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Abstract
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Abstract: Methane (CH4) emissions are a leading cause of global warming, and precise monitoring
of and reduction in these emissions are important. To achieve these goals, miniaturized low-power
sensor systems with improved precision are necessary. To this end, we present a novel room-
temperature chemiresistive CH4 gas sensor that employs Zn-hexahydroxytriphenylene-based metal–
organic frameworks (Zn-HHTP MOFs) as detection materials. The high surface area and porosity of
Zn-HHTP MOFs enable effective detection of low atmospheric levels (1.2 ppm) of CH4.
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1. Introduction

CH4 is a potent greenhouse gas, and detecting low concentrations of odorless CH4
is challenging due to its non-polarity and high enthalpy of C–H bonds [1]. Therefore,
developing miniaturized low-cost and sensitive gas sensors remains an active research
goal. Although electrochemical, infrared, and chemiresistive are the most common gas
detection technologies, chemiresistive sensors are advantageous thanks to their low cost,
simple operation, high sensitivity, and lifetime [2]. Despite intensive research on advanced
materials, metal oxide-based chemiresistive sensors, which are used most, still face ma-
jor challenges related to poor selectivity and high working temperature [2]. Replacing
traditional metal oxides with advanced conductive MOFs as detection materials could
address these challenges. MOFs, made up of metal nodes and organic linkers, have a rigid
cage-like structure with a high surface area, porosity, and crystallinity [3]. These properties
make them excellent for gas detection, particularly for chemiresistive sensors that rely on
surface reactions. Therefore, the primary goal of this study is to detect low levels of CH4 by
utilizing advanced MOFs as the detection material. In this respect, Zn-HHTP MOFs were
synthesized by coordinating a prominent group of triphenylene with Zn2+ ions using a
simple solvothermal method, and they were employed for the first time as active sensing
material to detect low levels of CH4 at room temperature.

2. Materials and Methods

To synthesize Zn-HHTP MOFs, a mixture of HHTP-ligand and Zn-acetate in distilled
water (DW) was sonicated for 10 mins, and then dimethylformamide was added and
sonicated for another 15 min. After incubating at 80 ◦C for 6 h, the powder was collected
by centrifugation, washed with DW and ethanol, and dried. The chemical structure of the

Proceedings 2024, 97, 137. https://doi.org/10.3390/proceedings2024097137 https://www.mdpi.com/journal/proceedings

https://doi.org/10.3390/proceedings2024097137
https://doi.org/10.3390/proceedings2024097137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com
https://orcid.org/0009-0006-2459-3551
https://orcid.org/0000-0003-1924-1990
https://orcid.org/0000-0002-1079-7020
https://orcid.org/0000-0002-4999-6588
https://doi.org/10.3390/proceedings2024097137
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com/article/10.3390/proceedings2024097137?type=check_update&version=1


Proceedings 2024, 97, 137 2 of 3

Zn-HHTP MOFs is shown in Figure 1a. For sensor fabrication, 1 mg of Zn-HHTP MOF
powder was dispersed into 1 mL of distilled water and sonicated for 30 min. Later, the
suspension was deposited on the interdigited chips with Au electrodes and dried in air
prior to being used as a detection element.
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Figure 1. (a) Chemical structure of Zn-HHTP MOF; (b) chemiresistive study of Zn-HHTP MOF
sensor to 6.2 and 1.2 ppm of CH4 at room temperature, proving its reversibility.

3. Discussion

Room-temperature chemiresistive gas sensing measurements on Zn-HHTP MOFs
were performed regarding various CH4 concentrations via a dynamic gas sensing setup
under laboratory conditions. A sensor response was calculated as the ratio between the
resistance of Zn-HHTP MOF in air (Ra) to the resistance of Zn-HHTP MOF in CH4 gas
(Rg), i.e., response (%) = [|Ra − Rg|/Ra] × 100. Before CH4 exposure, the Zn-HHTP
MOF sensor was stabilized by aging in dry synthetic air for 3 hours. Figure 1b shows
the reversibility plot of the Zn-HHTP sensor to successive 6.2 and 1.2 ppm of CH4 at
room temperature, where the sensor electrical resistance values were found to be increased
upon the interaction of CH4 gas with complete recovery features. Notably, the Zn-HHTP
sensor is capable of effectively detecting a very low CH4 concentration down to 1.2 ppm
(response = 2.5%), which is lower than the atmospheric CH4 concentration (1.9 ppm) spec-
ified by the Global Monitoring Laboratory for the year 2022 [4]. The observed response
is mainly due to the MOF’s high surface area, porosity, and crystallinity, enabling effec-
tive surface reactions with CH4 molecules. Furthermore, the sensor’s affinity for CH4
may have been enhanced by the coordination of triphenylene with Zn2+ ions. Overall,
based on our findings, Zn-HHTP MOFs show promise as advanced sensing materials
for room-temperature chemiresistive CH4 sensors. Our current focus is to study the in-
fluence of interfering gases, such as water vapor, on the sensor response, considering its
practical applications.
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