#
Preserving Nonclassicality in Noisy Communication Channels^{ †}

^{1}

^{2}

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

## 2. Results

## 3. Discussion

## 4. Materials and Methods

## Conflicts of Interest

## References

- Capraro, I.; Tomaello, A.; Dall’Arche, A.; Gerlin, F.; Ursin, R.; Vallone, G.; Villoresi, P. Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett.
**2012**, 109, 200502. [Google Scholar] [CrossRef] [PubMed] - Vasylyev, D.; Semenov, A.A.; Vogel, W. Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett.
**2016**, 117, 090501. [Google Scholar] [CrossRef] [PubMed] - Allevi, A.; Olivares, S.; Bondani, M. Measuring high-order photon-number correlations in experiments with multimode pulsed quantum states. Phys. Rev. A
**2012**, 85, 063835. [Google Scholar] [CrossRef] - Allevi, A.; Bondani, M. Nonlinear and quantum optical properties and applications of intense twin-beams. Adv. At. Mol. Opt. Phys.
**2017**, 66, 49–110. [Google Scholar] [CrossRef] - Allevi, A.; Bondani, M. Can nonclassical correlations survive in the presence of asymmetric lossy channels? Eur. Phys. J. D
**2018**, 72, 178. [Google Scholar] [CrossRef] - Vogel, W.; Welsch, D.G. Quantum Optics; John Wiley & Sons: Hoboken, NJ, USA; Publishing House: New York, NY, USA, 2006; ISBN 978-3-527-40507-7. [Google Scholar]
- Ferri, F.; Magatti, D.; Lugiato, L.A.; Gatti, A. Differential Ghost Imaging. Phys. Rev. Lett.
**2010**, 104, 253603. [Google Scholar] [CrossRef] - Brida, G.; Genovese, M.; Berchera, I.R. Experimental realization of sub-shot-noise quantum imaging. Nat. Photonics
**2010**, 4, 227–230. [Google Scholar] [CrossRef] - Bondani, M.; Allevi, A.; Andreoni, A. Ghost imaging by intense multimode twin beam. Eur. Phys. J. Spec. Top.
**2012**, 203, 151–161. [Google Scholar] [CrossRef] - Chan, K.W.; O’Sullivan, M.N.; Boyd, R.W. High-order thermal ghost imaging. Opt. Lett.
**2009**, 34, 3343–3345. [Google Scholar] [CrossRef] [PubMed] - Bohmann, M.; Kruse, R.; Sperling, J.; Silberhorn, C.; Vogel, W. Probing free-space quantum channels with laboratory-based experiments. Phys. Rev. A
**2017**, 95, 063801. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**): Sketch of the experimental setup. See Section 4 for details. (

**b**): Noise reduction factor (blue dots), S parameter (green dots) and B parameter (black dots) as functions of $1-\lambda $. The theoretical expectations are shown as lines with the same color choice. The red line at $R=1$ represents the boundary condition, with $\langle m\rangle =2.1$, $\mu =100$ and $\eta =0.14$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Allevi, A.; Bondani, M.
Preserving Nonclassicality in Noisy Communication Channels. *Proceedings* **2019**, *12*, 3.
https://doi.org/10.3390/proceedings2019012003

**AMA Style**

Allevi A, Bondani M.
Preserving Nonclassicality in Noisy Communication Channels. *Proceedings*. 2019; 12(1):3.
https://doi.org/10.3390/proceedings2019012003

**Chicago/Turabian Style**

Allevi, Alessia, and Maria Bondani.
2019. "Preserving Nonclassicality in Noisy Communication Channels" *Proceedings* 12, no. 1: 3.
https://doi.org/10.3390/proceedings2019012003