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Abstract: Park managers call for cost-effective and innovative solutions to handle a wide variety of
environmental problems that threaten biodiversity in protected areas. Recently, drones have been
called upon to revolutionize conservation and hold great potential to evolve and raise better-informed
decisions to assist management. Despite great expectations, the benefits that drones could bring
to foster effectiveness remain fundamentally unexplored. To address this gap, we performed a
literature review about the use of drones in conservation. We selected a total of 256 studies, of
which 99 were carried out in protected areas. We classified the studies in five distinct areas of
applications: “wildlife monitoring and management”; “ecosystem monitoring”; “law enforcement”;
“ecotourism”; and “environmental management and disaster response”. We also identified specific
gaps and challenges that would allow for the expansion of critical research or monitoring. Our results
support the evidence that drones hold merits to serve conservation actions and reinforce effective
management, but multidisciplinary research must resolve the operational and analytical shortcomings
that undermine the prospects for drones integration in protected areas.
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1. Introduction

Protected areas aim to safeguard biodiversity, preserve ecosystem services and ensure the
persistence of natural heritage [1]. Despite their essential role in conservation, the allocation of
resources to cope with an increasing variety of regular activities and unforeseen circumstances remains
generally insufficient [2], severely affecting overall effectiveness [3]. Besides, protected areas subjected
to international and national agreements must resolve their acquired responsibilities to maintain their
legal status [4]. Hence, there is a demand for cost-effective, versatile and practical initiatives to attend
a disparity of requirements to guarantee conservation, including a wide range of natural solutions [5],
technological advances, and methods or innovative application of existing technologies [6].

In the last decade, drones (also known as unmanned aerial systems, remotely piloted aircraft
systems, RPAS, UAS, UAV) have been the subject of a growing interest in both the civilian and
scientific sphere, and indeed avowed as a new distinct era of remote sensing [7] for the study of the
environment [8]. Drones offer a relatively risk-free and low-cost manner to rapidly and systematically
observe natural phenomena at high spatio-temporal resolution [9]. For these reasons, drones have
recently become a major trend in wildlife research [10,11] and management [12–14].

The success of drones can be partially explained by their great flexibility to carry different
sensors and devices. The scope of application determines the best combination of aerial platform and
payload. Although drones come in many different shapes and sizes, widespread small fixed-wing
and rotary-wing aircrafts are frequently used for video and still photography. These consumer grade
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drones coupled with lightweight cameras and multispectral sensors can deliver professional mapping
solutions at a fraction of a cost than previous photogrammetric techniques. Medium size drones
can be equipped with compact thermal vision cameras, hyperspectral sensors and laser scanning
such as LiDAR, with great prospects for wildlife ecology, vegetation studies and forestry applications
respectively [15–17]. Even though visible and multispectral band cameras encompass the most obvious
sensing devices, drones can indeed incorporate a diversity of instruments to measure many distinct
physical quantities such as temperature, humidity or air pollution [18]. Additionally, large aerial
platforms can lift heavier payloads and represent an appropriate solution for integrating complex
systems with the capacity to remotely assist sampling, hold cargo or deliver assistance. A brief
summary of platforms and sensors is given in Tables 1 and 2 (but see [19–22] for an in-depth revision).

Table 1. Classification of drones according to characteristics and applications.
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SIZE 

Nano 
<30 mm 

Micro 
30–100 mm 

Mini 
100–300 mm 

Small 
300–500 mm 

Medium 
500 mm–2 m 

Large 
>2 m 

Maximum Take-Off Weight (MTOW) 

<0.5 Kg 0.5–5 Kg 5–25 Kg >25 Kg 

RANGE (Distance/Type of Operation) 

Close-range <0.5 miles Mid-range 0.5–5 miles Long-range 5 > miles 

Visual Line Of Sight (VLOS) Extended Visual Line Of Sight (EVLOS) Beyond Visual Line Of Sight (BVLOS) 

WING 

Rotary wing Fixed wing 
Hybrid 
(VTOL) 

Single
Dual 
rotors 

Multi-Rotor 
Low 
Wing 

Mid 
Wing 

High 
Wing 

Delta 
Wing Tricopter Quadcopter Hexacopter Octocopter 

POWER 

Electric Gas Nitro Solar 

ASSEMBLING 

Ready-To-Fly (RTF) Bind-N-Fly (BNF) Almost-Ready-to-Fly (ARF) 

APPLICATIONS 

Logistics 
Civil 

Engineering 
Disaster 

Relief 
Heritage 

Search 
and 

Rescue 

Precision 
Agriculture 

Natural 
Resources 

Law 
Enforcement 

Wildlife 
Management 

Weather 
Forecasting 

Industrial 
Inspection 

Leisure Military 
Disaster  

Relief 

Aerial 
Photography 

and Film 
Archeology 

Note: SIZE, MTOW and RANGE: based on average values (no specific standard / regulation). ASSEMBLING: 
level of work required to use the drone since acquisition.  

Table 2. Summary classification of sensors and devices that can be coupled to drones. 

Instrument. 
Type of  
Sensor 

Spatial  
Resolution 

Spectral  
Resolution 

Weight Costs 

Imaging  
sensors 

Visible RGB Passive 
Very high 

1–5 cm/pixel 
Low 

(3 bands) 
Low  

<0.5 kg 
Low 

$100–1000  

Near Infrared  
(NIR) 

Passive 
Very high 

1–5 cm/pixel 
Low 

(3 bands) 
Low  

<0.5 kg 
Low 

$100–1000 

Multispectral Passive 
High 

5–10 cm/pixel 
Medium 

(5–12 bands) 
Medium 
0.5–1kg 

Medium 
$1000–10000  

Hyperspectral Passive 
High 

5–10 cm 
High 

(> 50 - 100 bands) 
Medium 
0.5–1kg 

High 
$10000–50000 

Note: SIZE, MTOW and RANGE: based on average values (no specific standard/regulation). ASSEMBLING: level
of work required to use the drone since acquisition.

Considering the ample range of possibilities, it is not surprising that some protected areas are
adopting drones for various applications. For example, to assist search and rescue [23]; protect
endangered turtles from feral species [24]; monitoring invasive plant species [25]; document illegal
logging and mining [26]; wetland management [27]; anti-poaching [28]; and marine litter detection [29].
Recently, a team of scientists discovered a biodiversity hotspot using drones [30], which could be
argued as a convenient procedure to adequately expand protected areas as established by the Aichi
Target 11 [3]. In addition, we are witnessing a continuous development of sophisticated drones and
ingenious methods that target particular conservation actions, such as wildfires firefighting [31]; whale
health monitoring [32]; disease vectors control [33]; or seed planting for habitat restoration [34]. The fast
pace of technological advances and novel applications probably exceeded previous expectations, but
also gives rise to singular circumstances that must be placed in the context of management.
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Thermal Passive 
Medium 

10–50 cm/pixel 
Low 

1 band 
Medium 
0.5–1 kg 

Medium 
$1000–10,000 

Ranging  
sensors 

Laser scanners  
(LiDAR) 

Active 
Very high 

1–5 cm/pixel 
Low 

1–2 bands 
High 

0.5–5 kg 
High 

$10,000–50,000 

Synthetic Aperture  
Radars (SAR) 

Active 
Medium 

10–50 cm/pixel 
Low 

1 band 
High 
>5 kg 

Very high 
>$50,000 

Other sensors and devices 

Atmospheric sensors Temperature, Pressure, Wind, Humidity 

Chemical Sensors Gas, Geochemical 

Position systems Ultrasound, Infrared, Radio Frequency, GPS 

Other devices Recorder device/microphones 

Sampling Devices Water, Aerobiological, Microbiological Sampling 

Other devices Cargo, Spraying, Seed spreader 
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Some authors have identified negative aspects of drones use in conservation. Potential wildlife
disturbance effects [35] need to be further investigated. The use of drones as tools of coercion could
weaken the environmental commitment of communities in protected areas [36], and therefore may
prove counterproductive for conservation. On the other hand, the massive amount of data acquired
with drones require modern, robust and computationally intensive methods to derive accurate and
meaningful information [37], which may represent a technological barrier to the effective use of this
technology in protected areas.

Likewise, the connection of drone advances with the most important features guiding effective
management has not yet been specifically weighted and would be necessary to better align research
efforts to conservation priorities. In addition, whether decision makers can take practical advantage of
present and oncoming advances in the discipline remains questionable for several reasons. To find
early answers to these remarks, we conducted an extensive literature review of drone applications
with potential to enhance the effective management of protected areas. This perspective may help
identify plausible scenarios where drones can be used in a rational and efficient manner.

2. Methods

We conducted a comprehensive literature search on drones in conservation up to October 2nd
2018, in line with related studies [10,11,35]. All searches were done by the same person in English,
mainly using Google Scholar. This was further complemented through reference harvesting, citation
tracking, abstracts in conference programs, and author search, using Research Gate and Mendeley (see
PRISMA Flowchart in Supplementary Figure S1 Checklist and list of studies reviewed in Table S1).
We then removed duplicate and unrelated results. Finally, peer-reviewed publications were collated
and revised.

Keywords on the search included drones in their various meanings and acronyms: “unmanned
aircraft systems”, “UAS”, “remotely piloted aerial system”, “RPAS”, “drone”, “model aircraft”,
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“unmanned aerial vehicle”, “UAV”, “unmanned aircraft system”. These were combined with terms
referring to threats and common conservation measurements in protected areas: “protected area”,
“conservation”, “ecology”, “ecosystem”, “habitat”, “vegetation”, “forest”, “wetland”, “reforestation”,
“monitoring”, “survey”, “sampling”, “inventory”, “wildlife”, “fauna”, “bird”, “mammal”, “fish”,
“amphibian”, “reptile”, “wildfire”, “landslide”, “remote sensing”, “tourism”, “ecotourism”, “law
enforcement”, “poaching”, “anti-poaching”, “logging”, “risk management”, “pollution”, and “search
and rescue”. In total, we applied 47 search terms and combinations using logical disjunctions.

We classified the studies into categories that represent the common threats and essential
management measures in protected areas [5,38–40]. The categories are: “wildlife research and
management” for those projects aimed at observing wildlife, estimating population parameters such
as abundance and distribution, and establishing management measures to mitigate human-wildlife
conflicts (n = 96); “ecosystem monitoring” for applications related with the study and mapping of
natural habitats (n = 106); “Law enforcement” encompassing poaching and other illicit activities (n = 6);
“Ecotourism" referring to recreational activities and visitors management (n = 3); “Environmental
management and emergency response" spanning environmental monitoring and protection, natural
hazards, search and rescue operations and similar cases (n = 45). We briefly tackled legal and ethical
issues, including potential impact on wildlife and habitats, but also economic and technological factors,
since all shape the feasibility of drones to approach conservation and environmental issues.

3. Results and Discussion

The literature search on drones in conservation provided a total of 256 studies. Of these, 99
describe applications that were accomplished in terrestrial and marine protected areas, according to
the Protected Planet database [41]. The typology of protected areas includes national, international
designations and registered private initiatives, with all UICN management categories (Ia, Ib, II, III, IV,
V, VI) represented [1]. We found examples on all continents and in most ecosystems. The United States
of America lead the ranking of countries where more drone studies have taken place (45), followed
by Canada (26), Australia (17), China (11), Germany (11) and Spain (9). Figure 1 summarizes the
selected research.
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Figure 1. (A) Blue points represent studies in protected areas. Choropleth map shows location of
studies by country. No studies were collected in countries colored black. (B) Only studies where type of
platform was identified are shown. (C) Information extracted from WWF Terrestrial Ecoregions
Map [42]. No drone studies were found in Protected Areas with Tropical and subtropical dry
broadleaf forests.

The classification of the studies in categories that align with recurring aspects of conservation
and management in protected areas [43] provides a framework that may help park-managers to
identify feasible drone scenarios. The factors influencing effectiveness can be conveniently ascribed
to the proposed categories and associated with consensual conservation actions [44]. In the next
sections, we discuss the current state of the art and the challenges for the future integration of drones
in protected areas.

3.1. State of the Art: Drones in Protected Areas

3.1.1. Wildlife Research and Management

Manned aircrafts have been traditionally used to complement ground-based wildlife surveys,
but under-resourcing of many protected areas prevent their more widespread use. Besides, a
significant number of aerial accidents with fatalities have been historically reported [45]. Moreover,
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aerial incursions are subject to visibility bias since a greater number of observers is required to
guarantee an exhaustive count of populations and minimize errors [46]. Drones have emerged as a
feasible alternative to surpass such inconveniences at small scales and complement modern wildlife
conservation. Remotely sensed capabilities of drones offer a less invasive, non-hazardous, repetitive
and reliable monitoring technique [47] to collect species abundance and distribution, document wildlife
behavior, life-history and health status. Recent examples target terrestrial mammals [48–50]; marine
mammals [51–55]; birds [11,56–60]; reptiles [15,61–64]; and fish [65,66]. Most surveys opted for both
optical and thermal cameras, the latter especially appropriate to sense elusive species overnight,
when the temperature differences between the animal body and the environment are greater [67].
Other studies implemented acoustic sensors to record songbirds [68] or combine drones with tracking
systems aboard [9,69,70] to collect wildlife movement and environmental data. Researchers have also
devised ways to use drones for insect monitoring [71], habitat modeling [72] and sampling [73].

Protected areas often face human-wildlife conflicts in populated areas bordering their limits [74].
Some studies described the use of drones in various management tasks, such as moving elephants out
of human settlements [75], mapping wildlife damage on crops to calculate compensation costs [76] or
dropping fake baits targeting feral species [77]. Drones constitute an attainable low-cost alternative
to assess and reduce the risk that hazardous infrastructures [78,79] or mechanical harvesting [80,81]
pose to wildlife. Lastly, fine-scale mapping of species distribution, land-use changes and water
bodies using high resolution aerial imagery hold potential to complement epidemiological and
zoonotic studies [82–85], and may serve as a rapid mechanism to inform prevention and reinforce
biosecurity programs.

3.1.2. Ecosystem Monitoring

Protected areas are reference sites for ecological monitoring. These activities provide essential
information to track ecosystem changes as a result of management and environmental factors [86].
Established methods for habitat monitoring range from in situ and airborne observations to
satellite-based remote sensing. The latest generation of commercial satellite sensors [87] collect
images at sub-meter resolution and entail remarkable technological advances to Earth observation,
but the geographical availability of products is limited and not always rapidly available. Drones are
particularly appropriated to timely survey small areas at unprecedented detail [88], could be adapted
to carry sampling devices and take in-situ measurements [89], and may prove advantageous to monitor
Essential Biodiversity Variables (EBVs) [90]. Similarly, mapping and quantifying ecosystem services
with drones constitute an efficient means to inform site design and zoning, especially when the
information available is scarce, outdated and based on coarse-resolution remote sensing images. Also,
monitoring habitat degradation with drones in protected areas and borderlands [91,92] represents a
novel method to assess the performance of conservation actions. Finally, fine-scale habitat assessment
using high resolution maps could assist, selecting suitable reintroduction sites for endangered or
locally extinct species [93].

Experimental drone monitoring projects have increased noticeably, both by governmental
institutions [94] and research groups, for informing on the distribution [95], health [16,96],
productivity [97], composition [98], structure [99,100] and biomass [101–104] of forests using both
passive and active sensors [105]. As a consequence, drone applications for inventory, characterization
and habitat restoration are maturing fast, but scaling-up and linking the collected information
with that coming from satellite remote sensing remains a knowledge gap [106]. However, some
studies represent a step in this direction, including the following: derive and enhance ground-based
forest metrics to assist modeling of ecological process at regional scale [107], validate vegetation
maps from drone image interpretation [108,109] or address the radiometric calibration of small
multispectral cameras to allow comparisons with satellite data [110,111]. Drones have been used
for community-based forest monitoring [112], and therefore suggested as an important asset to
impulse the participation of developing countries in the carbon market (Reducing Emissions from
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Deforestation and Forest Degradation, REDD) [113]. In addition, drones have operated successfully
in different ecosystems to measure the spread of invasive species [114–118]; map coastal and marine
habitats [119–125]; wetlands [126–130]; grasslands [17,131,132]; savannas [133,134]; glaciers [135–137];
polar areas [138,139]; and riparian ecosystems [140–143].

3.1.3. Law Enforcement

Efficient control and surveillance of illegal activities lead the ranking of measures for effective
management of terrestrial [144] and marine [145] protected areas. These conservation actions aim
to maintain the integrity of threatened species and ecosystems in the face of human pressures, but
in practice suffer from serious deficiencies [146]. Enforcement is especially challenging in large
protected areas where iconic species are on the verge of extinction due to illegal hunting, fishing,
encroachment or habitat loss. Drones constitute a technological advance to complement insufficient
staff and resourcing in anti-poaching [12,147–149] and other less contentious acts such as vandalism
or bonfires in unauthorized areas [150,151]. Drone surveillance aim to autonomously detect and
track subjects integrating live streaming visible and thermal camera systems with real time vision
processing techniques. However, these applications are subjected to technological and legal constraints.
Real-time recognition of suspicious activity or flying in adverse weather conditions remain a work in
progress [152]. The relatively low maximum flight time of modest drones is a major obstacle to cover
large areas [12], but progress is noticeable. Although the last generation of long-endurance fixed-wing
and hybrid aerial platforms have higher autonomy, meeting the optimal specifications requires
a considerable investment [153] with uncertain benefits, especially in developing countries [154].
Besides, the main barriers to protected areas surveillance using drones take place in the legislative
and socio-political sphere. The flight rules often limit flying drones beyond the visual line of sight
(BVLOS), above a certain altitude or at night, precluding the surveillance in periods of increased illegal
activity. On the other hand, there are concerns about the alleged social and ethical implications of
using drones with coercive purposes [155]. Duffy debated the advent of militarized conservation
and stated that drones and similar technologies could contribute to human rights breaching [156],
which may lessen the commitment of native communities [36,157] to protect their natural resources.
Under these considerations, more research is needed to identify those technological advances and best
practices that do not pose or minimize the risk to the privacy and welfare of people but serve for the
purpose of surveillance. In this sense, thermal images reveal the temperature profile of the target, but
lack the ability to collect sensitive personal information. Other measures can be taken to restrict the
surveillance to previously defined zones and according to poaching threat maps [158] representing
those areas with greatest pressures. In addition, some studies have remarked that the effectiveness
of antipoaching depends on a greater allocation of resources [144]. For example, to improve the
effectiveness of offshore guarding activities [159], patrol vessel could acquire waterproof rotary-wing
or fixed-wing drones with float planes to persuade and record illegal fishing within the boundaries
of marine protected areas. These evidences could be considered a reliable proof in court, even when
offenders are seized outside the no-take zones [160]. Alternatively, there are some reported experiences
where drones assisted counter-mapping with reasonable success [161,162]. With all due caution, these
are some compelling reasons to encourage the development and implementation of drones to fight
poaching. Nevertheless, the success of such initiatives might require a greater consensus among the
parties involved and the development of multidisciplinary strategies that seek to solve these recurrent
threats to biodiversity.

3.1.4. Ecotourism

Well-managed ecotourism promotes conservation and provides socioeconomic benefits to local
communities. Otherwise, it may adversely affect the welfare of the animals and disrupt their
habitats [163]. In the midst of the dilemma, drones have been proposed for recreational and
educational purposes [164,165], document natural monuments and cultural sites [166]; and social
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research and visitor surveillance [167,168]. However, drone operations are susceptible to endanger
wildlife [35], compromise tourist experience [153] or in case of accidents, lead to pollution or wildfires
in sensitive areas due to the presence of toxic and flammable components. Subsequently, to restrain
the uncontrolled presence of drones in protected areas, stakeholders agreed on a set of policies to
establish permitted activities in Antarctica [169], opted for simpler rules and recommendations [170] or
completely banned drones arguing safety reasons and wildlife impact [171]. Even when the economic
benefits and leisure possibilities are promising, undesirable events and a lack of ethical practices could
emphasize the negative connotations of drones to the detriment of their advantages. Thus, it would
be advisable to be cautious in the face of a growing demand to incorporate drones into ecotourism
services and continue working on a set of consensual measures to minimize the potential drawbacks
drones may bring to protected areas.

3.1.5. Environmental Management and Disaster Response

Effectively managing protected areas requires continuous monitoring of environmental
biophysical indicators to ensure that potential sources of contamination are controlled or below
a safety threshold and, if necessary, take appropriate restoration measures. In many cases, a rapid
response is crucial to diminish the effects that natural and man-made disasters pose to natural resources
and human beings. Usually, these conservation actions combine fieldwork, airborne and satellite
remote sensing. Drone capabilities provide a fine-scale alternative to remotely assist water, soil
and air quality sampling [172–176], and enable rapid image acquisition to monitor erosion [177];
sediments dynamics [178,179]; forest windthrow [180]; habitat degradation [125]; landslides [181–183];
flood [184]; volcanic events [183,185,186]; oil spills [187]; and wildfires [188–190] at different stages.
Drones may also serve as valuable tools for rangers in search and rescue missions in marine and remote
mountainous regions [191,192]. Besides, there are a variety of plausible scenarios where drones can
prove to be useful, such as detecting marine litter [193–195], inspect facilities [196]; collect information
gathered from environmental sensor networks [197]; or support plant invasion monitoring [198] and
control by means of aerially deployed herbicide on targeted species [199].

3.2. Current Challenges on the Integration of Drones in Protected Areas

3.2.1. Legal Barriers and Ethical Constraints

Drone operations face important social and legal barriers that undermine their potential in the
civilian sphere [36,200,201]. Not without founded reasons, an overly restrictive and indiscriminate
regulatory framework arguing privacy and safety issues is currently limiting the applications of drones
in the field of conservation. This highlights the urgent need to seek consensus among countries and
adapt legislation to distinguish between the purpose of leisure, research and management [202].

3.2.2. Impact of Drones on Wildlife and Ecosystems

Animal welfare and alteration of sensitive habitat in wildlife management and ecological research
is a source of strong debate [203,204]. Some authors have reported disturbance effects of drones
on birds [57,205–209], reptiles [210] and mammals [211–213]. Despite a greater degree of awareness
reflected in a emergent set of guidelines to minimize the impacts on wildlife [35,56,214,215], most
studies marginally inform reactions and further trials aimed at quantifying changes in behavioral
patterns and physiological effects targeting a broader group of species is recommended. An optimal
trade-off between benefits and environmental costs should be weighed [216,217]. By designing quieter,
non-polluting and safer components, along with following up the suggested flight patterns, the
impact on wildlife and ecosystems could be reduced and its objective and unbiased observation
facilitated [47,204]. Therefore, drones have great potential to evolve, replacing more invasive
monitoring techniques. This should be consciously considered by those reluctant to integrate drones
in research and conservation activities. Step by step, a code of best practice and recommendations
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could be continuously updated based on lessons learned [206], forming the basis for wildlife certified
drone operators [35].

3.2.3. Costs of Drone Operation

Expenses derived from using drones in the long term are difficult to quantify [218] and depend on
a confluence of factors. Some of the applications described above rely on the acquisition of sophisticated
on-board instruments, devices and sensors, advanced communications system or gas-powered engines
for longer endurance and heavier payloads. The large volume of data collected must be conveniently
stored and processed, which often require qualified staff and adequate IT (Information Technology)
infrastructures. In addition, operations with drones are not exempt from accidents, which may
compromise the viability of some projects. The payload is usually the most expensive part of the
platform, and this often breaks down. Park managers should be aware that there is not a single solution
covering all the conservation purposes [219] and a trade-off analysis among available platforms and
sensors should be pondered. In this regard, do-it-yourself (DIY) drones can be equipped with a
flexible array of sensors and according to very specific requirements, but extra time and experience
is required for the correct assemblage and configuration of parts. Since ready to fly commercial
platforms are tested and proven systems, it could be argued that they present more reliable capabilities
than custom-built drones. Moreover, the consumer market shows a gradual drop on prices in higher
performance platforms [220]. Suppliers often provide support, training and companion software, albeit
services could be occasionally charged. Nonetheless, there is general agreement that costs associated
with drones are lower compared to established methods (Table 3), such as manned aircraft and ground
incursions [13,178,211], at least for mapping small and medium scale areas. Although the benefits of
monitoring greater extensions with drones remain challenging according to the state of the art, the
situation is likely to be more favorable with the advent of more efficient aerial platforms.

Table 3. Examples of studies reporting favorable use of drones compared with established methods.

Study Aim Established Methods Using Drones

[173] Water Sampling

Boat sampling

• 3 scientists, 1 boat, 1 truck, 1 trailer.
• Slow, spatially restricted.
• Expensive and laborious deployment
• lake sampled/10–15-h day.

• 2 h, 1 scientist, 1 drone.
• Sample all lakes at very high

spatio-temporal resolution.

[57] Nesting status of birds

Climbing trees

• 2500$
• 2 people and climbing gear.
• 33 min/inspection

• 1000$
• 1 person and drone
• 4:30 min/inspection

[57] Elasmobranchs densities

Fishing methods, diver surveys, video cameras,
aerial surveys

• Potential invasive methods
• Prohibitive cost.
• Risk for observers and observer bias.

• <2500 $
• Short period of time.
• True densities

[61] Crocodile nesting behavior

Helicopter, airboat, ground surveys

• Prohibitive cost.
• Dangerous incursions.

• Low cost, repeatability,
and flexibility

[221] Mangrove forest inventory

Fieldwork

• Laborious and costly
• Trade-off sample size and frequency
• Located in remote areas.
• Disturbance of fauna and flora

• Consumer-grade drone 1200 $
• Above ground biomass estimation.
• Increase sampling frequency
• Less invasive
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3.2.4. Technological Challenges

As previously noted, the massive volume of data that sensors collect in the course of the surveys
need to be stored, processed and analyzed, causing severe procedural bottlenecks [6] that need to
be solved. When using aerial images for wildlife census, the manual counting and identification of
individuals represent a considerable investment in time and costs. Progress in computer vision and
machine learning are intended to automate such routine tasks [52,81,222–228]. Despite encouraging
results [229], these methods are only available for relatively easy to spot species in open natural
environments and require highly qualified personnel to offer reliable results. In addition, further
research is required to assess the overall performance of drone data collection techniques to address
the analysis and modelling of species distribution, especially in comparison with more mature
statistical and sampling methods [58]. On the other hand, traditional pixel-based algorithms are
rather inefficient when processing very high resolution images [128]. Therefore, object-based image
analysis (OBIA) and deep learning techniques [230] will likely prevail during the next generation of
land-cover, habitat and vegetation classification methods [8]. The arrival of affordable hyperspectral
miniaturized sensors [124,128,231,232], will bring more complexity to the matter, requiring novel
analytical approaches not currently implemented. Conversely, the entire photogrammetric process is
well documented [233] and supported by commercial desktop and mobile applications, but also open
source solutions [21], probably at expense of a major level of expertise [234,235]. Drones using Real
Time Kinematic (RTK) and Post Processing Kinematic (PPK) techniques can produce survey-grade
maps without requiring labor intensive ground control points (GCPs). Yet, the radiometric calibration
of aerial images requires additional improvements [37] since it is considered a crucial step to carry out
multi-temporal studies [236]. The confluence of big data [237], networked drones [238,239], artificial
intelligence and sensors will bring new unforeseen perspectives to conservation, but integration of
products and services to deliver off-the-shelf management solutions are still in their infancy.

3.3. Linking Drone Platforms and Sensors with Conservation

Park managers considering the acquisition of drones may need expert guidance to select the most
suitable platform and sensor for each purpose. Here we provide a brief summary of most common
imaging and ranging sensors (Table 4). Consumer grade cameras are adequate for general mapping
and photogrammetric tasks. Sensor size, focal length and lens quality are the main camera factors that
influence the accuracy of the survey. More advance remote sensing applications require the adoption
of multispectral and hyperspectral sensors. The former encompasses both modified RGB cameras
to near infrared and multispectral cameras with great prospects for precision agriculture, forestry
and a broad range of vegetation studies [240]. Hyperspectral sensors collect information in multiple
bands across the electromagnetic spectrum, and are of great interest to remotely observe the spectral
response of many distinct biophysical parameters [22] and physiological process of organisms [124].
These families of sensors require radiometric calibration to account for variable lighting conditions
and retrieve physical quantities that can be compared in time and with other sensors [241]. Thermal
infrared cameras can remotely sense heat even in low visibility conditions and are ordinarily used
for industrial inspection and surveillance, but also in soil science [242] and animal ecology [64].
Thermal sensitivity, expressed as the ability of the sensor to discriminate differences of temperatures
even in low contrast scenes, is one of the most important technical aspects to increase the detection
rate of wildlife [52]. LiDAR instruments are relatively expensive active sensors that can penetrate
the canopy and derive accurate three-dimensional forest metrics and terrain models. However,
structure-from-motion (SfM) [243] imaging techniques based on standard RGB cameras represent
a low-cost alternative with limited, but reasonable results. In terms of platforms, long-endurance
fixed-wing drones are preferred when surveying large areas and when landing is not a problem.
Conversely, rotary-wing platforms are more versatile, and can operate in a diverse range of situations
where precise flights prove more advantageous, such as in confined spaces and close-range inspection
tasks, marine settings and terrestrial areas with steep terrain, or extensive vegetation cover.
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Table 4. Suitable sensors for research and management tasks.

Sensor Applications

Visible RGB Aerial photography, habitat mapping, photogrammetry, 3D Modeling,
inspection, wildlife surveys (identification), landslides

Multispectral Vegetation indices, productivity, water quality, geological surveys

Hyperspectral Vegetation studies, biophysical variables, ecological processes, forest health,
chlorophyll content, insect outbreaks.

Thermal Inspection, wildlife surveys (detection), surveillance, wildfires, soil temperature,
volcanology

LiDAR 3D Modeling, topographical maps, forest inventory and metrics
(structure, biomass, tree volume, canopy height, leaf area index)

3.4. Knowledge Gaps and Recommendations for Future Research

The variety of information gathered from drones represents a great opportunity to complement
ongoing Earth Observation programs aimed to monitor anthropogenic pressures threatening the
ecological integrity of protected areas [244]. Drones can be rapidly deployed there, where early
sign of disturbance have been previously detected using satellite images and environmental sensor
networks [245]. Although many protected areas are too large to be mapped using drones, there are
small, inaccessible and environmentally sensitive terrestrial and marine areas (ESAs) with important
ecological values that could take advantage from drones. Once the use of drones has proven feasible in
many different fields of application, it would be of interest that research focuses on methods to produce
a set of ecological indicators in line with established monitoring frameworks [246]. For example,
a wide range of biodiversity metrics, ecosystem processes and natural and anthropogenic stressors
could be measured or derived, but further efforts are required to transfer advances on the field into
accessible products for direct use at management levels. Table 5 suggest some potential challenges that
can help to guide future research in the field.

Table 5. Challenges for the effective implementation of drones in protected areas.

Management
Categories Challenges

Wildlife Research and
Management

• Development of drones to minimize impact of wildlife.
• Optimization of automatic pattern recognition algorithms.
• Robust sampling design/limited statistical power.
• Integrating movement and visible/thermal data.
• Population structure and function, wildlife traits.

Ecosystem
Monitoring

• Consistent ecological indicators.
• Multitemporal studies.
• Targeting Essential Biodiversity Variables (EBVs).
• Multiscale studies/linking drones with Earth Observation systems.
• Mapping of aquatic environments/bathymetry maps
• Machine learning methods (neural networks, etc.)
• Ecosystem services/area designation and performance.
• Habitat suitability/species reintroduction studies

Law Enforcement

• Research required to assess the performance of drones to reduce illegal activities.
• Test hybrid (VTOL) platforms.
• Marine Protected Areas: Drones/Vessel patrols
• Focus on poaching, but there are other important human intrusions in protected areas that could benefit from drones

(illegal logging, mining, etc.)
• Threat maps.

Ecotourism

• Cost/benefit analysis
• Potential to introduce virtual flights.
• Fine-scale geofencing maps (Detailed map of sites where drone flights are allowed/conditioned/restricted)

Environmental
Management and

Disaster Response

• Move from prototypes to products and services.
• Implementation of Regional/Global Infrastructures for decision support.
• Satellite/Drone Remote Sensing integrative approach to model disturbance regimes.
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