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Abstract: In this work, a novel, silicon-based micro-electromechanical valve that includes a submicro-
metric orifice and can operate at pressure gradients of 1 bar was used to enhance sampling for gas
chromatograph mass spectrometers. The valve is based on a membrane-in-membrane design and
operates with thermomechanical actuation. It includes a pin to enable self-cleaning. Prototypes were
fabricated and preliminary testing was performed.
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1. Introduction

Great improvement in gas chromatograph mass spectrometers (GC-MSs) is possible
using nanometer-scale orifices [1] as sampling points and smart gas interfaces towards
atmospheric pressure. At high pressure gradients, orifices with diameters of about 100 nm
operate under a molecular flow regime (MFR) [2]. A flow through conductance in an
MFR does not give origin to gas collective motions, preventing condensation, chemical
reactions and clogging [3]. Such inlet diameters enable gas flows in the range from 10−5

to 10−7 mbar L/s that guarantee the same concentrations of the external gases into the
ionization chamber [4,5]. Such devices will be exposed to a 1 bar pressure gradient, with
the sensing chamber on one side (in vacuum) and the analyte-containing ambient (at
atmospheric pressure) on the other. A membrane with submicron orifices capable of
consistently withstanding 1 bar pressure gradient was developed by the authors using a
novel membrane-in-membrane structure [6].

We hereby report the development of an analogous nanoscale orifice membrane with
a thermomechanically actuated valve to enable its operation and self-cleaning.

2. Materials and Methods

The device structure (Figure 1) was modified in order to include the thermomechanical
valve component, but the same membrane-in-membrane approach was adopted. An
inductively coupled, plasma-enhanced vapor deposition (ICP-CVD) silicon nitride film
was developed for this device, demonstrating low residual stress after annealing. Based on
the simulation results, a batch of prototype devices was designed and microfabricated on
6-inch SEMI standard silicon wafers. An example of the fabricated devices is reported in
Figure 2.
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Figure 1. Membrane and bridge valve section. 

 
Figure 2. SEM image of the fabricated membrane with a bridge valve. 

3. Results 
The first fabrication batch was successfully completed. The devices were bonded on 

copper circular substrates having a passing hole. These substrates provide a mounting 
support in the vacuum system, and are equipped with a flat cable connection to the MEMS 
device. Thermoelectric valve actuation was demonstrated at ambient pressure, and re-
sistance towards the pressure gradient was demonstrated under a full vacuum by mount-
ing the device in a quadrupole mass filter spectrometer system that operated at a back-
ground pressure ranging from 10−9 to 10−10 mbar. 
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Figure 2. SEM image of the fabricated membrane with a bridge valve.

3. Results

The first fabrication batch was successfully completed. The devices were bonded on
copper circular substrates having a passing hole. These substrates provide a mounting
support in the vacuum system, and are equipped with a flat cable connection to the
MEMS device. Thermoelectric valve actuation was demonstrated at ambient pressure,
and resistance towards the pressure gradient was demonstrated under a full vacuum by
mounting the device in a quadrupole mass filter spectrometer system that operated at a
background pressure ranging from 10−9 to 10−10 mbar.
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