#
Quark Number Susceptibilities and Equation of State in QCD at Finite μ_{B}^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Calculational Details

## 3. Results

#### 3.1. Quark Number Susceptibilities

#### 3.2. Equation of State at Finite ${\mu}_{{\scriptscriptstyle B}}$

#### 3.3. Fluctuations and Freezeout

## 4. Summary and Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

QCD | quantum chromodynamics |

QGP | Quark-gluon plasma |

BNS | Baryon number susceptibilities |

QNS | Quark number susceptibilities |

FAIR | Facility for antiproton and Ion Research |

RHIC | Relativistic Heavy Ion Collider |

CBM | Cold Baryonic Matter |

BES | Beam energy scan |

LHC | Large Hadron Collider |

## References

- Gavai, R.V.; Gupta, S.; Ray, R. Taylor expansions in chemical potential. Prog. Theor. Phys. Suppl.
**2004**, 153, 270. [Google Scholar] [CrossRef] - Ejiri, S.; Allton, C.R.; Hands, S.J.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Schmidt, C. Study of QCD thermodynamics at finite density by Taylor expansion. Prog. Theor. Phys. Suppl.
**2004**, 153, 118. [Google Scholar] [CrossRef] - Datta, S.; Gavai, R.V.; Gupta, S. Quark number susceptibilities and equation of state at finite chemical potential in staggered QCD with N
_{t}= 8. Phys. Rev. D**2017**, 95, 054512. [Google Scholar] - Gavai, R.V.; Gupta, S. QCD at finite chemical potential with six time slices. Phys. Rev. D
**2008**, 78, 114503. [Google Scholar] - Gottlieb, S.A.; Liu, W.; Toussaint, D.; Renken, R.L.; Sugar, R.L. Hybrid Molecular Dynamics Algorithms for the Numerical Simulation of Quantum Chromodynamics. Phys. Rev. D
**1987**, 35, 2531. [Google Scholar] - Borsányi, S.; Durr, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Kurth, T.; Lellouch, L.; Lippert, T.; Mcneile, C.; et al. High-precision scale setting in lattice QCD. JHEP
**2012**, 1209, 010. [Google Scholar] - Gavai, R.V.; Gupta, S. The Critical end point of QCD. Phys. Rev. D
**2005**, 71, 114014. [Google Scholar] - Gottlieb, S.A.; Liu, W.; Toussaint, D.; Renken, R.L.; Sugar, R.L. The Quark Number Susceptibility of High Temperature QCD. Phys. Rev. Lett.
**1987**, 59, 2247. [Google Scholar] - Gupta, S.; Karthik, N.; Majumdar, P. On criticality and the equation of state of QCD at finite chemical potential. Phys. Rev. D
**2014**, 90, 034001. [Google Scholar] - Andersen, J.O.; Mogliacci, S.; Su, N.; Vuorinen, A. Quark number susceptibilities from resummed perturbation theory. Phys. Rev. D
**2013**, 87, 074003. [Google Scholar] - Haque, N.; Mustafa, M.G.; Strickland, M. Quark Number Susceptibilities from Two-Loop Hard Thermal Loop Perturbation Theory. JHEP
**2013**, 1307, 184. [Google Scholar] - Datta, S.; Gavai, R.V.; Gupta, S. QCD at finite chemical potential with N
_{t}= 8. PoS Lattice**2014**, 2013, 202. [Google Scholar] - Gavai, R.V.; Gupta, S. Simple patterns for non-linear susceptibilities near T
_{c}. Phys. Rev. D**2005**, 72, 054006. [Google Scholar] - Ejiri, S.; Karsch, F.; Redlich, K. Hadronic fluctuations at the QCD phase transition. Phys. Lett. B
**2006**, 633, 275. [Google Scholar] - Koch, V.; Majumdar, A.; Randrup, J. Baryon-strangeness correlations: A Diagnostic of strongly interacting matter. Phys. Rev. Lett.
**2005**, 95, 182301. [Google Scholar] - Gavai, R.; Gupta, S. Fluctuations, strangeness and quasi-quarks in heavy-ion collisions from lattice QCD. Phys. Rev. D
**2006**, 73, 014004. [Google Scholar] - Bazavov, A.; Ding, H.T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, S.; Ohno, H.; Petreczky, P.; et al. The QCD equation of state to $\mathcal{O}\left({\mu}_{{\scriptscriptstyle B}}^{{\scriptscriptstyle 6}}\right)$ from Lattice QCD. Phys. Rev. D
**2017**, 95, 054504. [Google Scholar] - DÉlia, M.; Gagliardi, G.; Sanfilippo, F. Higher order quark number fluctuations via imaginary chemical potentials in N
_{f}= 2 + 1 QCD. Phys. Rev. D**2017**, 95, 094503. [Google Scholar] - Vovchenko, V.; Steinheimer, J.; Philipsen, O.; Stoecker, H. Cluster Expansion Model for QCD Baryon Number Fluctuations: No Phase Transition at μ
_{B}/T < π. Phys. Rev. D**2018**, 97, 114030. [Google Scholar] - Fodor, Z.; Giordano, M.; Guenther, J.N.; Kapas, K.; Katz, S.D.; Pasztor, A.; Portillo, I.; Ratti, C.; Sexty, D.; Szabo, K.K. Searching for a CEP signal with lattice QCD simulations. arXiv
**2018**, arXiv:1807.09862. [Google Scholar] - Gavai, R.; Gupta, S. Lattice QCD predictions for shapes of event distributions along the freezeout curve in heavy-ion collisions. Phys. Lett. B
**2011**, 696, 459. [Google Scholar] - Gupta, S. Finding the critical end point of QCD: Lattice and experiment. PoS CPOD
**2009**, 2009, 025. [Google Scholar] - Bazavov, A.; Ding, H.T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Mukherjee, S.; Petreczky, P.; Schmidt, C.; Smith, D.; et al. Freeze-out Conditions in Heavy Ion Collisions from QCD Thermodynamics. Phys. Rev. Lett.
**2012**, 109, 192302. [Google Scholar] - Borsányi, S.; Fodor, Z.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabo, K.K. Freeze-out parameters: Lattice meets experiment. Phys. Rev. Lett.
**2013**, 111, 062005. [Google Scholar] - Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC. Phys. Rev. Lett.
**2014**, 112, 032302. [Google Scholar] - Petran, M.; Letessier, J.; Petráček, V.; Rafelski, J. Hadron production and quark-gluon plasma hadronization in Pb-Pb collisions at $\sqrt{{s}_{\mathit{NN}}}$ = 2.76 TeV. Phys. Rev. C
**2013**, 88, 034907. [Google Scholar] [CrossRef] - Becattini, F.; Steinheimer, J.; Stock, R.; Bleicher, M. Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line. Phys. Lett. B
**2017**, 764, 241. [Google Scholar] - Petreczky, P. Lattice QCD at non-zero temperature. J. Phys. G
**2012**, 39, 093002. [Google Scholar] [CrossRef]

**Figure 1.**(

**left**) The diagonal susceptibilities of order two, four and six, ${\chi}_{20}/{T}^{2}$, ${\chi}_{40}$ and ${T}^{2}{\chi}_{60}$, in the temperature range 0.9–2 ${T}_{c}$. (

**right**) ${\chi}_{11}$ in units of ${T}^{2}$, on lattices with $a=1/8T$. Also shown for comparison are results for lattices with $a=1/6T$.

**Figure 2.**The baryon number susceptibilities of different order in the temperature range 0.9–2 ${T}_{c}$.

**Figure 3.**(

**left**) Comparison of the Pade estimator for ${\chi}_{20}$ with the series-summed one at 2 ${T}_{c}$. (

**right**) Ratio of the Pade estimator of ${\chi}_{{\scriptscriptstyle B}}^{2}$ with the series summed one, at ${T}_{{\scriptscriptstyle E}}$ = 0.94 ${T}_{c}$.

**Figure 4.**(

**left**) The Pade-resummed results for pressure and ${\chi}_{{\scriptscriptstyle B}}^{2}$ as function of ${\mu}_{{\scriptscriptstyle B}}$, at $T={T}_{{\scriptscriptstyle E}}$. (

**right**) $\Delta P({\mu}_{{\scriptscriptstyle B}},T)$ as function of temperature, at various ${\mu}_{{\scriptscriptstyle B}}$.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Datta, S.; Gavai, R.V.; Gupta, S.
Quark Number Susceptibilities and Equation of State in QCD at Finite *μ _{B}*.

*Proceedings*

**2019**,

*13*, 5. https://doi.org/10.3390/proceedings2019013005

**AMA Style**

Datta S, Gavai RV, Gupta S.
Quark Number Susceptibilities and Equation of State in QCD at Finite *μ _{B}*.

*Proceedings*. 2019; 13(1):5. https://doi.org/10.3390/proceedings2019013005

**Chicago/Turabian Style**

Datta, Saumen, Rajiv V. Gavai, and Sourendu Gupta.
2019. "Quark Number Susceptibilities and Equation of State in QCD at Finite *μ _{B}*"

*Proceedings*13, no. 1: 5. https://doi.org/10.3390/proceedings2019013005