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Abstract: Timing requirements are present in many current context-aware and ambient intelligent 
applications. These kinds of applications usually demand a timing response according to needs 
dealing with context changes and user interactions. The current work introduces an approach that 
combines knowledge-driven and data-driven methods to check these requirements in the area of 
human activity recognition. Such recognition is traditionally based on machine learning 
classification algorithms. Since these algorithms are highly time consuming, it is necessary to choose 
alternative approaches when timing requirements are tight. In this case, the main idea consists of 
taking advantage of semantic ontology models that allow maintaining a level of accuracy during 
the recognition process while achieving the required response times. The experiments performed 
and their results in terms of checking such timing requirements along with keeping acceptable 
recognition levels confirm this idea as shown in the final section of the work.  
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1. Introduction 

Context-aware and ambient intelligent environments are increasingly in our daily life. These 
kinds of environments and related applications usually introduce timing requirements associated 
with the need to provide a suitable response when context changes and user interactions occur. This 
is particularly true in the case of human activity recognition (HAR) tasks which require sensing and 
detecting specific user states in short periods of time. The current work introduces an approach to 
check these requirements in the HAR area. Such an approach is focused on the possibilities offered 
by wearable devices (smartwatches, smart-bands or mobile phones) to gather multiple sensor data 
and process them [1,2]. However, these devices commonly provide very different computational 
capabilities, with low performance in some cases, and they can concurrently run a number of 
applications overloading their processing power (e.g., background apps). This makes it difficult to 
obtain timely recognition results when user activities are quickly changing. Moreover, classification 
algorithms involved in the processing of HAR tasks are commonly based on machine learning (ML) 
methods that require a great deal of computational cost as they are highly time-consuming. 
Therefore, a careful process of balancing timing requirements while keeping acceptable recognition 
levels has to be performed in this HAR context. There are multiple initiatives related to the 
recognition of activities based on the sensor values obtained from mobile and wearable devices, 
which are reported in reviews and surveys [3–5]. Mobile phones or smartwatches provide a rich set 
of sensing capabilities coming from embedded sensors such as accelerometers, compasses, 
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gyroscopes, GPS, microphones, or cameras. In particular, accelerometer data has been used to classify 
several basic real-time human movements [6,7]. These proposals offer accurate results in recognition 
tasks, but they are not directly concerned with the need to check timing requirements when 
monitoring human activities in this context. Then, HAR systems have to be designed to address their 
suitable recognition as well as fulfilling specific temporal constraints. Lara and Labrador [8] proposed 
a mobile platform for real-time HAR that evaluated the response times of recognition tasks. 
MobiRAR [9] is another real-time human activity recognition system based on using mobile devices. 
Predictions using wearable sensor data were also analyzed to check their latency times [10]. 
Approaches used for sensor-based activity recognition have been traditionally divided into two main 
categories [11]: those methods driven by data which are based on ML techniques or other 
mechanisms that introduce a prior semantic domain knowledge to carry out such recognition. Some 
authors such as Riboni et al. [12] stated that knowledge-driven approaches were weak dealing with 
temporal information so alternative solutions such as using dynamic sensor event segmentation 
techniques [13] or analyzing sub-temporal dataset windows could be addressed [14]. Moreover, there 
are also hybrid proposals addressed to combine both types of approaches in order to obtain a balance 
between dealing with temporal constraints and classification accuracy. The current work is based on 
a framework addressed to build smaller training models which can be applied in statistical 
classification algorithms and also take advantage of ontology models that enable accurate recognition 
levels while adjusting their timing responses.  

The remainder of the document is structured as follows. Section 2 refers to works dealing with 
the use of classification algorithms, which combine data-driven methods with ontology models, with 
the purpose of improving user activity recognition. Section 3 describes the approach proposed in the 
current work beginning with the basic concepts that underlie it and providing an overview about its 
global architecture. Moreover, in Section 4, an example case study is introduced to show the approach 
application, addressing several samples of scenarios in which HAR timing and accuracy 
requirements can be addressed. These scenarios are tested in Section 5, by measuring response times 
and recognition levels. Finally, some conclusions and further work are discussed.  

2. Related Work 

This section is focused on searching for studies in which sensor-based HAR methods combine 
different perspectives such as sensor data processing, knowledge-driven models or temporal 
checking mechanisms. Such references are based on hybrid approaches that try to take advantage of 
the capabilities available in each perspective. COSAR [15] was a good example of a hybrid reasoning 
framework for context-aware activity recognition to ontologically refine the statistical predictions. 
Chen et al. [16] also presented an ontology-based hybrid approach to model user activities learning 
from data about specific user profiles. A reverse approach was proposed by Azkune et al. [17] to 
extend knowledge-driven activity models through data-driven techniques. 

One of the main problems in these hybrid approaches is time management and how they can 
deal with timing requirements in activity recognition areas. Riboni et al. [18] proposed the 
unsupervised recognition of interleaved activities by using time-aware inference rules and 
considering temporal constraints. The approach of Salguero et al. [19] was focused on a time-based 
pre-segmentation process that, dynamically, defined window sizes, and the Knowledge-based 
Collaborative Active Learning proposal [20] addressed the possibility of considering the 
segmentation of the flows of sensor events in real-time. OSCAR [21] is another hybrid framework of 
knowledge-driven techniques based on ontological constructs and temporal formalisms by means of 
segmentation processes, complemented with data-driven algorithms for the recognition of parallel 
and interleaved activities. The semantics-based approach to sensor data segmentation in real-time 
proposed by Triboan et al. [22] is also a good example of combining several perspectives in activity 
recognition along with the proposal by Liu et al. [23] about timely daily activity recognition from 
incomplete streams of sensor events. Therefore, there are several proposals focused on combining 
different approaches to improve the efficiency of traditional classification algorithms with the 
support of semantic models and also dealing with checking timing requirements in the HAR area.  



Proceedings 2019, 31, 15 3 of 12 

 

3. Approach 

3.1. Approach Fundamentals  

The current approach addresses the processing of mobile sensor information in order to 
recognize user activities and their associated states in specific HAR domains. So, it is necessary to 
define a set of basic concepts that can be used through the different stages or classification processes 
that characterize human activity recognition. The first concept of interest is the so-called user state, 
which represents those features that can be associated with the actions or physical activities 
performed by individuals. Table 1 shows a list of common user states along with a short description 
and a label that identifies every state. These user states can represent static features (e.g., sitting or 
lying) or dynamic actions such as running or going upstairs. State transitions are shown in Figure 1 
as a graph displaying the potential connection among the considered user states.  

Table 1. User states overview. 

Name Description Label 
Sitting The body rests supported by some kind of furniture  St 

Standing Upright position on the feet Sd 
Walking Move along on feet Wl 

Lying Horizontal or flat position, as on a bed or the ground Ly 
Running Go steadily by springing steps so that both feet leave the ground in each step Rn 
Upstairs Move to a higher floor Us 

Downstairs Move to a lower floor Ds 

 

Figure 1. Transition states graph. 

Then, activity events are used to represent any kind of circumstance that is occurring at a given 
time in the context of human activities. In the current approach, these events are usually related to 
user states (ai) which are part of a set of activities labeled as A:  ܣ = ሼܽଵ, 	ܽଶ, … , ܽ௡ሽ  

and they can be recognized as the activity progresses or even be attached to transitions between them. 
Moreover, a special kind of activity event can consist of the action of a user who selects which type 
of state is expected or triggered by him. In addition, T represents the timestamps corresponding to 
the set of monitored activities A: ܶ = ሼݐଵ, ,ଶݐ	 … ,   ,௡ሽݐ

An instance of an activity event is defined as follows, linking each user state with a timestamp ti: ݁௜ =൏ ܽ௜, ௜ݐ	 ൐  

Activity recognition systems involve several types of sensors to obtain streams of data that can 
be used in order to classify user’s activities and determine their associated user states. In this sense, 
the sensor stream may be segmented into several data windows to improve their processing. Such 
windows can be static or have dynamic sizes (measured in time units) and they may also overlap 
sensor samples when time is passing or “slides”. This concept of a sliding window is widely 
employed in HAR processes, and several ranges of window sizes can be used. Windowing techniques 
have shown their effectiveness for the recognition of static as well as dynamic human activities [24]. 
In the current work, a time-based windowing method is used to segment the data gathered from an 
accelerometer sensor into time windows. This method merges sensor data that are collected during a 
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specific time interval. Instead of defining a fixed length of static windows, it is possible to 
dynamically adjust the window size. Figure 2 shows a schema of such a windowing mechanism. 

 
Figure 2. Overview of segmentation stages. 

Another basic concept in the current approach is the time similarity that measures the distance 
among sensor samples. This measurement simT is based on computing intervals bounded by 
timestamps associated with the occurrence of such samples and using the next function: simT	(ݏ௜,	 	௦ೕݐ))	−	1	=	(ݏ −	  (s)) (1)	size	௦೔)/windowݐ

where ݐ௦೔	 and ݐ௦ೕ are the associated timestamps of the sensed sample ݏ௜  and ݏ௝, respectively. In 
order to support the process of inferring user states, it is possible to assign weights to the occurrence 
of each semantic activity inference. This mechanism focuses on the majority of inferences to 
determine the optimal activity label for a specific user state. In this case, the relative frequency for the 
semantic activity inferences j ∈ ܻ = {set of semantic activity inferences} is defined as follows: ݕܿ݊݁ݑݍ݁ݎ݂_ܣ = Ѳ௝/|ܻ|	 (2) 

where |ܻ| comprises the total amount of semantic activity inferences till an instant t and Ѳ௝ is the 
number of times the semantic activity inference j has appeared during the interval in which ܻ is 
computed. The use of statistical-based techniques combined with semantic classification methods 
may lead to different activity inferences (user states). Hence, a transition probability matrix (TPM) 
[25] is applied to refine statistical activity inference through the probability of transition occurrence 
in human activities. A TPM is generated by evaluating the activity decisions taken in the previous 
time interval by a classifier algorithm. Figure 3 shows a graphical representation called the 
transitional probability graph (TPG) of an example of TPM that displays the transitional probabilities 
of different user’s activities. Using the TPM information, it is possible to infer the final user state from 
the available current statistical and semantic activity labels by tracing the probabilities of transition 
from the previous inferred activity label which occurred at ݐ௡ିଵ to each available current activity 
state performed at time ݐ௡. 

 

Figure 3. Transition probability graph (TPG) for five human activities. The oriented arcs between 
activity nodes represent the transition probability weights. 
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3.2. Framework Description 

Based on the previous concepts, a framework called sensor-based human activity recognition 
(SHAR) is proposed, combining data and knowledge-driven methods to recognize human physical 
activities. SHAR allows handling the classification uncertainty and improving the accuracy of 
recognition processes by reducing the considerable amount of training data coming from several 
sensor sources along with using semantic inferences. Figure 4 shows an architecture overview of the 
SHAR framework that is divided in the next components: (i) Activity Sensing, (ii) Activity Training, 
(iii) Activity Inference, and (iv) Activity Refining. These components are organized according to 
versatile client-server architecture in the sense they can be allocated either on the client side (e.g., a 
smartphone) or using a server environment depending on the timing or context-aware requirements. 
First, the Activity Sensing component is used for gathering data from inertial and motion sensors 
embedded on smartphones or wearable devices during user activity such as movements, posture 
changes or gestures. This component adopts the sliding window mechanism described before in 
order to achieve a trade-off between recognition responsiveness and the accuracy required according 
to user circumstances and their surrounding environment. It also has to take into account the usage 
of computational resources and the energy consumed during this sensing phase. In this sense, 
different ranges of window sizes can be considered to obtain suitable timing responses. 

 
Figure 4. Framework architecture. 

The Activity Training component addresses one of the critical stages in the HAR process, acting 
as a preparation step to define an appropriate activity pattern for every physical activity that is 
annotated in the training set. To complete the training phase, this component applies statistical 
algorithms such as Random Forest (RF), Decision Tree (DT) or K-Nearest Neighbor (KNN). The 
output of this phase consists of a specific model that is trained when running the selected algorithm 
over a specific dataset. The Activity Inference component represents the prediction phase that is 
performed under two different classification approaches in order to achieve a timely activity 
recognition process. These approaches are based on two main methods: 

• A statistical-based classification that runs as a conventional prediction stage in human activity 
recognition processes using supervised statistical learning methods. In this classification 
approach, the activity patterns, previously stored as a training model, are exploited to recognize 
user states by deriving statistical inference. 

• A semantic-based classification that uses human activity recognition ontology and knowledge-
driven mechanisms to carry out such recognition processes even with small trained data. This 
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type of method analyses and detects the performed user activity according to contextual 
knowledge by applying a set of potential semantic inferences. 

The Activity Refining component is a fundamental part of the HAR process and contains two 
reasoning routines described as follows: 

• Frequency-based reasoning is in charge of managing and handling the heterogeneity in terms of 
outputs derived from the semantic-based classification method. It offers a way to reason on these 
activity outputs in order to select the more appropriate inferred semantic activity based on 
counting the occurrences of each semantic activity. 

• Transitional probabilities reasoning is the final stage and it is used to match the statistical activity 
label inferred from supervised statistical machine learning with a semantic activity label in order 
to refine the prediction outcome of the current activity. The purpose of such refinement aims at 
adjusting such a prediction through transition probability weights, which explore the 
probability value from previous to current states based on a TPG (see Figure 3). 

The SHAR framework relies on a HAR ontology called Modular Activity Recognition Ontology 
(MAROlogy) and it is usually accessed by means of server-side RESTful Web services. However, it is 
also possible to have a client-side version of MAROlogy containing a minimal set of rules in case the 
server was not accessible. The MAROlogy model is described in terms of interrelated modules 
representing different concepts related to the physical activity, user state, sensor devices, location, 
time, or objects. Figure 5 shows an abstract overview of the MAROlogy model divided into its 
ontology modules and including their general relationships. Table 2 shows a short description of 
these basic ontology modules.  

 
Figure 5. Overview of the Modular Activity Recognition Ontology (MAROlogy) model including its 
main modules. 

Table 2. Ontology module descriptions. 

Module Description 

Sensor 
This module is considered as the backbone of all other modules and it is designed to provide 

semantic activity inferences and interact with the rest of the modules. 
Activity This module is to identify the physical activity carried out at a given time. 

User 
This module represents information concerning users such as their preferences, needs or 

personal interests. 

Location 
The location module is used to determine where the users are performing activities. Each 

location can be either indoor or outdoor. This ontology enables geographic coordinates to be 
measured (e.g., latitude and longitude). 
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Time 
This module aims at pointing out the interval of an activity. In addition, it is used to record 

activity start time as well as end time information. 

Object 
Object ontology includes physical objects such as smartphones, tablets and smart watches. 

Basically, this ontology covers devices with embedded sensors, which are explored to gather and 
send sensor information to detect any physical activity changes.  

3.3. Inference Rules  

The proposed framework aims at improving the activity recognition process by refining 
statistical classification tasks and trying to minimize the computational time of these tasks when strict 
timing requirements are demanded. Thus, the proposed ontology is complemented with reasoning 
rules that deal with the transition and temporal relationships among human activities. They can be 
divided into two different types: (i) transition-aware rules and (ii) time-aware rules. In the first case, 
special dependencies among different activities performed by humans in daily life can be considered. 
For example, the “walking” state might not occur immediately after a “sitting” state. With this 
purpose, transition-aware rules are defined to establish the potential relationship between previous 
and current activities derived from data sensor in the context of a transition event. In the second case, 
time-aware rules assume that users do not continuously change their activities with time. Instead, 
users have a tendency to perform the same activity for a certain time period before moving to a new 
activity or state, although, their application mostly depends on the domain in which such activities 
are carried out. Table 3 shows an excerpt of a transition-aware rule where a “sitting” state has to be 
followed only by the “sitting”, “standing” or “lying” activity states.  

Table 3. Transition-aware rule representation (excerpt). 

Condition Action 

[Transition-aware-rule-for-sitting-activity: 
(?previousAct rdf:type uni:HumanActivity) 
(?previousAct uni:ActivityName ‘Sitting’) 
(?previousTime rdf:type uni:TimeInstant) 
(?previousAct uni:takePlaceAt ?previousTime) 
(?previousTime uni:Instant ‘“+ ftime +”’) 
(?currentAct rdf:type uni:SemanticOutput) 
(?currentTime rdf:type uni:TimeInstant)… 

→   
(?currentAct uni:FirstSemanticArgument ‘Sitting’) 
(?currentAct uni:SecondSemanticArgument ‘Standing’) 
(?currentAct uni:ThirdSemanticArgument ‘Lying’)]; 

4. Case Study 

In order to show the application of the proposed approach, an experiment was carried out based 
on the MARology model and inference rules defined before along with certain statistical classification 
methods. The main goals of the experiment were to study the level of enhancement obtained with 
our hybrid approach for human activity recognition, on the one hand, and, on the other hand, to 
harness accuracy recognition and transition delay through the enhancement in existing HAR 
approaches. According to these goals, a prototype of mobile application called ARApp was 
developed allowing the testing the SHAR framework. First, the implementation of the ARApp 
prototype is described and, secondly, the building of the training model is explained. Finally, some 
user scenarios are presented to show how they can be used to assess the current prototype in terms 
of checking accuracy and timing requirements when human activities have to be recognized. 

4.1. ARApp Description  

ARApp was developed in Java using the Android studio tool and it integrates WEKA [26], a 
machine learning library made to classify gathered sensor data under various ML algorithms. Figure 
6 shows two samples of screenshots which display some of the ARApp functionalities such as using 
training datasets, selecting classification algorithms or performing recognition tasks. For the purpose 
of statistical classification, ARApp gathers several published datasets, which are obtained from the 
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UCI machine learning repository [27] to support training processes as inputs for classification and 
prediction processes. In order to validate the semantic classification process, ARApp includes a 
modular HAR ontology, implemented in OWL-DL using the Protégé tool as an ontology editor. 
Figure 7 shows an excerpt of MAROlogy implementation. 

  

Figure 6. ARApp mobile application prototype. 

 
Figure 7. MAROlogy implemented with Protégé. 

4.2. Training Model and Activity Recognition Scenarios 

With the purpose of obtaining more reliable experimental results in the ARApp application, 
published datasets such as HHAR [28] provide an appropriate way to train classification algorithms. 
The HHAR dataset involves motion data gathered using a tri-axis accelerometer and a tri-axis 
gyroscope, which are pre-installed in mobile phones and smart watches. This sensor data describes 
six different human activities including, sitting, standing, walking, biking, stair up and stair down. 

To complete the experimental stage, data were exclusively obtained from an accelerometer 
sensor. Moreover, the proposed application was applied in a specific HAR context. Accordingly, 
experiments were bounded to a given bunch of simple activities due to the fact that those human 
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activities enable producing a more stable output result. Thus, a limited number of user-significant 
states such as sitting, standing and walking were selected from the HHAR dataset.  

Two basic scenarios dealing with the recognition of thee specific user states and their transition 
are described. In the first scenario, a transition from the “sitting” state to the “stand” state was 
examined. Such a transition was sometimes difficult to detect because it could be confused with other 
actions (e.g., “go to lie”). In the second scenario, the transition was easier to detect since it implied a 
movement and such a circumstance could be checked in the TPG of Figure 3 in which transition 
probabilities had higher values in “stand to walk”. In every case, an activity event was triggered by 
the user to input the starting state and the ARApp application has to generate a final event with the 
recognized state. Timestamps could be associated with such events in order to compute the delay 
times in these transition scenarios.  

5. Results 

This section describes the assessment of the proposed hybrid approach in the activity recognition 
area and particularly focuses on the addressed ontology model. In a previous work [29], several 
supervised machine learning methods were used to detect user activity by means of statistical 
classification algorithms. Hence, the results of applying a detection refinement along with improving 
state transition delays in the case study introduced before are reported.  

5.1. Assessment of Activity Prediction 

To assess the accuracy of activity state prediction, the first scenario, in which a simple “sit-to-
stand” transition occurs, is considered. Figure 8 shows a screenshot of the ARApp application that 
displays a test where the detected user states are distorted. The screenshot displays a sequence of 
“walk” labels after a “sit” state when classic ML algorithms are applied. Instead, a “stand” state 
should be detected, and such a distortion produced by the data-driven classification algorithms can 
be mitigated with the use of the proposed hybrid approach. So, the semantic-based classification, 
which uses ontology knowledge and reasoning rules, suggests that the current user activity is 
“sitting” or “stand” using the transition-aware rule based on the previous activity carried out by the 
user. Regardless of the acquired semantic prediction results, the classification process exploits the 
time-aware rule and puts forward a new suggestion, arguing that current user activity is equivalent 
to standing activity by measuring the time similarity between these two activities and checking such 
a similarity under a given threshold. Next, in order to overcome the high label imbalance at the level 
of the semantic classification, an activity frequency distribution is obtained to weight the occurrence 
of different semantic activity outputs. These mechanisms select the “stand” state as the optimal 
semantic activity inference for such a scenario. The detection of the more appropriate activity state 
from both kinds of classification processes exploits the transition probabilities graph (TPG) depicted 
in Figure 3. This graph shows that the probability of the “sit-to-stand” transition is approximately 
0.09, while the probability of sit-to-walk is equivalent to 0.04. The definitive activity inference using 
the refined approach in the first scenario case is a “sit-to-stand” transition. So, this example shows 
the refinement effectiveness, reducing classification distortion caused by the preceding data-driven 
approach [29] and allowing for better accuracy in the prediction of activity states.  
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Figure 8. Misrecognition of a sit-to-stand transition in our preceding data-driven approach. 

5.2. Improvement of Transition Delays 

As is known, transitions between physical activities are usually overlooked in many approaches 
[2]. In this case, the presence of activity transitions is addressed in order to check their timing 
responsiveness and how these results can also be improved in terms of accurate detection. Transition 
delays were analyzed in the previous data-driven approach [29]. For the current analysis, the first 
case scenario was tested checking the delay in the “sit to stand” transition under a window size of 10 
s. The transition delay specifies the amount of time between the activity event triggered by users 
when they start their activity (e.g., the “sit” state) and the event associated with the transition 
recognition (e.g., the final “stand” state). As can be observed in Table 4, the novel proposed approach 
outperforms transition detection, with an average delay value between 0.145 and 0.344 s depending 
on the used classification algorithm. In contrast, the proceeding data-driven approach performs 
worse, providing an average delay value between 0.379 and 0.519 s. 

According to these results, a transition in data-driven approaches could take more time to 
capture and understand such a situation due to the volume of trained models based on the large 
amount of sensor data as well as the fluctuation in the prediction during transitions. Therefore, the 
proposed hybrid approach can not only obtain better activity detection results but also achieve them 
with lower time responses, which means enabling more time for improving detection. This 
improvement is largely due to the fact that, by using a smaller trained model, faster activity detection 
and less computational use of resources can be produced. The combination between low-cost data-
driven approaches along with the application of HAR ontology models allows refined prediction 
with fewer fluctuations by the way. 

Table 4. Transition delays for “sit-to-stand”. 

Classifier Algorithm Transition Delay (s) New Transition Delay (s) 
Random Forest (RF) 0.379 0.145 
Decision Tree (DT) 0.508 0.344 

K-Nearest Neighbor (KNN) 0.519 0.340 

6. Conclusions 

The current work has presented a hybrid approach that combines knowledge-driven and data-
driven methods to check timing and accuracy requirement in the context of human activity 
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recognition. Such a combination allows the building of smaller training models that also favor a 
higher responsiveness of mobile applications which can run complex classification algorithms in a 
faster way. Moreover, the use of ontology models such as the one proposed in this research work and 
their associated inference rules have enabled an improvement in the capability to detect user states 
and also the transition among them. The final checking of the time responses in the transition delay 
computation within a scenario sample has shown the usefulness of the approach in this sense. Further 
works plan to test new scenarios and case studies in which additional examples of user states can be 
accurately recognized and transitions can be detected timely.  
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