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Abstract: As mathematical tools that can be commonly used for indexing analyses from different 
types of experimental patterns, we have recently developed (i) rules on forbidden hkl’s that can be 
used even when the space group and setting are unknown, (ii) an algorithm for error-stable Bravais 
lattice determination, (iii) generalization of the de Wolff figure of merit for powder diffraction (1D 
data) to data in higher-dimensions such as Kikuchi patterns (2D data) by electron backscatter 
diffraction (EBSD). In particular, (ii) could be used in a variety of situations, not just for indexing. It 
is explained how (i)–(iii) are used in the mathematical framework of our indexing algorithms. 
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1. Introduction 

Mathematical tools that can be commonly used in ab-initio indexing analyses are introduced 
herein. They were originally invented for powder diffraction [1], and subsequently applied to the 
indexing of Kikuchi bands in electron backscatter diffraction (EBSD) patterns [2]. “Ab-initio” means 
that the indexing is carried out without any prior information on the parameters and Bravais type of 
the unit cell.  

In the case of powder diffraction, the values of d-spacings (hence, lengths of reciprocal-lattice 
vectors) are obtained from positions of diffraction peaks. In the EBSD case, the orientations of 
reciprocal-lattice vectors are provided from the positions of Kikuchi bands. Our indexing algorithms 
for them use a common mathematical framework shown in Figure 1. First, the parameters of the 
primitive cell are determined, because (i) simple rules of systematic absence are available, if only 
basis vectors of a primitive lattice are considered. Subsequently, (ii) Bravais-type (and centering) 
determination is carried out. This process can be error-stable enough to deal with unit-cell parameters 
containing large errors due to zero-point shifts (powder [3]) or projection-center shifts (EBSD [4]). We 
also (iii) generalized the idea of the de Wolff figure of merit Mn [5], which has been the most efficient 
indicator in powder indexing. The generalized one presents similar properties for EBSD patterns [2]. 
The developed software is now available on the web: Powder auto-indexing: https://z-
code.kek.jp/zrg/ (CONOGRAPH). EBSD ab-initio indexing: https://osdn.net/projects/ebsd-
conograph/ 

In what follows, mainly the mathematics used for (ii) is discussed. Due to the limitation of the 
space, (i) and (iii) are only mentioned referring to published papers. The author believes that these 
theoretical results will be also useful in different analyses of crystallography. 
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Figure 1. Common mathematical framework of our indexing algorithms. 

1.1. Notation 

We summarize the notation and symbols used in the article. The inner product of the Euclidean 

space N  is denoted by u v⋅ , and the Euclidean norm u u⋅  is denoted by 2| |u . Any basis

1
, ,

N
v v¼  of an N-dimensional(N-D) lattice L is associated to a quadratic form: 

( ) 2

1 1 1
, , ,T

N N N
f x x x v x v S= + + = x x   (1) 

where ( )1
, ,

T

N
x x=x  is a vector, and S is the symmetric matrix with 

i j
v v⋅  in the (i,j)-entry. S 

is also the Gramian (or metric tensor [6]) of L. The stabilizer of S is defined as the following subgroup 

of ( )N
GL   (=the group of integral matrices with the determinant ±1): 

Stab( ) { ( ) : }. T

N
S g GL gSg S= Î =  (2)

The Gramians S1, S2 belong to the same Bravais type, if 
1 2

Stab( ),Stab( )S S  are conjugate in 

( )N
GL   (i.e., there exists ( )

N
GLs Î   such that 1

1 2
Stab( ) Stab( )S Ss s- = ) [7]. 

On the linear space 
N
  consisting of N-by-N symmetric matrices, an inner product is defined 

by : Trace( )S T ST· = , which makes 
N
  the metric space (the distance between S and T equals 

( ) ( )S T S T- · - ). The subset of 
N
  consisting of all the positive definite symmetric matrices is 

denoted by 
N

+ . The action of ( )N
GL   on 

N

+  is given by TS gSg . 
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The following is an overview of the lattice-basis reduction theory that discusses methods to 

provide the representatives for the orbits ( ) \
N N

GL +  . Namely, 
N

+Ì   is the subset that 

fulfills the following (i), (ii): 

(i) 
( )

[ ]
N

N
g GL

g+

Î

=


  ,  

(ii) 
1 2

[ ] [ ]g gÇ =Æ   for any 
1 2

( )
N

g g GL¹  Î  , where [ ] { : }.T

def
g gSg S= Î   

As the boundaries of   are prone to complications, overlaps of the boundary 

: in¶ =     ( in : set of interior points of ) are frequently allowed. In such a case,   
should satisfies (i) and the following (ii)’ and (iii)’: 

(ii)' 
1 2

[ ] [ ]in ing gÇ = Æ   for any 
1 2

( )
N

g g GL¹  Î  . 

(iii)' [ ]gÇ ¹ Æ   for only finitely many ( )
N

g GLÎ  . 

It is straightforward to see that any S  in in  satisfies ( )Stab { 1}S =  . Thus, all the S 

with non-triclinic Bravais types belong to the boundary of  . The following are the definitions of 

Venkov [8] and Delaunay reductions used in Section 3; for any fixed 
0 N
S +Î  , define 

0S
  by: 

0 0 0
: { : ( )  for any ( )}.T

S N N
S S S gSg S g GL+= Î · £ · Î    (3)

From the definition, 
0 0 0

) [ ] Stab(T

S S
g g S=  Î   holds. If S belongs to 

0S
 , S is 

Venkov-reduced with regard to 
0
.S  In particular, S is Selling-reduced, if S belongs to 

NA
 , where 

N
A  

is the symmetric matrix with 2 in the diagonal entries and 1 in the other entries. 

2 ,
( , )

1 .N

i j
A i j

i j

ìï =ï= íï ¹ïî
 (4)

2. Determination of the Primitive Lattice 

For some types of systematic absence (SA), the ratio of forbidden reflections is not small, but 
considerably high rate. The rules of SA stated in International Tables depend on the space group and 
setting of atomic positions. Simple rules of SA are useful for developing algorithms that generally 
work, if they are available. 

In order to obtain such simple rules, only basis vectors of the primitive lattice are considered 

herein. *L  is the reciprocal lattice of the crystal lattice L. * *

1 2
{ , }l l  is a primitive set, if it is a subset of 

some basis * * *

1 2 3
, ,l l l  of *L .  

Theorem 1. (Theorem 2, [9]) Regardless of the type of SA, there are infinitely many primitive sets * *

1 2
{ , }l l  of 

*L  such that none of * * * * * *

1 2 1 2 1 2
, , 2 ,2l l l l l l+ +  correspond to an extinct reflection due to the SA. 

Furthermore, there exist infinitely many 2D sublattices *

2
L  of *L  such that *

2
L  is expanded by such * *

1 2
,l l . 

Theorem 1 is not true, if * * * * * *

1 2 1 2 1 2
, , 2 ,2l l l l l l+ +  are replaced e.g., by * * * * * *

1 2 1 2 1 2
, , ,l l l l l l+ -  

(vectors in Ito’s formula [10]: 
2 2

* * * * * *
1 2 1 2 1

2

2

2

2 l l l l l l
æ ö÷ç ÷+ = +ç + -÷çè ø

). The theorem assures us that 
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some combinations of observed reflections correspond to * * * * * *

1 2 1 2 1 2
, , 2 ,2l l l l l l+ + , for some two 

vectors * *

1 2
,l l  contained in a basis of L*. In the powder case, the inner product * *

1 2
l l⋅  is computed by 

2 2 2 2 2 2
* * * * * * * * * *
1 2 1 2 1 2 1 2 1 2

2 4 4 2 4 4.l l l l l l l l l l
æ ö æ ö÷ ÷ç ç⋅ = + - - = + - -÷ ÷ç ç÷ ÷ç çè ø è ø

 (5)

Similarly, in the EBSD case, the direction * *l l of the reciprocal-lattice vector l are obtained 

from the coordinates of Kikuchi bands. The vector-length ratio * * * *

1 2 1 2
: : 2l l l l+  can be calculated 

from the directions of * * * *

1 1 2 2
,,l l l l ( )* * * *

1 2 1 2
2 2l l l l+ +  by solving the linear equation.  

( )( )* * * * * * * *
1 1 2 2 1 2 1 2

2 2 2 0l l l l l l l l- + + =x  (6)

In both Equations (5) and (6), the lengths (or directions) of * * * *

1 2 1 2
, , 2l l l l+  are sufficient to obtain 

the matrix (or the ratio of its components) in Equation (7). The remaining length (or direction) of 
* *

1 2
2l l+  can be used to remove unlikely solutions quickly. 

* * * *
1 1 1 2
* * * *

1 2 2 2

l l l l

l l l l

æ ö⋅ ⋅ ÷ç ÷ç ÷ç ÷ç ⋅ ⋅ ÷çè ø
 (7)

Theorem 2 is a 3D version of Theorem 1. 

Theorem 2. (Theorem 4 in [9]) Regardless of the type of SA, there are infinitely many bases * * *

1 2 3
, ,l l lá ñ  of *L  

such that the following hold: 

(a) the reflections of * * *

1 2 3
l l l + +  are not forbidden. 

(b) For both  2,  3i = , (i) none of the reflections of * * *

1 1
( 1)( )

i
ml m l l+ - - +  are forbidden for any 

integer m, or (ii) none of the reflections of * * *

1
( 1)( )

i i
ml m l l+ - -  are forbidden for any integer 

0m ³ . 

As a result, CONOGRAPH assigns * *

1 2
l l , * *

1 3
l l , * * *

1 2 3
l l l+ +  and either of *

1
l  or { }* *

2 3
,l l  

to various combinations of observed reflections. See [2] for the EBSD case. 

3. Bravais-Lattice Determination from Unit-Cell Parameters Containing Large Observation Errors 

3.1. Theoretical Background 

After the parameters of the primitive cell are obtained in the indexing process, it is necessary to 

convert them into parameters of the conventional cell. For a Gramian matrix obsS  extracted from 

observed data, how can one estimate the Bravais type of the unknown true value Ŝ  of obsS ? The 
error can be observational errors or rounding errors of floating-point numbers [11]. 

If obsS  is exact (i.e., ˆobsS S= ), the symmetry group of n-by-n obsS  can be determined e.g., 

by the method of [12]. However, if ˆobsS S¹ , no matter how close obsS  is to Ŝ , Stab( )obsg SÎ  

is not generally true even if ˆ1 Stab( )g S¹ Î . As a result, it is only possible to estimate likely ones 

as ˆStab( )S . For this reason, error-stable methods have been investigated in mathematical 
crystallography. 
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This determination can be done by step 1 and 2 in Table 1 by using a finite set H0 with the 
following property, where   is a domain that fulfills (i), (ii)’, (iii)’ in Section 1.1. 

H0: if ,obsS Î  then 
0

ˆ [ ].
g H

S g
Î

Î È   

Namely, H0 is a finite set containing all ( )N
g GLÎ   such that ( )1 1

T
obsg S g- - is nearly 

reduced (i.e., close to  ) for some obsS  that belongs to  ). 

Table 1. Outline of error-stable Bravais lattice determination methods 1. 

Prepared 
sets in codes 

1. For a domain   that fulfills (i), (ii)’, (iii)’ in Section 1.1, and its topological 

closure  , let 
0
G  be the finite set consisting of all ( )N

g GLÎ   with 

[ ] .gÇ ¹ Æ   For each finite group 
k
G  ( 1, ,k m= ¼ ) contained in 

0
G , prepare 

the set of linear subspace 
k
L  consisting of all 

n
S Î   with Stab( )

k
S GÉ . 

(Namely, 
1
, ,

m
L L are lattice characters [6].) 

2. Finite set H0 consisting of operations g for which [ ]g  may contain Ŝ  when 
obsS  is in .  

Input 
parameters Gramian obsS  (assume obsS Î   by exchanging the basis) 

Step 1 

For any 
0

g HÎ , if ( )1 1

2

T
obs obsS g S g- -=  is close to the domain   (i.e., nearly 

reduced), do the following; for each 
k
L  ( 1, ,k m= ¼ ), calculate 

k
S LÎ  closest to 

2

obsS  by projecting 
2

obsS  on Lk. If 
2

obsS and S are close to each other, store g, S in the 

array for the Bravais type of 
k
L . 

Step 2 Output the stored g, S after removing duplicates. 
1 The same calculation can be done, even if   is replaced by a union of finitely many [ ]g  such 

as the Venkov reduced domain 
0S

 . The only difference is that Lk may not be in the boundary of 

 . 

If   is the Niggli-reduced domain (Chap.9.2.2, [6]), G0 in Table 1 consists of 168 elements. The 
number m of lattice characters Lk is 42, after two triclinic cases are excluded (Table 9.2.5.1 [6]). From 
the definition, H0 must contain G0, hence, the computation time of the method of Table 1 is roughly 
estimated as |H0| × m ≥ 168 × 42 = 7056. This is a little time consuming if it is applied to multiple 
primitive cells generated in the indexing process. 

The methods of Andrews and Bernstein [14,15] are basically same as this Niggli-reduced case, 
although it is not assured that their heuristics can always generate all the necessary operations (in 
their method, 25 operations in [16] are used to generate the elements of H0).  

The use of the Delaunay reduced domain was proposed Burzlaff and Zimmermann [17,18]. This 
reduces the number of lattice characters from 44 to 30. However, H0 is set to {1} in their method, so it 
can basically handle only the exact case. 

Thus, the following are the problems, in order to develop a faster and more reliable Bravais-
lattice determination method. 

Q1: Which reduction method minimizes the computation time for Table 1? 

Q2: Under which assumption on the error size of obsS  is it possible to output all the S with 
obsS S»  and ˆStab( ) Stab( )S S= ? 



Proceedings 2020, 62, 8 6 of 8 

 

Our idea for Q1 was to use the following Venkov-reduced domain 
0S

  as   in Table 1. 

・ S0 = I3 (3 × 3 identity matrix). 
・ S0 = A3 in Equation (4). 

By the choice of S0, 
0S

  include non-triclinic Lk in the interior distant from its boundary 
0S

¶ . 

If Ŝ  is in Lk and 
0S

 , ˆobsS S»  is also in the interior of 
0
.

S
  As a result, Ŝ  and obsS  are both 

reduced with regard to the same basis. In this case, it is not necessary to consider the nearly-reduced 
case (namely, H0 may be set to {1}). 

Based on this idea, the author proved that error-stable determination is possible under the 

following condition C on the error size of obsS  [19] (This is an answer to Q2): 

C: for any 3-by-3 symmetric matrix T and 0 n¹ Îv  , if ˆ ˆ• v v 2TS T S≥ , 0obsS T >  also 
holds. 

Namely, C excludes only the case: ˆ2 0obsTS S T S T£ » £v v   (If L is the crystal lattice 

with the Gramian Ŝ , the half of the squared-length of some non-zero vector in L is observed as a 

non-positive value). Hence, C assumes that the error of obsS  is not extraordinary large. Under this 
condition, the following is proved: 

Theorem 3. (Theorems 1–4 in [19]) For a given 
0

obs

S
S Î  , assume that Ŝ  belongs to the Bravais type B, 

in addition to C. In this case, Ŝ  belongs to the VB, a union of finitely many linear subspaces in Table 2. 

Table 2. B, S0, VB in Theorem 1. 

Bravais Type B S0 H0 = {1}? The Number of Linear Subspaces VB 
(The Number When H0 = {1}) 

Primitive monoclinic 
3
I  Yes 3 (3) … Table 3 in [19] 

Face-centered orthorhombic 
3
A  Yes 3 (3) … Table 4 in [19] 

Body-centered orthorhombic 1 
3
A  Yes      … Table 5 in [19] 

Rhombohedral 
3
A  conditionally yes 2 64 (16) … Table 6 in [19] 

Base-centered monoclinic 
3
A  conditionally yes 2 69 (21) … Table 8 in [19] 

1 As for the face-centered case, our method simply uses the fact that obsS  has the face-centered 

symmetry if and only if the inverse of obsS  has the body-centered symmetry. 2 If H0 = {1}, the number 

of steps can be reduced to the same number as the case when obsS  is exact. H0 = {1} also holds even for 
rhombohedral and base-centered case, by adding another condition to those of Theorem 3 [19]. 

After the centering types of the unit cell are classified to those in Table 2, sit is straightforward 
to classify them into higher-symmetric Bravais types. 

Therefore, contrary to our intuition, regardless of the magnitude of the error in obsS , it is 

possible to output S with obsS S»  and ˆStab( ) Stab( )S S=  generally, without increasing the 

computation time at all. However, the error of obsS  affects the distance between the output S and 

its true value .̂S  
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3.2. Computation Results 

The implemented program is used in our indexing software [1,2]. In [2], indexing analysis was 
carried out for EBSD patterns with large projection-center shifts as follows (z: the camera length). 

, , 0, 0.005, 0.01, 0.02
x y z

z z z

D D D
=     

(10)

Nevertheless, Bravais-lattice determination failed only for a small number of cases among them 
(see Tables and Figure in [2] for more details). 

4. Discussion 

The theorems presented in Sections 2 and 3 hold true for any symmetry types the crystal 
structures can have. Our error-stable Bravais-type determination is mathematically guaranteed, even 
for parameters containing large error. Although the number of operations |H0| × m ≥ 168 × 42 = 7056 
cannot be decreased as long as the Niggli reduction is used, it can be reduced from 7056 to 154 (58, 
conditionally) by using the Venkov reduction for I3 and A3. However, other reduction methods (or S0) 
might be able to provide a faster method. No studies have been reported for lattices of dimensions more 
than 3. 

As ab-initio indexing software for powder diffraction patterns, ITO [21,22], TREOR [23], and 
DICVOL [24] are well known. EBSD ab-initio indexing have been also studied in [25–27], although 
more accurate methods for band extraction and projection center identification are also needed for 
this indexing analysis. 

From a theoretical point of view, the two indexing analyses have much in common. This 
suggests that updating the mathematical crystallography is effective in obtaining reliable and 
efficient analytical methods in a short time. 
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