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Abstract: The Known Fossil Record represents museum collections and the published literature, and
it is subject to multiple large-scale megabiases grouped into four major categories: (1) taphonomy;
(2) rock preservation; (3) fossil discovery; and (4) fossil study. Taphonomic megabiases are largescale
patterns in the quality of the fossil record that affect paleobiologic analysis at provincial to global
levels and at timescales usually exceeding ten million years. Taphonomic megabiases are intrinsic
(form and behavior) and extrinsic (biotic and abiotic controls on preservation). Other megabiases
are the preservation and exposure of rock strata, kyreonomy (discovery) and concipionomy (study).
Kyreonomy megabiases include location of fossil sites, mineral evaluation, mineral extraction and
colonialism. Concipionomy megabiases include the Taxophile Effect, language and development and
distribution of technology.
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1. Introduction

The Known Fossil Record represents museum collections and the published litera-
ture [1], and it is subject to multiple large-scale biases. The purpose of this paper is to
demonstrate that megabiases in the fossil record can be grouped into four major categories:
(1) taphonomic megabiases; (2) rock preservation; (3) fossil discovery; and (4) fossil study.

2. Taphonomic Megabiases

Behrensmeyer et al. [2] introduced the term megabiases into taphonomy for largescale
patterns in the quality of the fossil record that affect paleobiologic analysis at provincial to
global levels and at timescales usually exceeding ten million years. Taphonomic megabiases
are intrinsic (form and behavior) and extrinsic (biotic and abiotic controls on preservation).
Examples of intrinsic megabiases in the vertebrate-fossil record include body size (larger
organisms are better preserved), robusticity of skeleton (e.g., fewer bird and pterosaur
fossils), presence of armor (dense osteoderms preserve well such as in the nonmarine Late
Triassic) and behavior (e.g., semiaquatic or terrestrial).

One significant extrinsic megabias involves the development of vascular plants and
related land surface evolution. Schumm [3,4] first speculated that plant evolution caused
changes in fluvial style, and Cotter [5] documented the relationship in the Paleozoic. Es-
sentially, increasing plant cover in the Paleozoic led to increased stabilization of channels
and floodplains [6–8]. This had profound effects on the taphonomy of plants, trace fossils
and body fossils [7,9–11]. The later evolution of land plants, notably grasses, presumably
had additional taphonomic impacts. Thus, Hunt et al. (Ref. [11] predicted four distinct
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temporal phases of vertebrate track preservation: (1) Devonian—few tracks, because terres-
trial tetrapods are rare, and lack of plant ground cover resulted in frequent reworking of
terrestrial surfaces; (2) Carboniferous-Triassic—many tracks because terrestrial tetrapods
are common, and increased ground cover reduced the reworking of terrestrial surfaces;
(3) Jurassic-Cretaceous—tracks will be numerous and preserved in more diverse sedimen-
tary environments because terrestrial animals are very large, even though ground cover
is increased; (4) Cenozoic—increased ground cover, especially after the diversification
of grasses, resulted in less unvegetated areas where tracks can be preserved (with a few
notable exceptions such as lacustrine margins).

Another extrinsic example is the evolution of dentition. Pre-mammalian vertebrates
generally lack the dental morphology for fine occlusion. Thus, for example, dentalites are
rarer on dinosaur bones than on Cenozoic mammal bones because non-avian theropods
lacked the dentition or jaw mechanics to manipulate and modify bones in a similar man-
ner [9,10,12,13]. Fiorillo [13] validated this hypothesis by demonstrating that dinosaur
faunas exhibited 4% or less of bones with dentalites, whereas in the mammal faunas
he studied, the percentages varied from 13.1 to 37.5% (however, see [14] for a notable
exception).

Other examples of extrinsic megabiases include digestive evolution (e.g., preserva-
tional effects of GI tract acidity [9,10,15] and Lagerstätten and Megalagerstätten (e.g., Upper
Cretaceous of Western Interior of North America [16]).

3. Rock Preservation

Raup [17] persuasively argued that aspects of the rock record have resulted in sys-
tematic biases in the fossil record, notably exposed rock area, available rock volume and
intensity of subsequent metamorphism and erosion. Subsequent workers have discussed
aspects of this topic with regard to diversity through time (e.g., [18–22]). Sheehan [19]
recognized Paleontologic Interest Units as a measure of the effort devoted to acquiring
knowledge concerning fossils and concluded that eight times as many paleontologists
(per million years) work on Cenozoic fossils as on Cambrian fossils, reflecting the relative
exposure of these ages of rocks [19].

4. Fossil Discovery

The history of the discovery of fossils has been heavily influenced by the prospecting for,
and extraction of, mineral resources. For example, the major difference between Moscovian
and older/younger Carboniferous tetrapod records has its primary basis in coal mining [22,23].
Thus, the larger Middle Pennsylvanian tetrapod record is biased because almost all of the
Moscovian tetrapod assemblages are associated with coal beds [23–26]. There is an abrupt
decrease in mineable coals across the Middle–Late Pennsylvanian boundary, due to climate
change driven by sea-level drop, the drifting northward of Euramerica and changing
topography and drainage patterns due to Variscan tectonism (e.g., [27–29]). The tetrapod
fossil record diminishes with these changes because of the megabias associated with the
coal interval.

We apply the term kyreonomy (from the Greek kyreo to find) to address biases caused
by discovery. Other kyreonomic megabiases include location of fossil sites (related to
human geography, climate and geological context), mineral evaluation (e.g., exploration
of Cretaceous coalfields of western USA), mineral extraction (e.g., Late Jurassic–Early
Cretaceous lithographic limestones) and colonialism (e.g., Tanzanian dinosaurs, Karoo
tetrapods, North African dinosaurs).

5. Fossil Study

There are markedly distinct levels of interest, and hence study, of different fossil
groups, which Hunt et al. [30] termed the Taxophile Effect (e.g., [17]). This is clearly evident,
for example, among dentalites where a single tooth mark on a dinosaur bone warrants a
published paper, whereas the numerous occurrences on Cenozoic bones are barely noted
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until the Quaternary [15]. There is consistent elevated interest in certain groups evident
from popular culture to rock shop sales to the scientific literature. Dinosaurs and ammonites
are the clear winners among vertebrates and invertebrates, respectively. Intrinsic interest
is not the only driver to increased study. Extrinsic factors include the relative abundance
of exposure of strata in that “geologic systems with more rock contain more species and
this leads to more species being described” ([31], p. 328) and [19]. Other extrinsic factors
include employment possibilities such as the decrease in the number of petroleum company
micropaleontologists and the decline in traditional systematists among academic faculty.
The burgeoning of paleobiology has benefitted the understanding patterns of the fossil
record but has had a detrimental effect on the prevalence of study of the building blocks of
the record. Other biases include language (non-English literature is under cited) and the
development and availability of technology (e.g., SEM, CT scanning). We propose the term
concipionomy (from the Latin concipio to comprehend) for the biases introduced by study
of the fossil record.

6. Conclusions

The Known Fossil Record is subject to multiple large-scale biases. These megabi-
ases can be grouped into four major categories: (1) taphonomy; (2) rock preservation;
(3) kyreonomy; and (4) concipionomy.
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