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Abstract: 2,5-diketopiperazines (DKP) are the simplest cyclo-peptides in nature, which could play a 
key role in the origin of life. They are ubiquitous in microorganisms, higher species, and in food 
and beverages. These dipeptides have been known since the beginning of the 20th century, but they 
have only recently been gaining interest due to diverse, noteworthy bioactivities, such as, but not 
limited to, anticancer, antiviral, antioxidant, and neuroprotective properties. DKPs have relevance 
in quorum sensing, cell–cell signaling, or as drug delivery systems. They have less toxicity, in-
creased cell permeability, and binding affinity. Proline-containing DKPs have an extra-rigid con-
formation and are more resistant to degradation by enzymes. They represent an attractive subclass 
of cyclo-peptides with a high potential in future therapies. 
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1. Introduction 
The main aim of this mini-review is to provide an overview of the scientific findings 

on diversity and the enormous biological potential of the simplest natural cyclo-peptides 
in light of the newest literature, structural databases, and patents. Further, we have 
emphasized the attractiveness of their pharmacokinetic profile in relation to the future 
innovative effective therapeutical and bio-control agents. 

2. Cyclo-Peptides: General Considerations 
Recently, short peptides have been enjoyed greater and greater significant interest 

as a unique class of bio-molecules filling a therapeutic niche between small chemical 
drugs and macro-molecular agents with diverse well-known limitations. Oligopeptides 
are a primary source of bio-molecules, which are components of proteins participating in 
bio-processes. Therefore, they have significant advantages, such as diverse bioactivities, 
high selectivity due to specific interactions of peptides with targets, low toxicity, because 
they do not accumulate in the organs, and amino acids are degradation products. 

On the other hand, shortcomings of the peptides, such as poor oral absorption, low 
stability in vivo, high conformational freedom, or low cell permeability, can not be 
neglected [1].  

Nevertheless, cyclic peptides have specific structural features resulting in a superior 
pharmacological profile [1,2]. Amino and carboxyl terminals are linked together with a 
peptide bond, forming a circular chain, which results in rigid conformation. This ”head 
to tail” cyclization leads to increased stability against proteolysis and better 
bioavailability. Besides, cyclo-peptides have less cytotoxicity, higher bioactivity, 
specificity and efficacy, increased cell permeability, or binding affinity [3].   

Citation: Bojarska, J.; Wolf, W.M. 

Ultra-Short Cyclo-Peptides as 

Bio-Inspired Therapeutics: 

Pro-line-Based 

2,5-Diketopiperazines (DKP).  

Proceedings 2021, 79, 10. 

https://doi.org/10.3390/ 

IECBM2020-08804 

Published: 1 December 2020 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2020 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Proceedings 2021, 79, 10 2 of 8 
 

 

3. Diketopiperazines 
Cyclic dipeptides containing a 2,5-diketopiperazine backbone, known also as 

cyclodipeptides, 2,5-diketopiperazines (DKPs), piperazine-2,5-diones, 2,5-dioxopiperazines, 
or dipeptide anhydrides, represent a unique class of compounds with extra advantages 
in drug development [4]. The DKP scaffold consists of a six-membered ring with, or 
without, various substituents orientated in a defined way. It provides three-dimensionality, 
increased rigidity, chiral nature, enables the control of the substituent’s stereochemistry, 
stimulation of the pharmacophoric peptide groups, promotes the intermolecular 
H-bonding interactions with bio-targets via corresponding sites of donors and acceptors 
[5]. The rigid DKP core enables the preferential conformation of peptide to be mimicked, 
and allows the dual behavior of amino acids to be activated in an either constrained or 
flexible manner [6].  

It should be mentioned that even though 2,5-DKPs are the most popular in nature 
and therapies [4,7], 2,3-DKPs and 2,6-DKPs are possible as well—see Scheme 1 [8].  

 
Scheme 1. Structure of 2,5-DKP (on the left), 2,3-DKP (in the middle) and 2,6-DKP (on the right). 

3.1. Historical Background and Occurence: Origin of Life 
In nature, imperative fundamental functions of amino acids are indisputable. The 

cyclic dipeptides probably play a key role in the origin of life in the context of chemical 
evolution. They could have relevance in the process of catalyse chiral selection and act as 
precursors in the formation of the peptide, which is considered an essential condition of 
the beginning of life [9].  

2,5-diketopiperazines (DKP) are the simplest naturally occurring cyclo-peptides. 
They are biosynthesized from amino acids, which are catalyzed through two enzyme 
families, both nonribosomal peptide synthetase and cyclodipeptide synthase enzymes, 
resulting in the formation of the two peptide bonds [10–14]. The DKP skeleton is 
ubiquitous in various environments, either in microorganisms, bacteria such as Bacillus 
subtilis, Streptomyces, Pseudomonas aeruginosa, or Lactobacillus plantarum [15–17], marine 
and terrestrial fungi [18] as Aspergillus flavus or Alternaria alternata and Penicillium, 
respectively [19,20], or higher species, such as marine sponges such as Dysidea herbacea 
and fragilis [21], but also proteobacteria Alcaligenes faecalis, algae, lichens, gorgonians, 
tunicates, plants, or animals venoms. Notably, they have been found in the central 
nervous system, gastrointestinal tract, and blood of humans [22]. Additionally, they are 
present in food and beverages [4,23,24]. DKPs can be chemical byproducts, e.g., in Pu-erh 
tea, cocoa, dried bonito, roasted coffee, sake, beer, cheese, casein, chicken extract, or 
stewed beef, giving a special metallic bitter taste [25–28], but also in drugs because of 
intramolecular cyclization of the dipeptidyl moiety in active peptide-based substances. 
The latter is a common phenomenon in different therapeutics, in aminopenicillin, 
amoxicillin, ACE inhibitors [29–31], etc. Notably, proteins and peptides can be cyclized to 
DKPs by heating [32].  

Surprisingly, these natural dipeptides have been known since the beginning of the 
20th century [33,34] but they have been neglected for a long time. Only recently, they 
have been enjoyed greater and greater significant attention, and their biological profile is 
investigated in detail.   
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3.2. Properties and Possibilities 
The simple biomolecules containing the bis-lactam core of DKP have a wide spectrum 

of biological activities, inter alia anticancer, T-cell mediated immunity, antiviral, nootropic 
and neuroprotective in neurodegenerative diseases (Alzheimer’s or Parkinson’s diseases 
and amyotrophic lateral sclerosis), cytotoxic, immunosuppressive, antibacterial, antifungal, 
antimutagenic, anti-inflammatory, antihyperglycemic, antiarrhythmic, antimalarial, 
antiparasitic, anthelmintic, insecticidal, antifouling, anti-prion, vasorelaxant or metabolic 
regulatory [5,24,34–37]. They have relevance in quorum sensing, improving the classical 
theory of quorum sensing, unique communication manner between bacteria and gene 
regulation systems [38]. DKP ring plays a key role in fighting oxidative stress [39]. 
Moreover, they play role in ion-transport, cell–cell signaling, and a high affinity to many 
receptors and enzymes [4]. They are useful in delivery systems of drugs, which have low 
permeability to crossing the blood–brain barrier [34]. Additionally, cell-penetrating 
peptides containing DKP have better properties in relation to anti-cancer drugs. They 
provide high cell membrane penetration or transport cargo into the cell [3]. The DKPs can 
be easily synthesized through conventional procedures providing an attractive scaffold 
in new drug design due to its main simplicity and marvelous structural diversity [40,41]. 
They are an excellent model for theoretical studies in the context of the constrained 
structural scaffold with a relevant pharmacophore [4,5,42]. Furthermore, they are used in 
the synthesis of many natural products, alkaloids [23]. DKP framework is present in 
culture broths fermented with lactic acid bacteria. Therefore, they provide an 
eco-friendly approach for food and feed preservation [43]. 

3.3. DKP-Based Drugs 
Interestingly, many relatively new drugs, such as tadalafil, phosphodiesterase-5 in-

hibitor for the treatment of erectile dysfunction [44], retosiban, as an oxytocin antagonist 
for preterm labor [45], epelsiban, as an oxytocin antagonist in premature ejaculation in 
men [4], the vascular disrupting and tubulin-depolymerizing pinabulin, on the base of 
the marine fungal halimide, potential therapeutical agent in lung cancer [46,47], as well 
as other anticancer natural agents as ambewelamides, phenylahistin, dehydrophenyl-
ahistin [48], verticillin A [49], but also Aplaviroc for HIV [50], antiviral and immuno-
suppressive activities (gliotoxin and sirodesmin PL), antimicrobial pulcherimin, anti-
bacterial albonoursin, brevianamide S or bicyclomycin, avrainvillamide [51], an-
ti-inflammatory agents, e.g., FR106969 and FR900452 [6], and many others, contain DKP 
core.  

3.4. Cyclo-Dipeptides Containing Proline: Towards Effective Therapies 
Currently, the growing attention in terms of cyclic dipeptides containing proline 

moiety is noticeable. Among the amino acids, proline is unique due to its specific 
structure and a lot of biological properties [52]. Both L and D-proline-based DKPs, 
widespread in nature, are an interesting sub-family of cyclo-dipeptides [53]. It could be 
mentioned that they are more predominant in heated and fermented foods than another 
type of DKPs, even at the level of ~90%. Pro-based DKPs are more easily generated in 
comparison to other DKPs and can be considered as significant components of flavor and 
bioactivity [28]. The structural complexity and bioactivity of them are highly impressive 
[54], inter alia in the stimulation of hematopoiesis, bacterial, viral, and fungal infections, 
food intake inhibition, control the activity of many receptors, as markers in the protein 
pyrolysates [55] etc. [28,36,56]. They have been potential as cytotoxic and anticancer 
agents, in treating renal inflammation [57] or cardio-metabolic disorders [58]. In the 
proline-containing cyclo-dipeptides, the 2,5-DKP a six-membered piperazine nucleus is 
fused to pyrrolidine ring, which leads to prominent bio-properties, such as extra rigid 
heterocyclic structure, and consequently, inter alia greater resistance to degradation by 
enzymes. Proline- and hydroxyproline-based DKPs can form novel essential quorum 
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sensing inhibitors, which are involved in intracellular communication [38]. They are also 
promising candidates in neurodegeneration prevention, e.g., in the treatment of 
Alzheimer disease [59], in flavor response [28], etc.  

General mechanism of DKP formation was decribed by Gomes et al. [60], while 
mechanism of proline-based DKPs formation is proposed by Otsuka et al. [9,28]. 

The diverse mechanisms of DKP bio-actions peptides as well as their targets have 
not been precisely known and understood yet. Nevertheless, the growing number of 
scientific reports in this topic are observable. As an example, neuroprotective action of 
diketopiperazine-(proline) based agents via different mechanisms are discussed by 
Cornachia et al. [34], while antibacterial, antifungal activities are considered by Zhao et 
al. [18]. They proved that presence of specific substituents and other modifications have 
relevance for endowing bio-action. Propositions of mechanisms via inter alia different 
inhibitions were summarized. 

3.5. Databases Survey 
The survey of the Research Collaboratory for Structural Bioinformatics Protein Data 

Bank (RCSB PDB) [61] revealed 42 bio-complexes related to DKP moiety, including 
proline-based one, signed by reference codes: 6SSG, 6SSF, 6SSE, 6SSD [62], 6F0B, 6F0C 
[63], 41CT, 41Q7, 41PS, 41PW, 41Q9 [64], 5YL4 [65], 6EZ3, 5MLQ, 5OCD, 5MLP [66], 4Q24 
[67], 4E0T, 4E0U [68], 3S7T, 3OQJ, 3OQH, 3OQI [69], 3OQV [70], 3NC6, 3NC7, 3NC3, 
3NC5 [71], 3N1A [72], 2X9Q [73], 3G5H, 3G5F [74], 1W1T, 1W1P, 1W1V, 1W1Y [75], 
6VXV, 6VZB, 6WOS, 6VZA [76], 1O6I [77]. The latter represents proline-based 
cyclic-dipeptide as chitinase inhibitor with chemotherapeutic potential against fungi, 
insects and protozoan/nematodal parasites—see Figure 1. In the previous cases, insight 
into the mechanism of action of biomacromolecules, especially a new class of small 
proteins, cyclodipeptide sythases, the molecular bases of the interactions with DKP ring 
towards the design of more effective diverse therapetical agents are discussed. 
Interestingly, only one complex, 1QZR [78], contains 2,6-DKP core.  

 
Figure 1. Bio-complex containing proline-based 2,5-DKP moiety, 1O6I.pdb [76]. 

On the other hand, the thorough analysis of the Cambridge Structure Database 
(CSD) [79,80] leads to 256 entries of 2,5-DKPs, 52 2,3-DKPs and 5 hits of 2,6-DKPs (see 
Scheme, and Supplementary Materials).  

It is noteworthy that CSD collects a huge structural knowledge on potential 
peptide-based ligands that can be applicable at the macromolecular level. 
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Small-molecular crystal structures, especially peptides and their derivatives, have a 
natural synergy with proteins. The rational design of modern effective ligands should be 
based not only on the 3D-structure of macromolecular target but also on potential 
ligands. Groom and Cole [81] said that the designers should try to “understand and exploit 
what small-molecule crystal structures tell them; it is just a matter of listening”.  

4. Conclusions and Future Prospects 
Taking all the above into account, we can conclude that DKPs in general, and pro-

line-based DKPs peptides especially, offer a highly functionalized natural arsenal and 
huge potential as biological tools for either better understanding bio-mechanisms or fu-
ture more effective therapies. These the simplest either natural or unnatural cy-
clo-peptides possessing economically beneficial biological properties are valuable mo-
lecular scaffolds in synthetic biology and protein engineering.  

Supplementary Materials: The following are available online at www.mdpi.com/2504-3900/83/1/ 
10/s1, Table S1: Crystal structures containing DKP moiety, retrieved from the CSD. 
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