#
Bayesian Identification of Dynamical Systems^{ †}

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Foundations

## 3. Application

## 4. Results

## 5. Conclusions

## Funding

## Conflicts of Interest

## References

- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci.
**2016**, 113, 3932–3937. [Google Scholar] [CrossRef] [PubMed] - Mangan, N.M.; Kutz, J.N.; Brunton, S.L.; Proctor, J.L. Model selection for dynamical systems via sparse regression and information criteria. Roy. Soc. Proc. A
**2017**, 473, 20170009. [Google Scholar] [CrossRef] [PubMed] - Rudy, S.H.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Data-driven discovery of partial differential equations. Sci. Adv.
**2017**, 3, e1602614. [Google Scholar] [CrossRef] [PubMed] - Tikhonov, A.N. Solution of incorrectly formulated problems and the regularization method. Dokl. Akad. Nauk SSSR
**1963**, 151, 501–504. (In Russian) [Google Scholar] - Santosa, F.; Symes, W.W. Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comp.
**1986**, 7, 1307–1330. [Google Scholar] [CrossRef] - Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B
**1996**, 58, 267–288. [Google Scholar] [CrossRef] - Zhang, L.; Schaeffer, H. On the convergence of the SINDy algorithm. arXiv
**2018**, arXiv:1805.06445v1. [Google Scholar] [CrossRef] - Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kaiser, E.; Kutz, J.N. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE
**2016**, 11, e0150171. [Google Scholar] [CrossRef] [PubMed] - Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kaiser, E.; Kutz, J.N. Chaos as an intermittently forced linear system. Nat. Comm.
**2017**, 8, 19. [Google Scholar] [CrossRef] [PubMed] - Taira, K.; Brunton, S.L.; Dawson, S.T.M.; Rowley, C.W.; Colonius, T.; McKeon, B.J.; Schmidt, O.T.; Gordeyev, S.; Theofilis, V.; Ukeiley, L.S. Modal analysis of fluid flows: An overview. AIAA J.
**2017**, 55, 4013–4041. [Google Scholar] [CrossRef] - Mohammad-Djafari, A. Inverse problems in signal and image processing and Bayesian inference framework: From basic to advanced Bayesian computation. In Proceedings of the Scube Seminar, L2S, CentraleSupelec, At Gif-sur-Yvette, France., 27 March 2015. [Google Scholar]
- Mohammad-Djafari, A. Approximate Bayesian computation for big data. In Proceedings of the Tutorial at MaxEnt 2016, Ghent, Belgium, 10–15 July 2016. [Google Scholar]
- Teckentrup, A. Introduction to the Bayesian approach to inverse problems. In Proceedings of the MaxEnt 2018, Alan Turing Institute, UK, 6 July 2018. [Google Scholar]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci.
**1963**, 20, 130–141. [Google Scholar] [CrossRef]

**Figure 1.**Calculated noisy data for the Lorenz system: (

**a**) parameters $\mathit{X}$, and (

**b**) derivatives $\dot{\mathit{X}}$.

**Figure 2.**Output of SINDy regularization: (

**a**) differences in predicted parameters ${\xi}_{ij}-{\widehat{\xi}}_{ij}$, and (

**b**) comparison of original and predicted time series $\mathit{X}$.

**Figure 3.**Output of JMAP regularization: (

**a**) differences in predicted parameters ${\xi}_{ij}-{\widehat{\xi}}_{ij}$ (the error bars indicate inferred standard deviations), and (

**b**) comparison of original and predicted time series $\mathit{X}$

**Figure 4.**Output of VBA regularization: (

**a**) differences in predicted parameters ${\xi}_{ij}-{\widehat{\xi}}_{ij}$ (the error bars indicate inferred standard deviations), and (

**b**) comparison of original and predicted time series $\mathit{X}$.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Niven, R.K.; Mohammad-Djafari, A.; Cordier, L.; Abel, M.; Quade, M.
Bayesian Identification of Dynamical Systems. *Proceedings* **2019**, *33*, 33.
https://doi.org/10.3390/proceedings2019033033

**AMA Style**

Niven RK, Mohammad-Djafari A, Cordier L, Abel M, Quade M.
Bayesian Identification of Dynamical Systems. *Proceedings*. 2019; 33(1):33.
https://doi.org/10.3390/proceedings2019033033

**Chicago/Turabian Style**

Niven, Robert K., Ali Mohammad-Djafari, Laurent Cordier, Markus Abel, and Markus Quade.
2019. "Bayesian Identification of Dynamical Systems" *Proceedings* 33, no. 1: 33.
https://doi.org/10.3390/proceedings2019033033