitoring of understorey species in open environments based on current technologies.

The characteristics that make understorey species measurement difficult are associated with their
relatively smaller size (compared to overstorey species), similarity of spectral signatures among species,
and spatial overlap of individuals and species (Table 2). The issue of detecting smaller species remotely
could be overcome by managing technological attributes associated with spatial extent. UAS systems
can attain ultra-high resolutions related to sensor capabilities (e.g., megapixel resolution of the camera)
and to the UAS-flight elevation, with finer resolutions attained closer to the ground. Testing flight
elevations between 30 and 120 m, Perroy et al. [46] concluded that data acquired at 30 m, resulting in a
pixel resolution of 14 mm, in their case, was best to detect tree stands in a tropical forest. Although
elevation parameters have not been tested in open environments, which intrinsically have less overlap
among vegetation (and therefore higher detectability than similar species in closed forests), similar
resolution (<14 mm) may allow the identification of vegetation species smaller than a tree stand, while
coarser resolutions should be adequate to detect open forest tree stands.

The issue of spectral signature similarity can be addressed by managing the spectral sensitivity
and temporal frequency attributes. The spectral sensitivity attribute can help differentiate species
by capturing a greater number of bands in relevant portions of the spectrum, along the green, red,
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and near infrared wavelengths, for example, choosing multispectral or hyperspectral sensors over
traditional three-band sensors (RGB). The temporal frequency attribute can be managed by choosing
the time of the year where a particular species or set of species display phenological attributes that
distinguish them from others in their environment (e.g., presence of flowers or fruits, leaf coloration or
discoloration, or perennial compared to deciduous species, among others).

Table 2. Summary of challenges for the identification and monitoring of understorey species using
UAS. Spatial resolution depends on flight parameters and sensor specifications. Spectral resolution
depends on choice of sensor (RGB, multispectral, hyperspectral).

Small
Size of Understorey
Species

Similar Spectral
Characteristics of
Understorey Species

Spatial Overlap within the
Understorey

Canopy Penetration

Spatial
resolution

High spatial
resolution imagery is
required to detect
small individual
plants

High resolution imagery
might help with the
identification of species
within small gaps in the
understorey

The use of high resolution
(small pixel size) imagery
reduces the amount of
mixed pixels between
canopy and the understorey,
helping to identify
understorey species

Spectral
resolution

Higher spectral resolution
will help in the
discrimination of subtle
differences in vegetation
reflectance (e.g., the use of
multispectral and
hyperspectral sensors)

Temporal
frequency

Targeted surveys can allow
discrimination based on
phenological changes such
as senescence and flowering

Surveys can be targeted to
coincide with leaf off
periods in deciduous forests

Spatial
extent

Greater potential to avoid
spectral signature alterations
due to shades (sun angle
and clouds).

Platform
type

The use of multi-rotors with
collision avoidance might
allow sub canopy surveys in
the near future

SfM SfM uses trigonometry to
improve ground coverage,
and improve penetrability
below the canopy of the
understorey

The issue of spatial overlap among species is perhaps the most challenging, because as can
be appreciated with the canopy cover issue, overlapping species that occur under others in the
understorey will go undetected. Partial overlap can be managed through spectral sensitivity or
the temporal frequency attributes, when spectral signatures are different, which may result from
phenologically distinct stages, or through the selection of sensors/methods that allow monitoring of
vegetation structure. For example, LiDAR sensors and SfM- 3D point clouds might allow differentiating
species by shape, so they can be used as an additional step for species identification. However, as a
standalone method, the lack of spectral information of LiDAR sensors make them unsuitable to assess
the whole suite of understorey species in the environment, even if shapes and locations of some species
might allow proper identification of some species.

Along with the choice of methods and manipulation of technological attributes of remote sensing,
it is important to note that the choice of UAS will also contribute to the degree of success in monitoring
understorey species. Greater manoeuvrability of multi-rotor systems, along with their ability to be
used in tight spaces, in additional to the advancement of object avoidance capabilities, will be essential
for monitoring understorey vegetation. In fact, most of the articles reviewed here used multi-rotor
systems to monitor understorey vegetation (Table 1). Manoeuvrability is especially important in closed
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environments, where recent flights in foliage (forested) environments were possible using a quadcopter
mounted with a Kalman filter and a 2D laser range finder, in combination with an algorithm used for
real-time path planning, to assess obstacle presence and avoid them [54,55]. Cui [54] reported that
their real-time object avoidance was possible through very slow flight speeds (0.5 m/s). Thus, it is
likely that monitoring understorey vegetation in the future could also include closed environments.

Other features that can assist with species identification, beyond the tuning of adjustable attributes,
include creating a library of spectral signatures and/or shapes from individual species. This can be
conducted with hand-held spectrometers, additional flights where the sensors are located directly
above identified species, and conducting on-ground vegetation surveys where different species are
directly geo-referenced through high precision GPS. It is important to note that ground-truthing,
in terms of georeferencing and spectral calibration, will be essential for appropriate analysis of
UAS-derived data.

Even when following these recommendations, it is likely that only species that have a combination
of the following qualities will be regularly detected: they are common, have a defining shape, distinct
phenological attributes and/or spectral characteristics. These are the species that are most likely
identifiable utilising high-resolution data captured with UAS.

5. Conclusions

We reviewed original research that used UAS as platforms to assess understorey vegetation,
focusing on the four technical attributes outlined by Sanders [16] as the key for successful understorey
monitoring. We found that UAS-related technology, along with the emergence of light-weight sensors,
has been used to assess understorey vegetation with varying degrees of success in terms of species
identification. The level of success can be related to the choice of methods or sensors given the
interaction of the different attributes. It is important to note that the different attributes discussed here
are interrelated, for example, the platform can be deployed from a higher altitude to cover a larger
area at the expense of monitoring with a coarser resolution [16].

Remote sensing using UAS platforms can measure and monitor understorey vegetation at a local
scale. Even though many of the limitations of passive and active sensors of traditional platforms
(i.e., manned airborne and satellite) are still applicable, UAS can be successfully flown close to the
vegetation and even through the foliage (although this is currently not routine), providing very-high
spatial resolutions. High spatial resolutions will allow understorey vegetation to be measured and
monitored in open environments such as savannas and forest gaps, with the potential of acquiring data
under the overstorey canopy when UAS may be flown under canopy in the near future. Furthermore,
with the technological advancement that has allowed for the development of lightweight sensors, the
spectral sensitivity can be user defined and can range from RGB to hyperspectral sensors. The temporal
frequency at which data can be acquired is very flexible and defined by the project’s needs, but
consistent multi-temporal datasets, in a rapidly changing technology environment [56], will continue
to be a challenge to obtain.
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