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Abstract: The hybrid integration of electronics in flexible substrates using fanned-out, wafer-level
packaging (FOWLP) has recently gained significant attention, with numerous applications in wearable
electronics, foldable displays, robotics, medical implants, and healthcare monitoring. In this study, a
fully additive and scalable manufacturing process flow to realize a low-cost, flexible FOWLP system
was introduced. Here, the integration of 36 LED chips in a biocompatible polydimethylsiloxane
(PDMS) substrate was demonstrated using a stencil-printed silver (Ag) redistribution layer (RDL).
The processes for the integration of chips, i.e., chip first (exposed die embedding), chip first (deep
embedding with filled valleys) and chip last (RDL first), were implemented, and the corresponding
samples were evaluated electrically. The bendability of the samples was also characterized at different
bending diameters. Conclusively, it was shown that by using surface-modified PDMS as a flexible
substrate and stretchable Ag paste as interconnect, flexible FOWLP can be produced.
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1. Introduction

The continuous, large-scale advancement of flexible hybrid electronics (FHEs) towards
producing high-performance and reliable products with a smaller footprint and lower
cost is highly dependent on micro-assembly and rigid/flex integration technologies [1].
In fact, advanced microelectronic packaging technologies, such as chip embedding and
2.5D and 3D integrations, can provide significant benefits to FHEs. One of the most recent
packaging trends in microelectronics is fanned-out wafer-level packaging (FOWLP). Known
good bare dies are embedded into a rigid epoxy mold compound to form a reconfigured
wafer for FOWLP. On the reconfigured wafer, a redistribution layer (RDL) is applied using
photolithographic, sputtering and plating processes, which routes the die through the
space around and on the die. FHEs using FOLWP have been recently investigated by many
researchers, and several FHE demonstrators have been produced using this approach.
Here, a flexible molding compound such as polydimethylsiloxane (PDMS) is employed
as the substrate [2]. In our previous studies, additive manufactured RDLs were proposed
for rigid FOWLP using different printing technologies [2]. In this study, fully additive,
manufactured FOWLP is developed using spin-coated PDMS as the substrate and printed
Ag paste tracks as the RDLs.

2. Results and Discussions

Three approaches were investigated in this study, as shown in Figure 1a. In the
first approach (exposed die embedding), an array of 36 LEDs were embedded in PDMS
(Sylguard 184). Thermal release tape (RT-A4098, Mitsui Chemicals, Minato City, Tokyo,
Japan) was laminated to a 4-inch Si carrier wafer, and the LEDs were precisely placed on
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the tape using a die bonder. Afterwards, the PDMS was spin-coated and cured at 100 ◦C
for 20 mins. The metallic interconnects (RDLs) were stencil-printed using stretchable Ag
paste (Dycotec, Calne, UK). To enhance the adhesion of the Ag paste to PDMS, a UV ozone
treatment was performed for 5 mins before printing. After the printing step, the Ag ink
was cured and sintered at 100 ◦C in an oven. In the second approach (deep embedding
with filled via), the chips were fully embedded in PDMS. Later, the contact pads of the
LEDs were opened using a picosecond laser, followed by filling the vias with the same
paste. In the third approach (chip last), the stencil printing was performed prior to the
chip placement. The uncured Ag paste was tacky enough to secure chip contacts during
processing, acting as a conductive adhesive. To enhance the reliability of the samples,
another layer of PDMS was spin-coated as an encapsulation layer to reduce the stresses
while bending. Figure 1b shows a demonstration of the embedded LED array.
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Figure 1. (a) The three approaches to realize flexible FOWLP; (b) an example of the demonstrator.

After fabrication, the samples were characterized electrically at different bending
diameters from 5 to 50 mm using a vernier caliper. The change in current was set as the
criterium to detect if bending has any effect on the electrical interconnections of the LEDs.
As seen in Figure 2a, there was a negligible change (~100 µA) in the current values as the
loop diameter decreased. This was consistent for both the “exposed die embedding” and
“chip last” approaches. On the other hand, in the “deep embedding” approach, the current
increased significantly compared to that of the other approaches followed, by failure (LED
light off) below a 30 mm loop diameter. This large variation in electrical current can be
attributed to the poor electrical contact between the via and the LED pad. Figure 2b shows
an image of a bent sample with powered LEDs. As a result, it was determined that both the
“exposed die embedding” and “chip last” approaches fulfill the bendability requirements
and can promise more reliable FHE systems.
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Figure 2. (a) Electrical characterization of the fabricated samples at different loop diameters. (b) A 
demonstration of the lighting LEDS under bending condition. 
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