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Abstract: Many liquid crystal devices are driven by electric fields. Ions, typically present in 
molecular liquid crystal materials in minute quantities, can compromise the performance of 
mesogenic materials (in the simplest case, through a well-known screening effect). Even highly 
purified liquid crystals can be contaminated with ions during their production and handling. 
Therefore, measurements of the concentration of ions have become an important part of the material 
characterization of liquid crystals. Interestingly, even a brief analysis of existing publications can 
reveal a quite broad variability of the values of the concentration of ions measured by different 
research groups for the same liquid crystals. This reflects the complexity of ion generation 
mechanisms in liquid crystal materials and their dependence on numerous factors. In this paper, an 
overview of ion generation mechanisms in liquid crystals and modern ion measurement techniques 
is followed by the discussion of frequently overlooked factors affecting the measured values of the 
ion concentration. Ion-generating and ion-capturing properties of the alignment layers (or 
substrates) of liquid crystal cells are considered and used to evaluate a true concentration of ions in 
liquid crystals. In addition, practical recommendations aimed at improving the measurements of 
the ion density in liquid crystals are also discussed. 
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1. Introduction: Ions in Liquid Crystals 

Molecular liquid crystals are tunable anisotropic materials. The orientation of mesogenic 
molecules making up liquid crystals can be controlled by external electric fields. As a result, their 
physical properties can be tuned in a desirable way. This fact enabled numerous applications of liquid 
crystals including ubiquitous liquid crystal displays (LCD) [1] and liquid crystal on silicon (LCoS) 
displays for virtual and augmented reality [2], tunable components of biomedical equipment (lenses, 
filters for hyperspectral imaging) [3,4], polarization and phase control devices (waveplates and 
retarders) [5,6], diffractive optical elements [7], spatial light modulators and beam-steering devices 
[8], light shutters [9,10], smart windows [11–13], various tunable signal processing devices operating 
at microwave and millimeter wave frequencies [14,15], and countless others. 

Ions normally present in liquid crystals in minute quantities can alter the performance of liquid 
crystal devices (in the simplest case, through a well-known screening effect). In the case of displays, 
ions in liquid crystals can result in such undesirable side effects as image sticking, image flickering, 
reduced voltage holding ratio, and overall slow response [16]. Therefore, the concentration of ions 
should be kept as small as possible to ensure an uncompromised performance of the aforementioned 
liquid crystal devices. This can be achieved by synthesizing high resistivity liquid crystals and 
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applying physical and chemical methods for their purification [17]. There are also some applications 
relying on ions in liquid crystals (light shutters and smart windows [9–13,18]). Such applications 
would benefit from the development of new reliable techniques and materials enriching thermotropic 
liquid crystals with ions. As a result, an understanding of possible sources of ions and mechanisms 
of ion generation in liquid crystals is of utmost importance, regardless of the type of their application. 
Indeed, ions in liquid crystals have been studied since the early 1960s [16,19]. Measuring the 
concentration of ions in liquid crystal materials has become a standard component of their electrical 
characterization [20]. 

Even though numerous experimental methods were developed to measure the concentration of 
ions in liquid crystals, an analysis of existing publications reveals a broad range of the measured 
values of the concentration of ions in the same liquid crystals. Ions in liquid crystals can originate 
from different sources [21]. Their low concentration and high sensitivity to external (and very often 
uncontrolled) factors make an apparently straightforward electrical measurement a non-trivial and a 
tricky one. Existing experimental results unambiguously indicate that the measured values of the 
concentration of ions in liquid crystals depend on the cell thickness [22–24]. Unfortunately, the 
number of the reported experimental datapoints is typically very limited. As a result, the  
dependence of the concentration of ions on the cell thickness (monotonous, non-monotonous, etc.) 
and the physical origin of the observed behavior is often not discussed. Interestingly, as will be shown 
in this conference paper, a recently developed model of ion-generating and ion-capturing substrates 
of a liquid crystal cell [25–27] can provide a reasonable quantitative explanation of the observed 
dependence of the concentration of ions on the cell thickness. Moreover, it can be used to improve 
existing experimental procedures aimed at evaluating the concentration of ions in liquid crystals. 

2. Generation of Ions in Liquid Crystals 

An electrical characterization of liquid crystals is performed using sandwich-like cells filled with 
mesogenic materials [20]. Ions can be generated in the bulk of liquid crystals and on the surface of 
the liquid crystal cell [21]. Both sources of ion generation in liquid crystals are very important and 
should be considered. Possible sources of ions in molecular liquid crystals include: (i) the dissociation 
of neutral molecules present in the bulk of liquid crystals [28]; (ii) chemical leftovers (inorganic ionic 
impurities as a result of the chemical synthesis) [29,30]; (iii) decomposition of liquid crystal materials 
because of aging [31]; (iv) ions generated by means of ionizing radiation (UV light [32,33], gamma 
radiation [34,35]), through electro-chemical reactions [36], and by high electric fields [37–39]; (vi) ions 
introduced intentionally by doping them with ionic species [40]; (vi) nanomaterials dispersed in 
liquid crystals [41–43]; (vii) ionic contaminants can be generated in the glue used to seal the liquid 
crystal cell [44]; (viii) ions due to contaminated alignment layers of the cell [45–48]. 

3. Measuring Ions in Liquid Crystals 

Ions in liquid crystals result in their finite DC electrical conductivity ߣ஽஼ . The electrical 
conductivity ߣ஽஼ of liquid crystals can be written as (1): ߣ஽஼ = ෍ ௜݊௜௜ߤ௜ݍ  (1) 

where ݍ௜  is the charge of the ݅ -th ion, ߤ௜  is the mobility of the ݅ -th ion, and ݊௜  is its volume 
concentration. Because liquid crystals are globally electrically neutral, the total charge of negative 
ions is compensated by the total charge of positive ions. By limiting our consideration to the case of 
monovalent ions, the electrical conductivity can be rewritten as (2) ߣ஽஼ = ାߤ)|݁| + ିߤ )݊ =  (2) ݊ߤ|݁|

where ߤ = ାߤ + ିߤ , |݁| = 1.6 × 10ିଵଽܥ. 
The electrical conductivity, the ion mobility, and the concentration of ions are basic electrical 

parameters needed to describe an ion transport in liquid crystals quantitatively [16]. Their values can 
be found experimentally by using methods of dielectric spectroscopy [23,49–51] and transient current 
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measurements [16,20,52,53]. In some cases, electrical measurements can also be combined with 
electro-optical experiments [54]. 

Measuring basic parameters of ions in liquid crystals is a very nontrivial task. Consider the case 
of the concentration of ions in liquid crystals. According to Equation (1), the concentration of ions can 
be found measuring their DC electrical conductivity ߣ஽஼  and effective mobility ߤ. By measuring 
complex impedance spectra ܼ = ܼᇱ − ܼ݅ᇱᇱ, complex dielectric permittivity spectra ߝ = ᇱߝ −  ᇱᇱ canߝ݅
be evaluated [51,55]. The obtained spectra of the complex dielectric permittivity can be used to 
compute complex electrical conductivity ߣ = ᇱߣ + ߣ :ᇱᇱ by means of a standard Equation (3)ߣ݅ =  (3) ߝ଴ߝ݂ߨ2݅

where f is a frequency, and ߝ଴ = 8.854 × 10ିଵଶ F/m. Finally, the obtained spectra of the complex 
electrical conductivity should be used to extract values of the DC electrical conductivity ߣ஽஼ 
according to (4): ߣᇱ = ஽஼ߣ + ′஺஼ߣ  (4) 

where ߣ஺஼′  is a real part of an alternating current (AC) electrical conductivity. The extracted value of 
the DC electrical conductivity is an effective quantity characterizing the filled liquid crystal cell used 
in measurements rather than a liquid crystal material [51]. Typically, a standard measuring cell is 
made out of two parallel substrates separated by a distance d. Each substrate has a multi-layer 
structure including a thin conducting layer (it is typically made of an indium tin oxide (ITO)) to apply 
the electric field, and an alignment layer made of polymers to align liquid crystal molecules. An actual 
magnitude of the DC electrical conductivity of liquid crystals can be deduced by considering an 
equivalent electric circuit suitable for the liquid crystal cell under test [51]. If the ion mobility is 
known, the concentration of ions can be computed by applying Equation (2). The ion mobility can be 
evaluated by measuring a transient current in a liquid crystal cell driven by low-frequency square 
waves with different DC offsets [20,52]. 

Alternatively, the concentration of ions and their diffusion coefficients D (ߤ~ܦ) can be estimated 
by fitting an appropriate model to the measured impedance spectra, as explained in recent 
publications [23,49,50]. 

It should be noted that transient current measurements can also provide a valuable information 
about the concentration of ions in liquid crystals [16,20,52,53]. In this case, the measured transient 
current ݅(ݐ)  can be decomposed in the capacitive current ݅௖௔௣ , conduction current ݅௖ , and 
polarization switching current ݅௣ (if liquid crystals can exhibit a ferroelectric response), according to 
(ݐ)݅ :(5) = ݅௖௔௣(ݐ) + ݅௖ (ݐ) + ݅௣(ݐ) (5) 

where t is time. 
By extracting the conduction current (typically it can be achieved by varying the time duration 

of the applied electric pulses), the concentration of ions can be estimated (6): ݊ = ܣ݀|݁|1 න ݅௖(ݐ)்݀ݐ/ଶ
଴  (6) 

where A is the area of electrodes of the liquid crystal cell, d is its thickness, and T/2 is the integration 
interval. Under certain conditions, the conduction current can exhibit a maximum (often called an 
“ion bump”). The time position of this maximum ttrans can be used to evaluate the effective mobility 
of ions according to (7): ߤ = ݀ଶܸݐ௧௥௔௡௦ (7) 

where V is the magnitude of the applied voltage [16,20,52,53]. 
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4. Overlooked Factors, Practical Suggestions, and Conclusions 

The provided brief description of existing experimental techniques shows that finding the 
concentration of ions in liquid crystals is not a simple and straightforward task. The presence of 
alignment layers makes the evaluation of the ion density in liquid crystals an even more challenging 
problem [23,49,51]. The development of models focused on computing the concentration of ions is 
highly desirable. Even though existing models can account for the presence of alignment layers 
[23,49,51], there are important yet overlooked factors that need to be considered. Experimental results 
reported by independent research groups indicate that substrates of the liquid crystal cell can either 
capture ions or enrich liquid crystals with ions [44–49]. These ion-capturing and ion-releasing 
processes depend on the cell thickness, and, if not considered, can result in an incorrect evaluation of 
the concentration of ions in liquid crystals. In the majority of the reported cases only one aspect, either 
ion trapping or ion generation by means of substrates of the liquid crystals cell, is considered. 
Interestingly, a simple model can account for both ion generating and ion capturing properties of 
substrates of liquid crystal cells [25–27,48]. This model is briefly described in this section. 

Consider a symmetric sandwich-like cell. In general, alignment layers (or just bare substrates) of 
this sandwich-like cell can be contaminated with ions prior to filling the cell with liquid crystals. This 
ionic contamination can be quantified by means of the contamination factor ߥௌ, defined as a ratio of 
the number of sites occupied by ionic contaminants ௜ܰ to the total number of all surface sites ௌܰ, ߥௌ = ௜ܰ ௌܰൗ , where ௌܰ =  ௌ is the surface density ofߪ ௌ is the surface area of substrates, andܣ ,ௌߪௌܣ
these sites [25–27,48]. Once an empty cell is filled with liquid crystals, a fraction of ionic contaminants 
can leave the surface of alignment layers, thus enriching liquid crystals with ions. At the same time, 
ions inherently present in liquid crystals can be captured by the surface of alignment layers. The 
following rate equation can be used to describe the afore-mentioned ionic processes: ݀ ௝݊݀ݐ = −݇ௌ௝௔± ௝݊ ௌ௝݀ߪ ൫1 − Θௌଵ± − Θௌଶ± ൯ + ݇ௌ௝ௗ± ௌ௝݀ߪ Θௌ௝±  (8) 

where the subscript ݆ stands for the dominant type of fully ionized species-contaminants in liquid 
crystals (݆ = 1,2); ௌ௝ߪ   is the surface density of all surface sites of the alignment layer; ௝݊  is the 
concentration (volume density) of mobile ions of the j-th type (݆ = 1,2); ݀ is the thickness of the 
cell; ݇ௌ௝௔± is the effective rate constant of the ion capturing process (in the simplest case, it can be 
physical adsorption) of ௝݊ା and ௝݊ି  ions on the surface of alignment layers, and ݇ௌ௝ௗ± is the effective 
rate constant of the ion releasing process (in the simplest case, the desorption) of ௝݊ା and ௝݊ି  ions 
from the alignment layer; and ߆ௌ௝±  is the fractional surface coverage of alignment layers defined for 
the j-th ions [25–27,48]. The conservation law applied to the total number of ions of the j-th type can 
be written as Equation (9): ݊଴௝ + ௌ௝݀ߪ ௌ௝ߥ = ௝݊ + ௌ௝݀ߪ ±ௌ௝߆  (9) 

where ߥௌ௝ is the already mentioned contamination factor of alignment layers. 
The applicability of Equations (8) and (9) to describe ion capturing and ion generating processes 

in liquid crystals was demonstrated in several recent papers [25–27,48]. A physical reason for the 
applicability of Equations (8) and (9) is a relatively low value of a typical surface coverage, ߆ௌ << 1, 
resulting in negligibly small electrostatic interactions between ions on the surface of alignment layers. 
This energy can be estimated as ௘మସగఌఌబඥ(௵ೄఙೄ)షభ ≈ 0.1݇ܶ  (the following typical values of the 

parameters are used: |݁| = 1.6 × 10ିଵଽܥ ߝ , = ௌ߆,6 = 10ିସ ௌߪ , = 10ଵ଼݉ିଶ ଴ߝ , = 8.854 × 10ିଵଶ ܨ ݉ൗ , ܶ = ݇ ,ܭ293 = 1.38 × 10ିଶଷ ܬ ൗܭ ). 
Once Equations (8)-(9) are solved for ௝݊, (݆ = 1,2), the total concentration of fully ionized species ݊ can be calculated according to Equation (10): ݊ = ݊ଵ + ݊ଶ (10) 
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Some interesting results are shown in Figure 1, where the total concentration of ions is plotted 
as a function of the cell thickness. 

 
Figure 1. The total concentration of mobile ions, n, as a function of the cell gap calculated at several 
values of the contamination factor ߥௌଶ. (a) Monotonous increase (solid and dashed curves) followed 
by a non-monotonous dependence with a minimum (dotted and dashed-dotted curves). (b) 
Monotonous decrease (solid and dashed curves) followed by a non-monotonous dependence with a 
minimum (dotted and dashed-dotted curves). (c) Monotonous increase (solid curve) followed by a 
non-monotonous dependence with a maximum (other curves). (d) Monotonous decrease (all curves 
except double-dotted-dashed curve). Additional information can be found in paper [26]. 

There are several important features worth mentioning. The first obvious fact is a strong 
dependence of the concentration of ions on the cell thickness. In general, this dependence can vary 
dramatically. Depending on the interplay between parameters characterizing ion generating and ion 
capturing processes, the dependence of the total concentration of ions on the cell thickness can be 
either non-monotonous or monotonous (Figure 1). 

Figure 1 leads to an important practical implication: experimental measurements of the 
concentration of ions should be performed by using several identical cells and varying their thickness. 
Measurements performed at a single value of cell thickness do not provide enough information about 
ionic processes in such systems. The results shown in Figure 1 were obtained assuming a steady state. 
Equations (8) and (9) can also be applied to describe the kinetics of ionic processes in liquid crystal 
cells as was shown in recent papers [27,48]. 

It should be noted that the model used to model the dependence of the total concentration of 
ions on the cell thickness is only a reasonable approximation. Nevertheless, it can capture basic 
features of this dependence, and, therefore, can also guide experimental studies aimed at uncovering 
ionic phenomena in liquid crystals. According to Figure 1, the dependence of the concentration of 
ions on the cell thickness is very strong in the regime of thin cells. This fact should be considered 
during the selection of liquid crystal materials suitable for emerging applications utilizing very thin 
layers of mesogenic materials. At the same time, Figure 1 also points to a useful practical suggestion: 
measurements of the concentration of ions of relatively thick layers of liquid crystals can reveal a 
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“true” concentration of ions in liquid crystals—namely, the ion density not affected by ion capturing 
and ion generating processes caused by the alignment layers of the cell. 
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