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Abstract: Anthropogenic nitrogen (N) emissions can have considerable effects on terrestrial ecosystems,
with chronic N deposition leading to changes in plant species composition. The Athabasca Oil Sands Re-
gion (AOSR) represents a large point source of N emissions, which has prompted concern for surrounding
habitats. The objective of this study was to determine the relative importance of N deposition as a driver of
plant species community composition against bioclimatic and soil chemical variables. Further, we sought
to identify community thresholds in plant species composition across a N deposition gradient. This
assessment was performed for 46 Jack pine (Pinus banksiana Lamb.)-dominant forest sites surrounding the
AOSR spanning Alberta and Saskatchewan. In total, 35 environmental variables were evaluated using
redundancy analysis (RDA), followed by gradient forest analysis applied to plant species abundance
data. Soil chemical variables accounted for just over 26% of the total explainable variation in the dataset,
followed by bioclimatic variables (19%) and deposition variables (5%), but joint effects between variables
also explained a significant portion of the total variation (p < 0.001). Total deposited nitrogen (TDN), and
sulphur (TDS) along with bioclimatic and soil chemical variables, were identified as important variables
in gradient forest analysis. A single, definitive threshold across TDN was identified at approximately
5.6 kg N ha−1 yr−1 (while a TDS threshold was found at 14.4 kg S ha−1 yr−1). The TDN threshold range
was associated primarily with changepoints for several vascular species (Pyrola asarifolia, Pyrola chlorantha,
Cornus canadensis, and Arctostaphylos uva-ursi) and bryophyte and lichen species (Pleurozium schreberi,
Vulpicida pinastri, and Dicranum polysetum). These results suggest that across Jack pine-dominant forests
surrounding the AOSR, the biodiversity-based empirical critical load of nutrient N is 5.6 kg N ha−1 yr−1.

Keywords: gradient forest analysis; Jack pine forest; redundancy analysis; community threshold

1. Introduction

It is well established that elevated nitrogen (N) deposition from anthropogenic sources
impacts plant species diversity [1–6]. Even at low levels of N deposition, there can be
considerable effects on terrestrial ecosystems [7] as communities begin to shift, favouring
nutrient-rich, nitrophilous species while simultaneously reducing overall species rich-
ness [8]. Changes in species composition and biodiversity are the most evident impacts of
chronic N deposition on an ecosystem [9–11].

In general, transportation, industry, and agriculture are the dominant sources of N
emissions, and regions not immediately surrounding a point source may also be subjected to
chronic N deposition owing to long-range atmospheric transport [12]. In Canada, more than
60% of all national nitrogen oxide (NOx) emissions originated from Alberta, Saskatchewan,
and British Columbia in 2017. Furthermore, Alberta and Saskatchewan were responsible
for 49% of all national ammonia (NH3) emissions [13]. Large-scale, open-face mining of
bitumen in the Athabasca Oil Sands Region (AOSR) of Alberta represents a significant
point source of N emissions [14]. As such, there is growing concern that the AOSR may be
impacted by chronic N deposition [15].

Critical loads have been extensively used to underpin emissions reductions for both
sulphur (S) and N [16] to preserve ecosystem structure and function [12,17]. Critical loads
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are defined as a quantitative estimate of exposure to one or more pollutants below which no
significant adverse effects can be seen on elements of the environment [10] and have been
determined through empirical, mass balance, and dynamic modelling approaches [16,18].
The empirical critical loads (CLempN) approach is based on measurable and observable
responses in the environment [6,19]. In Europe, critical loads of N for various ecosystems
and specific indicators of exceedance have been established [6,19,20]. For coniferous forests,
CLempN was estimated between 3–15 kg N ha−1 yr−1, with exceedance indicated mainly by
changes in soil processes, nutrient imbalances, and the changing composition of mycorrhiza
and other ground vegetation [6,19]. However, forests across North America, particularly
Canada, have historically experienced lower levels of N deposition compared with Europe.
As a result, CLempN for these regions are often refined to protect sensitive ecosystems
that have not yet reached exceedance [21]. For instance, the recommended CLempN for
northeastern US forested ecosystems is 8 kg N ha−1 yr−1, with a specific CLempN for
herbaceous plants and shrubs falling between 7 and 21 kg N ha−1 yr−1, while that of
lichens is between 1 and 9 kg N ha−1 yr−1 [21].

Several studies have found that the addition of site-specific soil chemical variables
can provide a more robust assessment of the effects of N deposition concerning plant
species’ community composition [9,22]. In one study, a temporal analysis evaluating
species composition under several environmental variables found that soil acidity was the
most important variable for community composition [23]. In a separate study, results from
23 N addition experiments across North America suggested that a site was most susceptible
to reduced species richness when certain soil parameters and bioclimatic variables aligned,
specifically low cation exchange capacity and low temperatures [24]. Other studies have
used an N gradient approach with site-specific data to assess the effects of N deposition. In
a regional scale study, N deposition and soil pH were found to have a significant influence
on species richness [25]. Similarly, soil pH was identified as significantly relevant with
respect to species richness on an international scale [26]. These studies suggest that using
site-specific soil-chemical variables in conjunction with deposition and climate data can
provide a more realistic overview of the effects of N deposition.

Across an N gradient, thresholds concerning community composition have also been
identified using a variety of statistical analyses. For instance, generalised additive models
(GAMs) have been used with survey data (species presence and absence) to identify commu-
nity thresholds for three different habitats across Great Britain [27]. Regression analysis was
used to assess species richness using multiple environmental variables on a small regional
scale for a single grassland habitat in Great Britain [25] and on a much larger scale, covering
a transect across the Atlantic biogeographic zone of Europe [26]. Threshold Indicator
Taxon Analysis (TITAN [28]) has also been applied in several gradient studies to evalu-
ate species composition against a single environmental variable, N deposition [11,29,30].
Gradient-forest analysis is a relatively novel statistical technique using a gradient-based
approach known to be more flexible, non-linear, and multivariate [31]. By combining all
single-species responses to the environmental gradient, gradient forest analysis is similar to
TITAN in that it can identify significant community thresholds. However, gradient forests
differ by not only accounting for multiple environmental variables at once [32], but also
identifying the relative importance of each variable for changing plant species community
composition (changepoints, [31,32]).

The objective of this study was to evaluate the relative importance of N deposition,
site-specific soil chemistry, and bioclimatic data as drivers of plant species composition in
the ASOR. Plant species abundances data for 46 Jack pine (Pinus banksiana Lamb.)-dominant
forest plots across Alberta, Saskatchewan, and the Northwest Territories were evaluated
against site-specific soil-chemical variables (n = 40) and bioclimatic and deposition variables
(n = 44) modelled on a regional scale. All data were first analysed through principal
component analysis (PCA) to reduce the number of predictors by identifying variables that
were both highly correlated and explained little to no variance. In addition, an ordination
technique (RDA) was used to assess which set of predictors (soil, deposition, or climate)



Nitrogen 2023, 4 171

better explained the variation in species composition. All remaining environmental data
were then analysed against individual species abundance data using gradient forest analysis
to determine the importance of each variable to community composition. Gradient forest
analysis was used to identify community thresholds and the species that demonstrated
the greatest sensitivity across each gradient. Further, these community thresholds were
assumed to be equivalent to biodiversity-based empirical critical loads of nutrient N.

2. Methods
2.1. Study Sites and Data Sources

Data from established semi-permanent and permanent forest monitoring plots were
collected from three separate surveys across Alberta (AB), Saskatchewan (SK), and the
Northwest Territories (NWT). The Wood Buffalo Environmental Association (WBEA [14])
provided data for forest plots in Alberta (n = 25), while the Forest Ecosystem Classification
provided data for plots in Saskatchewan (SK-FEC [33]) and the Northwest Territories (NWT-
FEC [34]). The 25 plots from the WBEA survey were classified as Jack pine dominant. To
maintain data continuity, all plots selected in Saskatchewan and the Northwest Territories
were only selected if Jack pine was the dominant forest stand. Sites were classified as Jack
pine dominant forests if total canopy coverage was at least 10% or more of a site and, of
that, Jack pine trees covered 50% or more of the existing canopy. These sites were mainly
located across the boreal shield and boreal plains ecozones and generally characterised by
mesotrophic soils, ranging from xeric to mesic moisture levels, poor nutrient status, and
soils that ranged from dry, well-drained sandy soils to moist soils. Only sites that were
not recently subjected to fire disturbance events were selected, with WBEA and NWT-FEC
reporting a minimum of 60 years of post-fire disturbance range in their sampling criteria,
while SK-FEC reported at least 40 years of post-fire disturbance for all sites.

Plant species data from all surveys were recorded as cover-abundance estimates per site
(surveyed between approximately 2001 and 2011). In addition to abundance data, the WBEA
survey included soil chemistry data for their 25 plots. To add to the soil chemistry data, 21
plots across Saskatchewan and the Northwest Territories were selected for soil analysis. In total,
46 sites (nSK-FEC = 15, nNWT-FEC = 6, and NWBEA = 25; Figure 1) were selected for statistical
analysis. For additional plot information, see Supplementary Materials SI and SII.

2.2. Site Sampling Methods

Under the current study, 21 of the 46 selected study sites were visited and uniformly
sampled. Soil sampling was performed at the Saskatchewan sites during August and
September 2014 (nSK-FEC = 15), while sites in the Northwest Territories were visited in
October 2014 (nNWT-FEC = 6). A 40 m transect was established at the centre of each study
site, ensuring that vegetation was consistent across the entire transect. Five pits were
established at 10 m intervals along the transect, with pit 1 beginning at 0 m. Mineral topsoil
(0–15 cm) samples were collected using a soil auger below the litter layer for all five pits.
Bulk-density cores were collected at pits 1, 3, and 5 (0–15 cm depth). A 17.6 cm by 13.6 cm
sample of the forest floor was also collected at pits 1, 3, and 5 for each study site. All
samples were stored in ziplock bags until further analysis was performed. The 25 plots
in Alberta were sampled by WBEA [14]. Forest floor and mineral soil were sampled by
WBEA and archived following their analyses. Archive samples were then transferred to
Trent University for chemical analysis.
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Figure 1. Location of Jack pine dominant forest plots across Alberta, Saskatchewan, and the North-
west Territories (n = 46). Sites are colour coded by their total deposited nitrogen (TDN in eq ha−1 yr−1; 
red represents the highest TDN and yellow the lowest TDN). The inset depicts the location of the 
study area in north America (east–west distance is ~475 km). 
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for each plot were composited to create a single sample (0–15 cm). Soluble anions (includ-
ing nitrite and nitrate) were determined by performing water extractions on 4 g of fresh, 
composite soil samples for the NWT and SK study sites. Samples were then refrigerated, 
and analysis of the resulting aqueous solution was performed by ion chromatography 
within 5 days. For all 25 plots in Alberta, WBEA performed identical soluble anion anal-
yses on water extractions using ion chromatography [35]. 

All samples collected during fieldwork (NWT and SK samples) were air-dried and 
sieved to <2 mm to remove stones, roots, and other debris before further analysis was 
performed. Archived WBEA samples were already air-dried and sieved. All samples were 

Figure 1. Location of Jack pine dominant forest plots across Alberta, Saskatchewan, and the North-
west Territories (n = 46). Sites are colour coded by their total deposited nitrogen (TDN in eq ha−1 yr−1;
red represents the highest TDN and yellow the lowest TDN). The inset depicts the location of the
study area in north America (east–west distance is ~475 km).

2.3. Laboratory Analysis Methods

Sampling procedures for the WBEA survey collected soils at several different depths
including 0–5 cm and 5–15 cm. To increase homogeneity between plots, archived WBEA
mineral soil samples were composited for depths 0–5 and 5–15 cm for each site, creating a
single depth of 0–15 cm. For samples collected during fieldwork (SK and NWT), all pits for
each plot were composited to create a single sample (0–15 cm). Soluble anions (including
nitrite and nitrate) were determined by performing water extractions on 4 g of fresh,
composite soil samples for the NWT and SK study sites. Samples were then refrigerated,
and analysis of the resulting aqueous solution was performed by ion chromatography
within 5 days. For all 25 plots in Alberta, WBEA performed identical soluble anion analyses
on water extractions using ion chromatography [35].

All samples collected during fieldwork (NWT and SK samples) were air-dried and
sieved to <2 mm to remove stones, roots, and other debris before further analysis was
performed. Archived WBEA samples were already air-dried and sieved. All samples were
weighed before and after being oven-dried at 105◦C for 12 h to calculate their percent
moisture. Soil pH was determined for all samples using a pH probe in a 0.01 M CaCl2
matrix.

Loss on ignition (LOI) was also determined for all samples by ashing air-dried samples
in a muffle furnace at 400 ◦C for 10 h and calculating the mass difference in pre- and
post-ignition samples. Using ignited samples, particle size analysis (percent sand, silt, and
clay) was determined using a Horiba LA-950 analyser on all samples. Exchangeable cations
(EC) were determined on SK and NWT samples using a 1 M ammonium chloride (NH4Cl)
extraction. Extractions were performed by adding 25 mL of NH4Cl to 5 g of air-dried soil in
a conical tube. All samples were shaken for 2 h and then left to stand for 1 h. The solution
was then filtered through a Whatman 42 filter paper. An additional 25 mL of NH4Cl was
then added to the conical tube to rinse out any residual soil, and the extracted solution
was then analysed for major cation concentrations using an inductively coupled plasma
optical emissions spectrometer (ICP-OES). All 25 samples collected by WBEA underwent
comparable exchangeable cation analysis with some minor differences. Following the
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addition of 25 mL of 1 M NH4Cl to 2.5 g of 2 mm air-dried mineral soil, rapid extractions
were conducted to gather as close to 15 mL of solution as possible into a collection syringe.
Approximately 30 mL of NH4Cl was then added to the collection tube to rinse any residual
soil from the sidewalls, and additional extractions were performed for another 12 h. Cation
concentrations were then analysed using an ICP-OES spectrometer [35].

Nitrogen mineralization was determined using a 2 M KCl extraction for all SK and
NWT air-dried samples. For ammonium (NH4

+) and nitrate (NO3
−) extraction, 40 mL

of 2 M KCl was added to 4 g of air-dried soil and shaken for 2 h. The solution was then
filtered through a Whatman 42 filter paper, and the solution was analysed on a Bran Luebre
continuous flow analyser. For WBEA samples, 25 mL of 2 M KCl was added to 2.5 g
of air-dried mineral soil in a polypropylene tube and shaken for 1 h. The solution was
then decanted and centrifuged at 2000× g for 15 min. The solution was then analysed
using colorimetric determination and a segmented flow analyser complete with a dialysis
membrane to prevent interference from solids or coloured co-extractives [35].

Soil samples were pulverised for 3 min using a SPEX Miller Mill 6000D and analysed
for percent carbon (C), nitrogen (N), and sulphur (S) using an Elementar Vario Max analyser.
Bulk density was also determined for SK and NWT samples using soil cores. Soil cores
were weighed and dried at 105 ◦C for 24 h. Dried soil cores were sieved at 2 mm to isolate
coarse fractions greater than 2 mm, and total bulk density and fine fraction bulk density
were determined. The average bulk density across a site was then reported, and the average
percent porosity was calculated.

All plots with forest floor samples from SK and NWT were composited by site and
air-dried, while samples from the WBEA survey were already air-dried and sieved before
being transferred to Trent University. Forest floor samples from SK and NWT were weighed
before and after air-drying, and the air-dried samples were then ground. The pH of the
forest floor on all ground samples was determined using the same CaCl2 method used
for mineral soil samples. The same method used to determine water-extractable anions in
mineral soil was also used for air-dried forest floor samples. Finally, samples were further
milled using the SPEX Mixer Mill 6000 for an average of 8 min and analysed for percent
CNS.

2.4. Environmental Data

Modelled nitrogen and sulphur deposition data (in eq ha−1 yr−1) were obtained
from Global Environmental Multi-Scale Modelling Air Quality and Chemistry (GEM-
MACH [36]). Data were obtained at a resolution of 2.5 km × 2.5 km. Modelled deposition
scenarios were based on emissions inventories from 2006 and 2010, with 2010 data focused
on the Athabasca Oil Sands. Nitrogen deposition data included 11 different species, while
S deposition data included four different species (Supplementary Materials SIII). Total
N and total S deposition were also included [36]. In addition to deposition data (n = 17),
elevation, longitude, latitude, and 24 bioclimatic variables were also included in the analysis
(Supplementary Materials SIII).

2.5. Statistical Analyses

Initially, 40 soil chemistry variables (Supplementary Materials SIII) and 44 modelled
deposition and bioclimatic variables (a total of 84 variables) were considered. However,
many studies have outlined the importance and challenges of variable reduction and
variable selection with respect to ecological modelling, noting that effectively reducing the
number of predictors can increase the reliability and stability of the results [37]. To assess
the effects of relevant explanatory variables, PCA was applied to all 84 environmental
predictors (Supplementary Materials SIII) before gradient forest analysis. Described as
a linear transformation tool, PCA can provide information on data variation but can
also be used for exploratory factor analysis to identify variables that are correlated [38,39].
Environmental variables were removed if they were highly correlated with another variable
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and shared similar environmental processes, or if the variable accounted for very little to
no variation in the dataset.

Species abundance data were analysed to determine whether a linear or unimodal
ordination approach was better suited for the data, subsequently identifying whether
canonical correspondence analysis (CCA) or redundancy analysis (RDA) was applied. This
was performed using detrended correspondence analysis (DCA) in the vegan package [40].
DCA identified the first axis as a mid-length gradient (between 3 and 4 SD units), indicating
that either a unimodal (CCA) or a linear ordination (RDA) method could be used. While
CCA, a weighted form of RDA and a popular ordination technique used in ecological
studies, generally allows for easy interpretation of species assemblages [41,42], several
drawbacks exist. Among the more relevant drawbacks are that rare species can have a
larger influence on the analysis. This was of particular concern with the dataset, given that a
species was only considered rare if it appeared across no more than a single site. In addition,
total inertia (variance explained) is represented by R2 rather than adjusted R2 [41], meaning
that the results obtained would be biassed and unadjusted for the number of predictors.
Consequently, RDA, a multivariate method combining both multiple linear regressions
and PCA [41], was selected as the preferred ordination method. RDA was performed on
each category of predictors (bioclimatic, deposition, and soil chemical variables). Variance
inflation factors (VIFs) were then analysed to ensure that multicollinearity was reduced and
that the selected variables produced stable and interpretable results. While both climatic
and deposition variables returned some high VIFs, only deposition variables were re-
analysed due to the potential for overlapping environmental processes between variables.
To further select only relevant and statistically important deposition variables, stepwise
regression was used [40].

All statistical analysis for variable selection was performed in R Studio Version 1.0.136
using the vegan package [40]. Following variable reduction, 49 predictors were removed
using variable selection methods, leaving 35 variables for further analysis (Table 1; see
Supplementary Materials SIII). These environmental variables were first analysed using the
varpart function in vegan to determine the amount of variance explained by each category
of data, and then analysed with species data using gradient forest analysis.

Table 1. List of 35 environmental variables (deposition, bioclimatic, and soil chemistry) and their
descriptive statistics (SD is the standard deviation) across all 46 study sites. The variables listed are
those remaining after PCA analysis was run for variable reduction prior to gradient forest analysis.

Code Environmental Variable Range Median Mean SD

TDN Total Deposited Nitrogen (eq ha−1 yr−1) 37.21–597.01 136.70 176.45 131.60
WNO3 Wet Nitrate (eq ha−1 yr−1) 3.34–28.77 18.36 17.36 6.51

TDS Total Deposited Sulphur (eq ha−1 yr−1) 23.21–1182.20 99.83 179.41 212.08
WSO4 Wet Sulphate (eq ha−1 yr−1) 11.74–57.67 27.56 29.23 9.82

LATITUDE Latitude (◦) 56.25–60.88 57.08 57.54 1.31
LONGITUDE Longitude (◦) −113.74–108.89 −110.45 −110.68 1.20
ELEVATION Elevation (m) 231–622.52 460.34 425.50 108.37

bio_12 Annual Precipitation (mm) 359–483 451.50 441.87 31.95
sg_01 Julian day number at start of growing season 115–136 123.5 124.33 6.20
sg_04 Total Precipitation for period 1 (mm) 50–70.7 63.60 63.07 5.46
sg_06 Total precipitation for period 3 (mm) 209.40–324.1 304 293.27 31.26
sg_09 Gdd above base temperature for Period 2 194–245 219 218.06 14.17
sg_12 Annual Mean Temperature (◦C) −2.8–1.64 0.44 0.026 1.28

pH pH—Soil 3.59–7.19 4.46 4.75 0.96
LOI Loss on Ignition (%) − Soil 0.40–41.72 1.15 2.78 6.19

X._Moisture % Moisture − Soil 0.096–8.25 0.38 0.69 1.28
Bulk_Density Bulk Density (g cm−3) − Soil 0–1.64 0 0.58 0.65



Nitrogen 2023, 4 175

Table 1. Cont.

Code Environmental Variable Range Median Mean SD

N_NH4 NH4 N-Mineralization (µg L−1) − Soil 0–11.65 2.86 4.09 3.20
PO4_H2O PO4 Water Extractions (mg L−1) − Soil 0–0.46 0 3.81 × 10−2 8.64 × 10−2

Al_EC Al Exchangeable Cations (mg L−1) − Soil 0.03–2.43 0.23 0.44 0.48

Fe_EC Fe Exchangeable Cations (mg L−1) − Soil
−8.80 ×

10−2–0.39 4.12 × 10−2 8.23 × 10−2 0.12

Mn_EC Mn Exchangeable Cations (mg L−1) − Soil 1.90 × 10−2–0.54 0.15 0.17 0.12
Na_EC Na Exchangeable Cations (mg L−1) − Soil 3.00 × 10−2–0.70 0.10 0.14 0.12

X.N CNS − % Nitrogen − Soil 5.33 × 10−3–0.10 1.77 × 10−2 2.49 × 10−2 2.19 × 10−2

X.S CNS − % Sulphur − Soil 0–2.0 × 10−2 2.81 × 10−3 3.84 × 10−3 4.28 × 10−3

C/N_Ratio Carbon to Nitrogen Ratio − Soil 16.9–43.40 26.32 27.32 5.82
pH_LFH pH–LFH 3.02–7.01 3.96 4.23 0.90

Fl_LFH_H2O Fl Water Extractions (mg L−1) − LFH 0–0.98 0.14 0.20 0.21
Cl_LFH_H2O Cl Water Extractions (mg L−1) − LFH 0–10.32 0.79 1.34 1.80

NO2_LFH_H2O NO2 Water Extractions (mg L−1) − LFH 0–3.86 × 10−2 1.05 × 10−2 1.27 × 10−2 1.04 × 10−2

NO3_LFH_H2O NO3 Water Extractions (mg L−1) − LFH 0–0.30 7.11 × 10−2 7.67 × 10−2 6.71 × 10−2

PO4_LFH_H2O PO4 Water Extractions (mg L−1) − LFH 0–11.52 4.36 4.22 3.84
X.N_LFH CNS − % Nitrogen − LFH 0–1.48 0.99 0.95 0.28
X.S_LFH CNS − % Sulphur − LFH 0–0.22 6.37 × 10−2 7.76 × 10−2 4.25 × 10−2

C/N_Ratio_LFH Carbon to Nitrogen Ratio − LFH 0–59.91 38.17 37.21 10.31

Gradient forest analysis identifies thresholds for multiple species across multiple
environmental gradients using non-parametric, non-linear, and highly flexible functions
and can be used to identify both the shape and magnitude of compositional change along
environmental gradients [43–46]. Gradient forest analysis was performed in R using two
packages, extendedForest and gradientForest [44,47]. The extendedForest R package is
an extended version of the randomForest package based on Breiman’s random forest
models [47,48] that uses the average result of a forest of regressions or classification trees
(based on available data) to determine a threshold value [31,43]. In our case, the R package
randomForest used regression trees and repeatedly partitioned sites to maximise the
homogeneity of the groups with respect to the response variable. Partitions are based on
a split value (s) of some predictor (p), in which any sites partitioned to the left are sites
with a predictor value smaller or equal to the split value, while to the right are sites with a
predictor value greater than the split value [31,32,45]. At each partition, the split value is
selected to minimise the sum-of-squares deviation of the species abundance data (reduce
impurity), in turn maximising what is called fit improvement [31,32]. The fit improvement
or reduction in impurity of the species abundance data determines the importance of a split
and is a measurement of how much variation has been explained by that partition [31,32,43].
This partitioning method is repeated until only a minimum number of sites in the partition
is reached, eventually forming a terminal node where the predicted value is equal to the
mean response of the node [31]. Each split, which can be interpreted as a threshold, results
in two separate branches, eventually forming a tree [32,45]. Additionally, the instability
of an individual tree is reduced by repeating the construction of a tree a large number of
times (creating a forest), a function that can be set in the gradientForest package [44].

Each tree is fitted to a random sample of observations, termed “in-bag” and each split is
determined from a random subset of environmental variables, resulting in raw importance
values [32,45]. The observations not used in the construction of the tree, termed “out-of-bag”
observations, are then used to cross-validate the performance of a single tree [45]. The mean
cross-validated performance of all trees in a forest results in the goodness-of-fit measure
(predictive performance R2

S value [45]). The predictive performance R2
S values determined

in extendedForest represents, for each species, the proportion of variance explained by the
random forest model and are determined by evaluating the prediction error in the model
without a given environmental variable and comparing it to the prediction error of the full
model [31,32,49].



Nitrogen 2023, 4 176

In addition to the predictive performance R2
S value, randomForest also produces

accuracy importance values and raw importance values that are used to assess community
and species compositional changes along environmental gradients. The extendedForest
package also attempts to reduce the effect of correlation between environmental variables by
performing conditional permutations rather than marginal permutations [32]. Conditional
permutations are used to control for inflated importance measures based on correlated
environmental variables and differ from marginal permutations in that environmental
variable values are permuted within bins of data defined by tree splits in the forest for
predictors correlated above a specific threshold, r [32,43,45]. The results from all random
forests are then combined in the gradientForest R package.

In gradientForest, the predictive performance R2
S values can be partitioned into contri-

butions (R2
SP) from each predictor in proportion to the predictor’s importance. These con-

tributions (R2
SP) can then be averaged across all species to provide the overall conditional

importance of a predictor (R2 weighted importance [49]). The R2 weighted importance
values serve to classify environmental variables in order of importance for changing com-
munity composition [49]. Accuracy importance values, defined in extendedForest, are also
provided as a measure of the importance of each variable by assessing its contribution to
the overall model’s goodness-of-fit [49]. Accuracy importance values are determined by the
increase in the out-of-bag mean square prediction error or a reduction in performance when
a given environmental variable is randomly permuted [45,49]. Large accuracy importance
values indicate that an environmental variable has true predictive power, while small or
negative values indicate the environmental variable explains very little or nothing, and
model accuracy would not be affected if the variable were removed [49]. The gradientForest
package then, in proportion to the accuracy importance values defined in extendedForest,
distributes the predictive performance R2

S values for all species attributed to the predictor
over the gradient of each environmental variable [31,49], thereby defining compositional
turnover functions for each variable and displaying both individual species and community
level thresholds using graphical outputs [45,49].

2.6. GradientForest Outputs

Gradient forest analysis provides several measures of variation in the model, including
R2 overall importance and R2 weighted importance. In gradientForest, R2 performance
values (R2

S) are given to each species for each environmental variable. The sum of all R2
S

values for any given species provides the overall R2 performance of that species and is
an indication of how well variation within that species is predicted by all environmental
variables, with greater values indicating a better model fit. In gradientForest, any species
with a zero or negative R2

S performance value is excluded from the model. In addition,
R2-weighted importance values are produced for each environmental variable by averaging
out all R2

S values for a given environmental variable across every species in the model. The
R2 weighted importance value provides a measure of how much variation in the model is
predicted by each environmental variable. The mean R2 weighted importance value is an
indication of how much variation in the entire model is explained by all environmental
variables analysed.

GradientForest produces density plots that highlight regions of importance for chang-
ing community composition across an environmental gradient. In these plots, results are
smoothed with density curves to assist in interpretation. Raw importance values are first
aggregated into narrow bins and displayed as grey histogram bars (binned split importance
values). Split locations, interpreted as thresholds or breakpoints in the community, repre-
sent both locations and relative importance across the gradient [32,49]. The density of splits
(black line) is obtained through kernel density estimation, and the ratio of densities (the
blue line, representing an estimate of composition turnover) is obtained by dividing the
normalised density of data (red line). The resulting area under the blue curve is equivalent
to the R2-weighted importance of each predictor. Together, the density of data, the ratio of
densities, and the raw importance values are normalised and allow for rates of composition
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turnover to be compared across all predictors [31]. In the density plot, peaks in the blue
curve occur when the ratio of densities is greater than 1 and the density of splits outweighs
the density of data [31,32,45], identifying regions where there is a reduction in impurity and
the associated threshold is of greater importance. Cumulative importance plots are also pro-
vided in gradientForest. The first plot displays compositional turnover functions (species
curves) for each predictor and identifies individual species that are strongly associated with
specific community thresholds (or breakpoints) across each predictor gradient [31]. Species
curves can also be averaged to produce an overall composition turnover function for the
community across a given predictor, showing the overall community response across a
given gradient [31,32].

Here, we used gradient forest analysis to evaluate plant species abundance data
for 46 Jack pine dominant forest plots against 35 predictors (following the removal of
49 of the initial 88 predictors using variable selection methods). Plant species data across
all analysed sites included abundances for 206 species (nVascular = 124, nBryophyte = 36,
nLichen = 44, nFungi = 2). Species that occurred at a single site only were considered rare and
removed prior to analysis. Gradient forest was performed in R using both “extendedForest”
and “gradientForest” R packages [45,47]. The analysis was performed by setting the
gradientForest call to generate a forest of 500 regression trees (ntree = 500), setting the
correlation threshold to 0.5, and dividing the environmental gradients into 201 bins to
define density estimation (nbin = 201, [45]).

3. Results

Three categories of variables (climate, deposition, and soil chemistry variables) were
evaluated for 46 sites across Alberta, Saskatchewan, and the Northwest Territories (but
primarily located around the AOSR). Total deposited sulphur (TDS) ranged from 23.2 to
1182.2 eq ha−1 yr−1 (mean = 179.4 eq ha−1 yr−1; Table 1), while total deposited nitrogen
(TDN) ranged from 37.2 to 597.0 eq ha−1 yr−1 (mean = 176.4 eq ha−1 yr−1; Table 1). Total
N and S deposition were both positively skewed (TDN = +0.30, TDS = +0.38). Although
the two greatest contributors to TDN were dry nitrogen dioxide and dry ammonia, both
variables were removed following variable reduction using PCA. Annual mean temper-
ature (sg_12) ranged from −2.8 to 1.6 ◦C (mean = 0.02 ◦C), while annual precipitation
(bio_12) ranged from 359 to 483 mm (mean = 451.5 mm). The elevation of the sites varied
greatly, ranging from 231 m to 622 m, with a mean of 425 m. Sites were classified as
mostly acidic, with pH ranging from 3.59 to 7.19 (mean = 4.32) and bulk density ranging
from 0.94 to 1.64 g cm−3 (mean = 0.58 g cm−3). Percent organic matter ranged between
0.40% and 41.72%, with a mean of 2.78%. Correspondingly, the percent moisture ranged
between 0.09% and 8.25% (mean = 0.69%). Some variables experienced high standard
deviations, particularly TDN (standard deviation [SD] of 131.6 eq ha−1 yr−1) and elevation
(SD = 108.3 eq ha−1 yr−1). See Supplementary Materials SIII for descriptive statistics for
all environmental variables initially considered.

Partitioning the variance into three environmental groups (climate, deposition, and soil
chemistry) indicated that all three accounted for 52.9% of the overall variance. Soil chemical
variables accounted for the largest percentage of the total explained variation (26.6%),
with climate variables at 19.1%. Deposition variables accounted for the least variation, at
5.0% of the total explained variation. Nonetheless, this is important as the deposition is
an anthropogenic pressure that can alter the plant species composition dictated by site
conditions (soil chemistry and climate). The joint effect of all three partitions together
accounted for 43.3% of the total explained variation. While the joint effect of climate and
deposition was minimal (0.02%), the joint effect of climate and soil was 13.0% of the total
explainable variation. The partition table also returned the joint effect of deposition and
soil, which suggested that this combination was less representative of the total explainable
variation than random normal variables. Although the total variation was just over half
of the full model variation (52.9%), the contribution to the variation in species abundance
data was statistically significant (p < 0.001).
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Abundance data for the 206 species across the 46 sites were analysed in gradient
forest against the 35 environmental variables. Analysis revealed that of the 206 species,
48 had positive R2 overall performance values, and the mean R2 weighted importance was
0.00685 (Table 2). Seven of the top 48 species with positive R2 values were established as
very well predicted by the environmental variables (R2 > 0.4, Table 3, Figure 2), indicating
overall model performance was particularly well explained for these species. Several
environmental variables identified with high R2

S performance recurred across the top seven
species, including forest floor pH (pH_LFH), Julian day number at the start of the growing
season (sg_01), percent nitrogen (X.N), percent moisture (X._Moisture), latitude, and N-
mineralization (N.NH4), demonstrating their importance concerning changes occurring
within these specific species groups (Table 3).
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Figure 2. Species R2 overall performance is a measure of the fit of the random forest model for each
species, with all 46 species with positive R2 values labelled on the X-axis. The red outline identifies
seven species that were particularly well predicted by the environmental variables (R2 > 0.4; see
Table 3). Species with zero or negative R2 overall performance values are not included.

Table 2. R2-weighted importance for the top 20 environmental variables in decreasing order (left and
right columns), with the mean R2-weighted importance of all environmental variables. R2 weighted
importance values are the average of all R2

S performance values for all species for each predictor.

Environmental Variable R2 Weighted Importance Environmental Variable R2 Weighted Importance

Longitude 0.0147 Al_EC 0.0091
Latitude 0.0146 N.NH4 0.0087

sg_09 0.0138 TDN 0.0084
sg_12 0.0135 WSO4 0.0079
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Table 2. Cont.

Environmental Variable R2 Weighted Importance Environmental Variable R2 Weighted Importance

sg_01 0.0128 Mn_EC 0.0075
X.S_LFH 1 0.0125 LOI 0.0066

X.N 1 0.0121 WNO3 0.0061
pH_LFH 0.0113 sg_06 0.0059

TDS 0.0111 bio_12 0.0053
pH 0.0096 X._Moisture 0.0044

Mean R2 Weighted Importance 0.00685
1 X. Refers to percent: % S_LFH; % N.

Table 3. R2 overall importance, the sum of R2
S performance values for all environmental variables

across a given species, for the top seven species (R2 > 0.4). Specific R2 performance values (R2
S) for

the top five environmental variables associated with each species are also given.

Species Information R2 Overall Importance Specific R2
S Environmental Variable

Hylocomium splendens, bryophyte 0.925

0.1100 sg_01
0.0967 pH
0.0908 Latitude
0.0851 TDN
0.0820 Longitude

Elymus innovatus, vascular 0.540

0.1570 TDS
0.0960 WSO4
0.0607 TDN
0.0270 sg_01
0.0256 Longitude

Carex concinna, vascular 0.536

0.1640 pH_LFH
0.1210 X.N
0.0495 X._Moisture
0.0444 sg_12
0.0376 Latitude

Cladina mitis, lichen 0.526

0.1120 N.NH4
0.1040 sg_09
0.0459 sg_06
0.0400 pH_LFH
0.0340 PO4_LFH_H2O

Arctostaphylos-uva-ursi, vascular 0.525

0.1210 sg_01
0.1120 X.S_LFH
0.0759 sg_12
0.0626 N.NH4
0.0538 LOI

Aster sibiricus, vascular 0.453

0.1440 X.N
0.1420 pH_LFH
0.0291 sg_01
0.0263 X._Moisture
0.0196 Latitude

Rubus pubescens, vascular 0.446

0.1160 X.N
0.0949 sg_12
0.0873 pH_LFH
0.0303 X._Moisture
0.0205 sg_01

The R2 weighted importance value for percent moisture (X._Moisture) was found to
be less than one-third of that of the top R2 weighted importance value (0.00474 compared to
longitude at 0.0147, Table 2), indicating that any variable below this explains substantially
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less of the overall model variance. All variables with R2 weighted importance greater
than percent moisture had an associated positive mean accuracy importance value, except
exchangeable cations—aluminum (Al_EC, Figure 3). Accuracy importance was greatest for
Gdd (growing degree day) above base temperature for period 1 (sg_09), N-mineralization
(N.NH4), and forest floor percent sulphur (X.S_LFH) (311.4, 294.1, and 241.3, respectively,
Figure 3), and of all 35 variables analysed in gradientForest, 29 were identified with positive
accuracy importance values (Figure 3). However, any variables after forest floor percent
sulphur (X.S_LFH) had relatively low accuracy importance, indicating that while these
variables did have some effect on model accuracy, they had considerably less predictive
power. Among the top 20 predictors, soil chemistry variables were the dominant category
(based on variable classification using R2 weighted importance values, Table 2), supporting
the RDA variation partitioning results (with soil variables alone explaining 26.6% of the
variation in the data).
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Figure 3. (a) Mean accuracy importance. Higher accuracy importance values indicate greater
predictive power for the environmental variable, while lower values indicate the predictor explains
very little. (b) R2-weighted importance shows the overall conditional importance of predictors for
community turnover, calculated by weighting the species-level predictor importance by the species
R2 (codes refer to environmental variables in Table 1).

Several bioclimatic variables were also identified as having high R2 weighted and
accuracy importance (similar to [50]), with both longitude and latitude returning as top pre-
dictors based on their R2 weighted importance values (R2 = 0.0147 and 0.0146, respectively;
Table 2). However, the associated accuracy importance value for longitude was relatively
low (5.55, Figure 3). In addition to the low predictive power within this model, other studies
have highlighted the significant role that climate and geographic variables already play in
species composition [45,51]. As a result, several bioclimatic variables were precluded from
further review of gradientForest results. The variables selected for further consideration
had both high R2 weighted importance and associated mean accuracy importance and
were highly influenced by anthropogenic activity.
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Gradient forest analysis identified several soil chemical variables as important with
respect to changing community composition, including percent N and N-mineralization
(Figure 3), which are both indicators of N saturation [52,53]. The density of splits plot
for the percent N gradient revealed a single split across the gradient, occurring between
0.06 and 0.08% (Figure 4a). Species primarily associated with this community breakpoint
were mostly vascular species, including Aster sibiricus, Carex concinna, and Rubus pubescens
(Figure 4b,c), with Aster sibiricus having the greatest specific R2

S performance value across
this gradient (0.144, Table 3). The density plot for N-mineralization revealed two important
splits occurring across the gradient, the first between 1–3 mg kg−1 and again between
8–10 mg kg−1 (Figure 4a). Across both breakpoints, the density of splits was fairly high;
however, in the second split, the density of data was considerably lower, indicating that
this split accounted for a greater reduction in impurity and a slightly more prominent effect
on overall changes in community composition (Figure 4c). Changes in species composition
occurred across both split locations, with the first split being associated with more lichen
species. Several lichen species demonstrated considerable changes in this range, including
Cladina mitis and Cladonia multiformis, but their contribution to overall community change-
points was more gradual and less prominent than the secondary breakpoint (Figure 4b).
The secondary breakpoint demonstrated a more significant community shift and was asso-
ciated with more vascular species (Figure 4b). Cladina mitis was also identified with the
highest specific R2

S performance value (0.112, Table 3), indicating that variation within this
species was best explained by the N-mineralization predictor.

Other soil chemical variables were returned with high R2-weighted importance, with
both mineral soil and forest floor (LFH) pH identified as contributing to significant changes
in community composition (Figure 5a). The density plot for mineral soil pH revealed
two community breakpoints where the ratio of densities was greater than 1 (Figure 5).
The first breakpoint, occurring around a pH of 2, was less pronounced than the second
breakpoint, occurring around a pH of 6 (Figure 5). The density of data and binned split
importance values (grey histogram bars) peaked between pH 3 and 5. Although a low pH
can indicate soil acidification [54], the associated density of splits in this range was very
low. This indicates that any compositional changes occurring in this range did not result in
a significant community shift (Figure 5).

The cumulative importance plots for pH in soil confirmed that the secondary peak was
more important with respect to shifts in community composition (Figure 5c). Several species
experienced substantial changes across this secondary breakpoint (pH of 6), including Epilobium
angustifolium, Shepherdia canadensis, Viburnum edule, Pyrola secunda, and Hylocomium splendens
(Figure 5b), with the latter having the greatest specific R2

S performance value across the gradi-
ent (0.0967; Table 3). The density plot for forest floor pH (LFH) demonstrated similar trends to
pH in mineral soil; however, only one community breakpoint was identified (peaking at pH 6;
Figure 5a). Although the density of data and binned split importance were greater between
pH 3 and 4, the density of splits was relatively low, indicating that very little occurred here with
respect to compositional shifts at the community level (Figure 5a). The cumulative importance
plots for pH in the forest floor identified several species, including Carex concinna, Aster sibiri-
cus, Rubus pubescens, Habenaria orbiculata, and Zygadenus elegans, in significant compositional
changes that contributed to overall community breakpoints (Figure 5b). The variation in Carex
concinna was best explained by forest floor pH (pH_LFH), with a specific R2

S performance
value of 0.164; Table 3).

Two important breakpoints were identified in the density plot for TDN. The first
occurred at a low range in the gradient (between 0–100 eq ha−1 yr−1), while the second
breakpoint, occurring between 300 and 500 eq ha−1 yr−1 (peaking around 400 eq ha−1 yr−1

[5.6 kg N ha−1 yr−1]) was more pronounced, indicative of a higher rate of change with
respect to community composition in this range (Figure 6a; [32]). Important splits across
this gradient appeared to occur between 100 and 200 eq ha−1 yr−1; however, the density
of data was relatively low compared to the density of splits. This indicates that species
experiencing a change in this range did not significantly contribute to any community
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shift, as seen in both cumulative plots (Figure 6). Across the 300–500 eq ha−1 yr−1 range,
the density of splits outweighed the density of data, indicating that, although fewer splits
occurred in this range, they accounted for a greater reduction in impurity, contributing to a
more significant community threshold (Figure 6a).
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Figure 4. Gradient forest analysis for nitrogen (N)-mineralization (N.NH4; left column) and per-
cent nitrogen (X.N; right column). (a) Densities plotted with binned split importance values (grey
histogram bars), the density of data (red line), the density of splits (black line), and the ratio of split-
over-density (blue line). The dashed line is where the ratio = 1. Relatively greater community-level
changes (high split importance values) occur when the ratio of densities > 1. (b) Species cumulative
importance plots showing the cumulative distribution of splits importance scaled by R2 weighted
importance and standardised by the density of observations. Each line represents an individual
species, and the legend identifies the top 10 species experiencing the largest composition changes
across the gradient. (c) Community cumulative importance plots are calculated by the sum of the
weighted averages of all species in (b) and show the overall pattern of compositional change for
all species.
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Figure 5. Gradient forest analysis for mineral soil pH (left column) and forest floor pH (pH_LFH;
right column). (a) Densities plotted with binned split importance values (grey histogram bars), the
density of data (red line), the density of splits (black line), and the ratio of split-over-density (blue
line). The dashed line is where the ratio = 1. Relatively greater community-level changes (high split
importance values) occur when the ratio of densities > 1. (b) Species cumulative importance plots
showing the cumulative distribution of splits importance scaled by R2 weighted importance and
standardised by the density of observations. Each line represents an individual species, and the
legend identifies the top 10 species experiencing the largest composition changes across the gradient.
(c) Community cumulative importance plots are calculated by the sum of the weighted averages of
all species in (b) and show the overall pattern of compositional change for all species.
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Figure 6. Gradient forest analysis for total deposited nitrogen (TDN; left column) and total de-
posited sulphur (TDS; right column). (a) Densities plotted with binned split importance values (grey
histogram bars), the density of data (red line), the density of splits (black line), and the ratio of split-
over-density (blue line). The dashed line is where the ratio = 1. Relatively greater community-level
changes (high split importance values) occur when the ratio of densities > 1. (b) Species cumulative
importance plots showing the cumulative distribution of splits importance scaled by R2 weighted
importance and standardised by the density of observations. Each line represents an individual
species, and the legend identifies the top 10 species experiencing the largest composition changes
across the gradient. (c) Community cumulative importance plots are calculated by the sum of the
weighted averages of all species in (b) and show the overall pattern of compositional change for
all species.

Community thresholds can also be observed in the cumulative importance plots
(Figure 6b,c). Shifts in vascular species were predominantly associated with greater levels
of TDN (Figure 6b). At low levels of TDN (less than 100 eq ha−1 yr−1), Hylocomium
splendens, a bryophyte, experienced the greatest cumulative importance change (Figure 6b),
and respective specific R2

S performance values revealed that TDN best explained the
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variation within this species (Table 3). A small number of lichen species, including Evernia
mesomorpha, experienced a sudden rise in specific cumulative importance between 100–
200 eq ha−1 yr−1, although, given the decline in the density of data and that the ratio of
densities remained less than 1 (Figure 6a), there was no effect on the overall community.
From both the density plot and the cumulative importance plots, it appeared that the
secondary breakpoint, at 400 eq ha−1 yr−1, was representative of a more clearly defined
community-level threshold for nitrogen deposition.

The density plot for TDS revealed two distinct breakpoints across the gradient. While
the first appeared as a broad breakpoint, the second was more pronounced (Figure 6a). The
cumulative plot revealed a much smaller threshold at very low levels of TDS. While many
important splits occurred between 0–100 eq ha−1 yr−1, large changes in species abundance
corresponded with relatively low, incremental increases in total sulphur, indicating that the
community threshold was minor (Figure 6b,c). Across the first distinct breakpoint from
the TDS density plot, some splits occurred between 400–600 eq ha−1 yr−1; however, the
cumulative importance curve indicated that no large shifts in any single species took place.
Instead, this breakpoint was likely associated with the many very minor changes occurring
in this range, resulting in the more gradual slope observed for cumulative importance
plots (Figure 6b,c). This indicates a much smaller effect on community composition. The
integration of the ratio of densities for each species (specific cumulative importance plot)
revealed that several species were experiencing relatively small cumulative changes across
both thresholds observed in the density plot, including Populus tremuloides, Dicranum
polysetum, Melampyrum lineare, and Amelanchier alnifolia (Figure 6b). However, Elymus
innovatus had the highest R2

S performance value (Table 3). While both breakpoints were
relatively important with respect to community thresholds, the second breakpoint, peaking
around 900 eq ha−1 yr−1, represented a higher rate of change (Figure 6c). Consistent with
TDN, this secondary breakpoint was more pronounced, and from these results, it was more
representative of an existing community-level threshold for sulphur deposition.

4. Discussion
4.1. Variance Partitioning and Joint Effects

Variance partitioning revealed that all three categories of variables explained a sta-
tistically significant 52.9% of all variation. Soil chemistry variables explained the greatest
amount of variation, followed by bioclimatic and then deposition variables (26.6, 19.1, and
5.0%, respectively). This is consistent with previous studies showing that soil chemistry
variables (followed by climate and then deposition variables) explained the most variation
in plant species composition across European acid grasslands [55](Stevens et al., 2011b).
Atmospheric deposition variables explained the least amount of total variation in species
composition, which is consistent with other studies [9,55,56] and may be attributed to
differences in the scale of data. Assessing the effects of N deposition at a regional scale
often relies on using monitoring techniques and strategies that provide long-term data
and cover a wide spatial range. In this study, we used modelled estimates of deposition
at a resolution of 2.5 km × 2.5 km coupled with site-specific observations of plant species
abundances and soil chemistry. However, modelled N deposition at a broad spatial scale
can vary from actual N deposition at a local scale [9,57,58]. Differences between modelled
and actual N deposition can be attributed to several factors, including the type of deposi-
tion (e.g., wet or dry deposition, [4,59]), proximity to the emissions source, whether they
are point-source emissions or not, and the source itself (whether agricultural or indus-
trial, [60,61]). As a result, determining site-specific impacts using regional estimates of N
deposition data can be challenging. Therefore, it is appropriate that soil chemistry variables
explain the greatest amount of variation because, unlike bioclimatic or deposition variables,
soil-chemistry variables in this study were based on soils sampled at the same locations as
the plant surveys.

The partition table also revealed that joint effects for some variables were contributors
to the total explainable variation. In the current study, the joint effect of climate and soil
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was 13.0% of the total explainable variation, and with climate representing one of the
major five factors contributing to soil formation, these effects are well documented [62].
Although the joint effect of deposition on soil was negligible in this study, the combination
of all three categories acting jointly represented a significant 43.3% of the total explainable
variation. While it is possible that the effects of deposition on soil could not be captured
by the selected variables in this study, many studies have documented that deposition can
heavily influence soil properties [3,24,55,56,63]. Isolating the effects on species composition
from either soil chemistry variables or deposition can be challenging due to the long-term
changes that can occur as a result of increased deposition. These changes can include soil
processes such as acidification or eutrophication, which can eventually result in changes
in species composition [56,64]. Given the inherent influence that atmospheric deposition
can have on soil, some argue that neither should be considered fully independent of the
other [55,65].

4.2. Drivers of Community Thresholds for Jack Pine Forests in the AOSR

Gradient forest analysis identified five bioclimatic variables among the most important
drivers of community thresholds (Figure 3). This could be a result of the greater variability
across a large spatial scale, resulting in a larger environmental gradient and an increase
in background environmental noise [9,56,64,66]. Although this study attempted to reduce
background variability by selecting a single forest type across a relatively localised region,
our results still identified longitude and latitude as top predictors, consistent with previous
studies [45,50].

In addition to the bioclimatic predictors, two deposition variables (TDN and TDS) and
several soil variables were also important drivers of community thresholds (Figure 3). In
our study, percent N, N-mineralization, and pH (forest floor and mineral) were among the
soil variables with high predictor importance. The important relationship between these
variables and plant community thresholds has been described in several studies evaluating
both the direct and indirect effects of deposition on soil [3,56,63,67–69]. Increased S or N
deposition can lead to decreases in soil pH, which can subsequently have a cascading com-
munity impact. These impacts can range from soil acidification, eutrophication, base cation
depletion [70,71], and mobilisation of heavy metals, particularly aluminium (Al, [72–74], to
changes in N-mineralization and nitrification rates, both important processes that convert
organic N into NH4

+ and NH4
+ into NO3

− [63,75]. Additional deposition variables that
can affect soil pH include dust deposition, which is effectively a surrogate for base cations
and can represent an indication of soil alkalization [14]. Although in our study, modelled
estimates of particle crustal material, representing coarse dust deposition, were initially
included in our analysis, no observed effect on species composition was seen, and the
variable was not considered further. Ultimately, our results support the important implica-
tions of plant available N (N.NH4), percent N, and pH in driving community thresholds
(Figure 3). While the net result of N additions can be large imbalances in nutrients and less
plant-available N, this complex cascade of community impacts can eventually result in a
loss in plant species composition [67,71,76].

Total N deposition and TDS were considered separately in this study; however, they
were correlated (0.85). Several studies have revealed similar findings, suggesting that
existing correlations between the two variables create difficulties in isolating their level of
influence on species composition [55,56]. Although there has been a concerted effort over
the past few decades to reduce S emissions, evidence of a stronger relationship between pH
and total acidic deposition instead of just N deposition alone exists [3,64]. This is indicative
that S deposition remains an important driver of species composition.

4.3. Biodiversity-Based Empirical Critical Loads

In this study, gradient forest analysis provided both community thresholds and in-
dependent species response information. Across the TDN gradient, a single, definitive
threshold of 400 eq ha−1 yr−1 (5.6 kg N ha−1 yr−1) was identified (Figure 6), which was
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assumed to represent the biodiversity-based empirical critical load for nutrient N. This
threshold was highly associated with changes in multiple vascular species, including Py-
rola asarifola, Pyrola chlorantha, Cornus canadensis, and Arctostaphylos uva-ursi. In addition,
bryophyte and lichen species were also identified, including Pleurozium schreberi, Vulpicida
pinastri, and Dicranum polysetum (Figure 6).

In boreal forests, the response to increased N deposition is often characterized by a
general decrease in species composition and species abundance [19]. However, several
studies have identified that these declines are often species-specific for vascular [55,77,78],
bryophyte, and lichen species [21,77,79–81]. This response can vary depending on other
factors, including different N treatments, landscape management, or differences in stand
structure or age. However, similar to our results, other studies have reported a strong
response in common bryophytes such as Pleurozium schreberi or Dicranum polysetum across
comparable boreal forest habitats [77,79,80,82]. In one study, biomass for D. polysetum
and P. schreberi declined considerably (by 60% and 78%, respectively) following a 4-year
N addition treatment in Finland [83], while in a separate study, P. schreberi was almost
entirely absent in long-term study plots following medium and high N-addition treatments
in northern Sweden [84].

In our study, both the density plot and the cumulative importance plots suggested
that the TDN threshold of 400 eq ha−1 yr−1 (5.6 kg N ha−1 yr−1) was significant for overall
community-level change (Figure 6). Across similar boreal forests in Europe, an empirical
critical load for nutrient N ranging between 10–20 kg N ha−1 yr−1 was proposed based on
changes in soil processes, in both ground vegetation and mycorrhiza, nutrient imbalances,
and increased susceptibility to parasites [85]. However, this range was broadly revised
to 3–15 kg N ha−1 yr−1 for all coniferous forests [6], with one study suggesting a critical
load of 6 kg N ha−1 yr−1 for boreal forests in Sweden [80], while for the AOSR a range
of 5–10 kg N ha−1 yr−1 was recommended [60]. In line with our findings, the critical
loads established in Sweden were also based on the decline in abundance of several key
Vaccinium species due to deposition exceeding 6 kg N ha−1 yr−1 [80]. Similarly, critical
loads in the AOSR were derived from the changes in ground vegetation and reduction
in lichen species [60]. These studies provide further support for the biodiversity-based
empirical critical load of 5.6 kg N ha−1 yr−1 that we found in our study.

From the cumulative importance plots, species that were associated with important
thresholds across the TDN gradients also appeared to be among the best-predicted species
for the full model (Figure 2, Table 3). Gradient forest analysis identified seven species
that were particularly well predicted by the full suite of environmental variables, five of
which were vascular species, including Elymus innovatus, Carex concinna, Arctostaphylos
uva-ursi, Aster sibiricus, and Rubus pubescens (R2 > 0.4, Figure 2). The two best predicted
species in this model were Hylocomium splendens, a bryophyte, and Elymus innovatus, a grass
species (Figure 2), with both also identifying TDN as a main driver of change (Table 3).
Several of these species, including Carex species, R. pubescens, H. splendens, and E. innovates,
have previously been identified as N indicators in the AOSR [60], and all but H. splendens
are known nitrophiles that are capable of effectively utilising higher levels of N [2,86–88].
Hylocomium splendens is also known to decrease in cover following N treatments [80,84],
with one study noting declines for this species begin above 10 kg N ha−1 yr−1 [77]. In our
study, H. splendens experienced a notable response at relatively lower TDN levels (between
0–100 eq ha−1 yr−1 or 0–1.4 kg N ha−1 yr−1; Figure 6). However, thresholds identified at
the extremes of a gradient can often represent only a small fraction of data sites, and as
such, this threshold was not evaluated further to avoid any potential bias [89].

In addition, Arctostaphylos uva-ursi (Bearberry), a vascular shrub found in abundance
across the boreal forest, was among the top-predicted vascular species in the full model
(Figure 2) and was also highly associated with the TDN gradient (Figure 6). Several studies
have observed a decline in abundance for A. uva-ursi in response to N additions [60,90].
However, in a more recent study, greater productivity was identified for A. uva-ursi in
response to increasing N addition across fertiliser treatments [91], indicating that N was not
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directly causing a loss of this dwarf shrub. Rather, as cited in other studies, N deposition,
even at low levels, favours some fast-growing, nitrophilic, vascular species that often
include many grass or sedge species, such as E. innovatus [79,90,92]. As these grass species
experience an increase in cover, they begin to outcompete slower-growing, low-lying,
prostrate shrubs such as A. uva-ursi for resources, including light [3,21,87,91,93]. Apart
from the outcompete model between fast-growing grass species and slower-growing shrubs,
there may be other mechanisms that could explain the different responses observed in
different species along the gradient [9,23,77,78,94]. Additional studies on these driving
mechanisms and the long-term response for specific species identified in gradient forest
analysis may be beneficial in characterizing this relationship.

While the contribution of S deposition to increased soil acidity and its resulting effects
on an ecosystem have demonstrated its importance in community composition, S was
not the primary focus of this research. However, it should be noted that across the TDS
gradient, one significant community threshold appeared at approximately 900 eq ha−1 yr−1

(14.4 kg S ha−1 yr−1; Figure 6), which is relatively consistent with results citing declines in
lichen occurring at similar S deposition levels [95].

4.4. Limitations and Uncertainties

One of the primary limitations was the availability of data. Although there were
many environmental predictors available for this analysis, these are not the only variables
responsible for changes in plant species composition. Other factors, including climate
change, land-use intensification, historical events, species interactions, temporal variability,
or even fire history [43,96], may have ecologically significant roles in species composition.
In addition, for this analysis, variable reduction methods were followed to reduce predictors
if they were highly correlated and shared similar environmental processes. However, in
a separate gradient forest study, the selection of predictor variables was responsible for
a low overall explained variation [43], also observed here. Furthermore, the resolution
across the data in this study changed considerably. While both species abundance data
and soil-chemical variables represented site-specific measurements, modelled deposition
estimates had a broader resolution (2.5 km × 2.5 km), which may not have been fully
representative of true site-specific deposition. Given these differences, it is possible that
the gradient forest analysis may not have been able to accurately capture the full model
variability.

Moreover, in this study, we were faced with a common situation in ecological mod-
elling where the number of sites or observations was only marginally higher than the
number of predictors considered. Generally, this can result in poor model predictions.
However, random forests and subsequently gradient forests are known to be able to handle
model overfitting or underfitting reasonably well [31,32,45,97]. In a gradient forest, both
the built-in randomization process referred to as bagging, and the repetition of a single
tree to create a forest are meant to improve the model’s generality, avoid over-fitting, and
create a model with high performance. However, additional studies could take a different
approach following variation partitioning, as the use of categorical layers of predictors in a
gradient forest might improve model performance.

Finally, as mentioned with respect to the TDN gradient, any community thresholds
identified at the extremes of a gradient, representing few data points, can potentially be
biassed in gradient forest analysis [89]. While our results found a community threshold for
S that was consistent with other studies [95], there is a possibility that this represents one
such example of bias as the community thresholds were located close to the extremity of
the gradient (S range: 23.2–1182.1 eq S ha−1 yr−1).

5. Conclusions

In this study, partition variation provided a wide-angle view of the relationship be-
tween soil chemistry, bioclimatic, and deposition variables and the variation in plant
species composition. This was followed by gradient forest analysis to further define this re-
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lationship through species-level and community-level responses across multiple gradients.
Gradient forest provided a multivariate analysis across multiple environmental variables,
which is an advantage compared to other gradient methods, including TITAN or regression
analysis, that only consider a single predictor. Consistent with other studies, soil chemistry
variables explained the largest amount of species variation among predictor categories; how-
ever, joint effects between variables were also relatively important. Plant species responses
across the nitrogen deposition gradient highlighted that different species are susceptible to
different thresholds across a single gradient and may be driven by different mechanisms.
Across the nitrogen deposition threshold, there was a mix of vascular and bryophyte species
that experienced important community-level changes, including A. uva-ursi, several Pyrola
species, C. canadensis, P. schreberi, D. polysetum, and V. pinastri. Similarities between our
results and other studies suggested that community thresholds identified under gradient
forest analysis were ecologically relevant and supported a biodiversity-based empirical
critical load for nutrient nitrogen of 5.6 kg N ha−1 yr−1 for Jack pine forests in the AOSR.
While the 14.4 kg S ha−1 yr−1 threshold was consistent with previous work, there was
uncertainty in this threshold given the potential for bias at the extremities of the gradient.
Further studies could benefit from performing gradient forest analysis on individual cat-
egories of predictors to better define the variability seen in species and include a wider
breadth of data, such as fire history or frequency across the landscape.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nitrogen4020012/s1, SM SI: Vegetation plot configurations and survey
information, SM SII: GradientForest information, SM SIII: GradientForest density and species cumulative
importance plots.

Author Contributions: Conceptualization, N.V. and J.A.; methodology, N.V. and J.A.; formal analysis,
N.V.; investigation, N.V.; writing—original draft preparation, N.V. and J.A.; writing—review and
editing, N.V. and J.A.; funding acquisition, J.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was carried out with financial support from Environment and Climate Change
Canada (G&C GCXE15Z268 and GCXE19S022).

Data Availability Statement: Data used in this study are provided in the Supplementary Materials.

Acknowledgments: We gratefully acknowledge the contributions of Kevin Adkinson, Scott Baker,
Phaedra Cowden, Jeremy Dunham, and Tanner Liang with field work and laboratory analysis.
Moreover, we thank Hazel Cathcart, Morgan Kleiber, and Kayla Wilkins for their assistance in
statistical computing and programming. We gratefully acknowledge WBEA, SK-FEC, and NWT-FEC
for access to data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aber, J.D.; Nadelhoffer, K.J.; Steudler, P.; Melillo, J.M. Nitrogen saturation in Northern forest ecosystems. Bioscience 1989, 39,

378–386. [CrossRef]
2. Bobbink, R.; Hornung, M.; Roelofs, J.G.M. The effects of air-borne nitrogen pollutants on species diversity in natural and

semi-natural European vegetation. J. Ecol. 1998, 86, 717–738. [CrossRef]
3. Dise, N.B.; Ashmore, M.; Belyazid, S.; Bleeker, A.; Bobbink, R.; de Vries, W.; Erisman, J.W.; Spranger, T.; Stevens, C.J.; van den

Berg, L. Nitrogen as a threat to European terrestrial biodiversity. In The European Nitrogen Assessment; Sutton, M.A., Howard, C.M.,
Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge,
UK, 2011; Chapter 20.

4. Fenn, M.E.; Haeuber, R.; Tonnesen, G.S.; Baron, J.S.; Grossman-Clarke, S.; Hope, D.; Jaffe, D.A.; Copeland, S.; Geiser, L.; Rueth,
H.M.; et al. Nitrogen emissions, deposition and monitoring in the Western United States. Bioscience 2003, 53, 391–403. [CrossRef]

5. Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The nitrogen cascade. BioScience
2003, 53, 341–356. [CrossRef]

6. Bobbink, R.; Loran, C.; Tomassen, H. Review and Revision of Empirical Critical Loads of Nitrogen for Europe; German Environment
Agency: Dessau-Roßlau, Germany, 2022; p. 358.

https://www.mdpi.com/article/10.3390/nitrogen4020012/s1
https://www.mdpi.com/article/10.3390/nitrogen4020012/s1
https://doi.org/10.2307/1311067
https://doi.org/10.1046/j.1365-2745.1998.8650717.x
https://doi.org/10.1641/0006-3568(2003)053[0391:NEDAMI]2.0.CO;2
https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2


Nitrogen 2023, 4 190

7. Fenn, M.E.; Baron, J.S.; Allen, E.B.; Rueth, H.M.; Nydick, K.R.; Geiser, L.; Bowman, W.D.; Sickman, J.O.; Meixner, T.; Johnson,
D.W.; et al. Ecological effects of nitrogen deposition in the Western United States. BioScience 2004, 53, 404–420. [CrossRef]

8. Geiser, L.H.; Jovan, S.E.; Glavich, D.A.; Porter, M.K. Lichen-based critical loads for atmospheric nitrogen deposition in Western
Oregon and Washington forests, USA. Environ. Pollut. 2010, 158, 2412–2421. [CrossRef] [PubMed]

9. Maskell, L.C.; Smart, S.M.; Bullock, J.M.; Thompson, K.; Stevens, C.J. Nitrogen deposition causes widespread loss of species
richness in British habitats. Glob. Change Biol. 2010, 16, 671–679. [CrossRef]

10. Nilsson, J.; Grennfelt, P. Critical Loads for Sulphur and Nitrogen; Report from a workshop held at Skokloster, Sweden; UNECE and
the Nordic Council of Ministers: Sweden, 1988.

11. Wilkins, K.; Clark, C.; Aherne, J. Ecological thresholds under atmospheric nitrogen deposition for 1200 herbaceous species and
24 communities across the United States. Glob. Chang. Biol. 2022, 28, 2381–2395. [CrossRef]

12. Bobbink, R. Plant Species Richness and the Exceedance of Empirical Nitrogen Critical Loads: An Inventory; Report Landscape Ecology;
Utrecht University/RIVM: Utrecht, The Netherlands, 2004; p. 19.

13. Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Air Pollutant Emissions. 2019.
Available online: www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.
html (accessed on 19 June 2019).

14. Clair, T.A.; Percy, K.E. Assessing Forest Health in the Athabasca Oil Sands Region; WBEA Technical Report 2015-05-25; Wood Buffalo
Environmental Association: Fort McMurray, AB, Canada, 2015; p. 180 + Appendices.

15. Aherne, J.; Shaw, P. Impacts of sulphur and nitrogen deposition in western Canada. J. Limnol. 2010, 69, 1–3. [CrossRef]
16. de Vries, W.; Hettelingh, J.-P.; Posch, M. Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and

Aquatic Ecosystems; Environmental Pollution Series; Springer: Dordrecht, The Netherlands, 2015; Volume 25.
17. Aherne, J.; Posch, M. Impacts of nitrogen and sulphur deposition on forest ecosystem services in Canada. Curr. Opin. Environ.

Sustain. 2013, 5, 108–115. [CrossRef]
18. de Vries, W.; Wamelink, G.W.W.; van Dobben, H.; Kros, J.; Reinds, G.J.; Mol-Dijkstra, J.P.; Smart, S.M.; Evans, C.D.; Rowe, E.C.;

Belyazid, S.; et al. Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition:
An overview. Ecol. Appl. 2010, 20, 69–79. [CrossRef]

19. Bobbink, R.; Hettelingh, J. Review and Revision of Empirical Critical Loads and Dose-Response Relationships: Proceedings of An Expert
Workshop; Noordwijkerhout, Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM):
The Netherlands, 2011.

20. Henry, J.; Aherne, J. Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands. Sci. Total
Environ. 2014, 470–471, 216–223. [CrossRef] [PubMed]

21. Pardo, L.H.; Fenn, M.E.; Goodale, C.L.; Geiser, L.H.; Driscoll, C.T.; Allen, E.B.; Baron, J.S.; Bobbink, R.; Bowman, W.D.; Clark,
C.M.; et al. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol. Appl.
2011, 21, 3049–3082. [CrossRef]

22. Blake, L.; Goulding, K.W.T.; Mott, C.J.B.; Johnston, A.E. Changes in soil chemistry accompanying acidification over more than 100
years under woodland and grass at Rothamstead Experimental Station, UK. Eur. J. Soil Sci. 1999, 50, 401–412. [CrossRef]

23. Duprè, C.; Stevens, C.J.; Ranke, T.; Bleekers, A.; Peppler-Lisbach, C.; Gowing, D.J.G.; Dise, N.B.; Dorland, E.; Bobbink, R.;
Diekmann, M. Changes in species richness and composition in European acidic grasslands over the past 70 years: The contribution
of cumulative atmospheric nitrogen deposition. Glob. Chang. Biol. 2010, 16, 344–357. [CrossRef]

24. Clark, C.M.; Cleland, E.E.; Collings, S.L.; Fargione, J.E.; Gough, L.; Gross, K.L.; Pennings, S.C.; Suding, K.N.; Grace, J.B.
Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol. Lett. 2007, 10, 596–607.
[CrossRef] [PubMed]

25. Stevens, C.J.; Dise, N.B.; Mountford, J.O.; Gowing, D.J. Impact of nitrogen deposition on the species richness of grasslands. Science
2004, 303, 1876–1879. [CrossRef]

26. Stevens, C.J.; Duprè, C.; Dorland, E.; Gaudnik, C.; Gowing, D.J.G.; Bleeker, A.; Diekmann, M.; Alard, D.; Bobbink, R.; Fowler, D.;
et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 2010, 158, 2940–2945. [CrossRef]
[PubMed]

27. Henrys, P.A.; Stevens, C.J.; Smart, S.M.; Maskell, L.C.; Walker, K.J.; Preston, C.D.; Crowe, A.; Rowe, E.C.; Gowing, D.J.; Emmett,
B.A. Impacts of nitrogen deposition on vascular plants in Britain: An analysis of two national observation networks. Biogeosciences
2011, 8, 3501–3518. [CrossRef]

28. Baker, M.E.; King, R.S. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods
Ecol. Evol. 2010, 1, 25–37. [CrossRef]

29. Payne, R.J.; Dise, N.B.; Stevens, C.J.; Gowin, D.J.; BEGIN Partners. Impact of nitrogen deposition at the species level. Proc. Natl.
Acad. Sci. USA. 2013, 110, 984–987. [CrossRef] [PubMed]

30. Wilkins, K.; Aherne, J.; Bleasdale, A. Vegetation community change points suggest that critical loads of nutrient nitrogen may be
too high. Atmos. Environ. 2016, 146, 324–331. [CrossRef]

31. Ellis, N.; Smith, S.J.; Pitcher, C.R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 2012, 93,
156–168. [CrossRef]

https://doi.org/10.1641/0006-3568(2003)053[0404:EEONDI]2.0.CO;2
https://doi.org/10.1016/j.envpol.2010.04.001
https://www.ncbi.nlm.nih.gov/pubmed/20447744
https://doi.org/10.1111/j.1365-2486.2009.02022.x
https://doi.org/10.1111/gcb.16076
www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html
www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html
https://doi.org/10.4081/jlimnol.2010.s1.1
https://doi.org/10.1016/j.cosust.2013.02.005
https://doi.org/10.1890/08-1019.1
https://doi.org/10.1016/j.scitotenv.2013.09.047
https://www.ncbi.nlm.nih.gov/pubmed/24140692
https://doi.org/10.1890/10-2341.1
https://doi.org/10.1046/j.1365-2389.1999.00253.x
https://doi.org/10.1111/j.1365-2486.2009.01982.x
https://doi.org/10.1111/j.1461-0248.2007.01053.x
https://www.ncbi.nlm.nih.gov/pubmed/17542938
https://doi.org/10.1126/science.1094678
https://doi.org/10.1016/j.envpol.2010.06.006
https://www.ncbi.nlm.nih.gov/pubmed/20598409
https://doi.org/10.5194/bg-8-3501-2011
https://doi.org/10.1111/j.2041-210X.2009.00007.x
https://doi.org/10.1073/pnas.1214299109
https://www.ncbi.nlm.nih.gov/pubmed/23271811
https://doi.org/10.1016/j.atmosenv.2016.07.016
https://doi.org/10.1890/11-0252.1


Nitrogen 2023, 4 191

32. Pitcher, C.R.; Lawton, P.; Ellis, N.; Smith, S.J.; Incze, L.S.; Wei, C.-L.; Greenlaw, M.E.; Wolff, N.H.; Sameoto, J.A.; Snelgrove, P.V.R.
Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems.
J. Appl. Ecol. 2012, 49, 670–679. [CrossRef]

33. McLaughlan, M.S.; Wright, R.A.; Jiricka, R.D. Field Guide to the Ecosites of Saskatchewan’s Provincial Forests; Saskatchewan Ministry
of Environment, Forest Service: Prince Albert, SK, Canada, 2010; p. 343.

34. Ecodynamics Consulting Group International Inc. 2004 Northwest Territories Forest Ecosystem Classification Pilot Project (Final
Report); Government of the Northwest Territories, Department of Resources, Wildlife, and Economic Development: Prince Albert,
SK, Canada, 2004.

35. Foster, K.R.; Baines, D.; Percy, K.; Legge, A.; Maynard, D.; Chisholm, V. WBEA TEEM Forest Health Monitoring Program; Draft
Procedures Manual. Version 1; Wood Buffalo Environmental Association: Fort McMurray, AB, Canada, 2015; p. 201.

36. Makar, P.A.; Akingunola, A.; Aherne, J.; Cole, A.S.; Aklilu, Y.-A.; Zhang, J.; Wong, I.; Hayden, K.; Li, S.-M.; Kirk, J.; et al. Estimates
of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan. Atmos. Chem. Phys. 2018, 18, 9897–9927.
[CrossRef]

37. King, J.R.; Jackson, D.A. Variable selection in large environmental data sets using principal component analysis. Environmetrics
1999, 10, 67–77. [CrossRef]

38. Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [CrossRef]
39. Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [CrossRef]
40. Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos,

P.; et al. Community Ecology Package: Package ‘Vegan’. R Vignette. 2016. Available online: https://cran.r-project.org (accessed
on 12 April 2023).

41. Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer: New York, NY, USA, 2011.
42. ter Braak, C.J.F. Canonical Correspondence Analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecol.

Soc. Am. 1986, 67, 1167–1179. [CrossRef]
43. Compton, T.J.; Bowden, D.A.; Pitcher, C.R.; Hewitt, J.E.; Ellis, N. Biophysical patterns in benthic assemblage composition across

contrasting continental margins off New Zealand. J. Biogeogr. 2012, 40, 75–89. [CrossRef]
44. Pitcher, C.R.; Ellis, N.; Smith, S.J. Example Analysis of Biodiversity Survey Data with R Package gradientForest. R Vignette. 2011.

Available online: http://gradientforest.r-forge.r-project.org/biodiversity-survey.pdf (accessed on 12 April 2023).
45. Roubeix, V.; Danis, P.-A.; Feret, T.; Baudoin, J.-M. Identification of ecological thresholds from variations in phytoplankton

communities among lakes: Contribution to the definition of environmental standards. Environ. Monit. Assess. 2016, 188, 246.
[CrossRef]

46. Tang, T.; Tang, T.; Tan, L.; Gu, Y.; Jiang, W.; Cai, Q. Identifying community thresholds for lotic benthic diatoms in response to
human disturbance. Sci. Rep. 2017, 7, 4134. [CrossRef] [PubMed]

47. Smith, S.J.; Ellis, N.; Pitcher, C.R. Conditional Variable Importance in R Package Extended Forest. 2014. Available online:
http://gradientforest.r-forge.r-project.org/Conditional-importance.pdf (accessed on 12 April 2023).

48. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
49. Large, S.I.; Fay, G.; Friedland, K.D.; Link, J.S. Quantifying patterns of change in marine ecosystem response to multiple pressures.

PLoS ONE 2015, 10, e0119922. [CrossRef]
50. Vandinther, N.; Aherne, J. Ecological Risks from Atmospheric Deposition of Nitrogen and Sulphur in Jack Pine forests of

Northwestern Canada. Nitrogen 2023, 4, 102–124. [CrossRef]
51. Field, R.; Hawkins, B.A.; Cornell, H.V.; Currie, D.J.; Diniz-Filho, A.F.; Guegan, J.-F.; Kaufman, D.M.; Kerr, J.T.; Mittelbach, G.G.;

Oberdorff, T.; et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 2009, 36, 132–147. [CrossRef]
52. Aber:, J.; McDowell, W.; Nadelhoffer, K.; Magill, A.; Berntson, G.; Kamakea, M.; McNulty, S.; Currie, W.; Rustad, L.; Fernandez, I.

Nitrogen saturation in temperate forest ecosystems. BioScience 1998, 48, 921–934. [CrossRef]
53. Lovett, G.M.; Goodale, C.L. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an Oak

forest. Ecosystems 2011, 14, 615–631. [CrossRef]
54. van Breeman, N.; Driscoll, C.T.; Mulder, J. Acidic deposition and internal proton sources in acidification of soils and water. Nature

1984, 307, 599–604. [CrossRef]
55. Stevens, C.J.; Duprè, C.; Gaudnik, C.; Dorland, E.; Dise, N.B.; Gowing, D.; Bleeker, A.; Alard, D.; Bobbink, R.; Fowler, D.; et al.

Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. J. Veg. Sci. 2011,
22, 207–215. [CrossRef]

56. van Dobben, H.; de Vries, W. Relationship between forest vegetation, atmospheric deposition and site conditions at regional and
European scales. Environ. Pollut. 2010, 158, 921–933. [CrossRef] [PubMed]

57. Pinho, P.; Branquinho, C.; Cruz, C.; Tang, Y.S.; Dias, T.; Rosa, A.P.; Máguas, C.; Martins-Loução, M.-A.; Sutton, M.A. Assessment
of critical levels of atmospheric ammonia for lichen diversity in Cork-Oak Woodland, Portugal. In Results of an Expert Workshop
Under the Convention on Long-Range Transboundary Air Pollution; Sutton, M., Reis, S., Baker, S., Eds.; Springer: Berlin/Heidelberg,
Germany, 2008; Chapter 10; p. 490.

58. Pitcairn, C.E.R.; Fowler, D.; Leith, I.D.; Sheppard, L.J.; Sutton, M.A.; Kennedy, V.; Okello, E. Bioindicators of enhanced nitrogen
deposition. Environ. Pollut. 2003, 126, 353–361. [CrossRef] [PubMed]

https://doi.org/10.1111/j.1365-2664.2012.02148.x
https://doi.org/10.5194/acp-18-9897-2018
https://doi.org/10.1002/(SICI)1099-095X(199901/02)10:1&lt;67::AID-ENV336&gt;3.0.CO;2-0
https://doi.org/10.1890/02-3114
https://doi.org/10.1111/j.1574-6941.2007.00375.x
https://cran.r-project.org
https://doi.org/10.2307/1938672
https://doi.org/10.1111/j.1365-2699.2012.02761.x
http://gradientforest.r-forge.r-project.org/biodiversity-survey.pdf
https://doi.org/10.1007/s10661-016-5238-y
https://doi.org/10.1038/s41598-017-04445-7
https://www.ncbi.nlm.nih.gov/pubmed/28646233
http://gradientforest.r-forge.r-project.org/Conditional-importance.pdf
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1371/journal.pone.0119922
https://doi.org/10.3390/nitrogen4010008
https://doi.org/10.1111/j.1365-2699.2008.01963.x
https://doi.org/10.2307/1313296
https://doi.org/10.1007/s10021-011-9432-z
https://doi.org/10.1038/307599a0
https://doi.org/10.1111/j.1654-1103.2010.01254.x
https://doi.org/10.1016/j.envpol.2009.09.015
https://www.ncbi.nlm.nih.gov/pubmed/19811862
https://doi.org/10.1016/S0269-7491(03)00248-3
https://www.ncbi.nlm.nih.gov/pubmed/12963296


Nitrogen 2023, 4 192

59. Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A.
Transformation of the nitrogen cycle: Recent trends, questions and potential solutions. Science 2008, 320, 889–892. [CrossRef]
[PubMed]

60. Allen, E.; Bayley, S.E. Effects of Nitrogen Deposition on Forests and Peatlands: A Literature Review and Discussion of the Potential Impacts
of Nitrogen Deposition in the Alberta Oil Sands Region; Wood Buffalo Environmental Association: Fort McMurray, AB, Canada, 2007.

61. Sutton, M.; Reis, S.; Baker, S. Atmospheric ammonia: Detecting emission changes and environmental impact. In Results of an Expert
Workshop Under the Convention on Long-Range Transboundary Air Pollution; Springer: Berlin/Heidelberg, Germany, 2009; p. 490.

62. Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services
of soils. Ecol. Econ. 2010, 69, 1858–1868. [CrossRef]

63. Bobbink, R.; Hicks, W.K. Factors affecting nitrogen deposition impacts on biodiversity: An Overview. In Nitrogen Deposition,
Critical Loads and Biodiversity; Sutton, M.A., Mason, K.E., Shepphard, L.H., Sverdrup, H., Haueber, R., Hicks, W.K., Eds.; Springer:
Dordrecht, The Netherlands, 2014; Chapter 14; pp. 127–138.

64. Stevens, C.J.; Duprè, C.; Dorland, E.; Gaudnik, C.; Gowing, D.J.G.; Bleeker, A.; Diekmann, M.; Alard, D.; Bobbink, R.; Fowler, D.;
et al. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environ. Pollut. 2011, 159, 2243–2250.
[CrossRef]

65. Brunet, J.; Diekmann, M.; Falkengren-Grerup, U. Effects of nitrogen deposition on field layer vegetation in South Swedish oak
forests. Environ. Pollut. 1998, 120S, 35–40. [CrossRef]

66. Clark, C.M.; Phelan, J.; Doraiswamy, P.; Buckley, J.; Cajka, J.C.; Dennis, R.L.; Lynch, J.; Nolte, C.G.; Spero, T.L. Atmospheric
deposition and exceedances of critical loads from 1800–2025 for the conterminous United States. Ecol. Appl. 2018, 28, 978–1002.
[CrossRef]

67. Emmett, B.A. Nitrogen saturation of terrestrial ecosystems: Some recent findings and their implications for our conceptual
framework. In Acid Rain—Deposition to Recovery; Brimblecombe, P., Hara, H., Houle, D., Novak, M., Eds.; Springer: Dordrecht,
The Netherlands, 2007.

68. Hutchinson, T.F.; Boerner, R.E.J.; Iverson, L.R.; Sutherland, S.; Sutherland, E.K. Landscape patterns of understory composition and
richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A.) Quercus forests. Plant Ecol. 1999, 144, 177–189.
[CrossRef]

69. Stevens, C.J.; Dise, N.B.; Gowing, D.J. Regional trends in soil acidification and exchangeable metal concentrations in relation to
acid deposition rates. Environ. Pollut. 2009, 157, 313–319. [CrossRef]

70. Fenn, M.E.; Geiser, L.; Bachman, R.; Blubaugh, T.J.; Bytnerowicz, A. Atmospheric deposition inputs and effects on lichen chemistry
and indicator species in the Columbia River Gorge, USA. Environ. Pollut. 2007, 146, 77–91. [CrossRef]

71. Horswill, P.; O’Sullivan, O.; Phoenix, G.K.; Lee, J.A.; Leake, J.R. Base cation depletion, eutrophication and acidification of
species-rich grasslands in response to long-term simulated nitrogen deposition. Environ. Pollut. 2008, 155, 336–349. [CrossRef]
[PubMed]

72. De Graaf, M.C.C.; Bobbink, R.; Verbeek, P.J.M.; Roelofs, J.G.M. Aluminium toxicity and tolerance in three health land species.
Water Air Soil Pollut. 1996, 98, 229–239. [CrossRef]

73. Bowman, W.D.; Cleveland, C.C.; Halada, L.; Hreško, J.; Baron, J.S. Negative impact of nitrogen deposition on soil buffering
capacity. Nature 2008, 1, 767–770. [CrossRef]

74. Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers,
K.C. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies.
BioScience 2001, 51, 180–198. [CrossRef]

75. Falkengren-Grerup, U.; Brunet, J.; Diekmann, M. Nitrogen mineralisation in deciduous forest soils in south Sweden in gradients
of soil acidity and deposition. Environ. Pollut. 1998, 102, 415–420. [CrossRef]

76. van den Berg, L.; Vergeer, P.; Rich, T.; Smart, S.; Guest, D.; Ashmore, M.R. Direct and indirect effects of nitrogen deposition on
species composition change in calcareous grasslands. Glob. Change Biol. 2010, 17, 1871–1883. [CrossRef]

77. Bobbink, R.; Hicks, K.; Galloway, J.; Spranger, T.; Alkemade, R.; Ashmore, M.; Bustamante, M.; Cinderby, S.; Davidson, E.;
Dentener, F.; et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010, 20,
30–59. [CrossRef]

78. Falkengren-Grerup, U.; Diekmann, M. Use of a gradient of N-deposition to calculate effect-related soil and vegetation measures
in deciduous forests. For. Ecol. Manag. 2003, 180, 113–124. [CrossRef]

79. Mäkipää, R. Sensitivity of forest-floor mosses in boreal forests to nitrogen and sulphur deposition. Water Air Soil Pollut. 1995, 85,
1239–1244. [CrossRef]

80. Nordin, A.; Strengbom, J.; Witzell, J.; Näsholm, T.; Ericson, L. Nitrogen deposition and the biodiversity of boreal forests:
Implications for the nitrogen critical load. Ambio: A J. Hum. Environ. 2005, 34, 20–24. [CrossRef]

81. Phoenix, G.K.; Emmett, B.A.; Britton, A.J.; Caporn, S.J.M.; Dise, N.B.; Helliwell, R.; Jones, L.; Leake, J.R.; Leith, I.D.; Sheppard, L.J.;
et al. Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems
in long-term field experiments. Glob. Change Biol. 2012, 18, 1197–1215. [CrossRef]

82. Olsson, B.A.; Kellner, O. Long-term effects of nitrogen fertilization on ground vegetation in coniferous forests. For. Ecol. Manag.
2006, 237, 458–470. [CrossRef]

https://doi.org/10.1126/science.1136674
https://www.ncbi.nlm.nih.gov/pubmed/18487183
https://doi.org/10.1016/j.ecolecon.2010.05.002
https://doi.org/10.1016/j.envpol.2010.11.026
https://doi.org/10.1016/S0269-7491(98)80012-2
https://doi.org/10.1002/eap.1703
https://doi.org/10.1023/A:1009804020976
https://doi.org/10.1016/j.envpol.2008.06.033
https://doi.org/10.1016/j.envpol.2006.06.024
https://doi.org/10.1016/j.envpol.2007.11.006
https://www.ncbi.nlm.nih.gov/pubmed/18164110
https://doi.org/10.1007/BF02047036
https://doi.org/10.1038/ngeo339
https://doi.org/10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
https://doi.org/10.1016/S0269-7491(98)80062-6
https://doi.org/10.1111/j.1365-2486.2010.02345.x
https://doi.org/10.1890/08-1140.1
https://doi.org/10.1016/S0378-1127(02)00605-9
https://doi.org/10.1007/BF00477151
https://doi.org/10.1579/0044-7447-34.1.20
https://doi.org/10.1111/j.1365-2486.2011.02590.x
https://doi.org/10.1016/j.foreco.2006.09.068


Nitrogen 2023, 4 193

83. Mäkipää, R. Sensitivity of understorey vegetation to nitrogen and sulphur deposition in a spruce stand. Ecol. Eng. 1998, 10, 87–95.
[CrossRef]

84. Strengbom, J.; Nordin, A.; Näsholm, T.; Ericson, L. Slow recovery of boreal forest ecosystem following decreased nitrogen input.
Funct. Ecol. 2001, 15, 451–457. [CrossRef]

85. Bobbink, R.; Ashmore, M.; Braun, S.; Flückiger, W.; Van den Wyngaert, I.J.J. Empirical nitrogen loads for natural and semi-natural
ecosystems: 2002 update. In Empirical Critical Loads for Nitrogen, Environmental Documentation No. 164 Air; Achermann, B., Bobbink,
R., Eds.; Swiss Agency for Environment, Forest and Landscape SAEFL: Berne, Switzerland, 2003.

86. Aerts, R.; de Caluwe, H. Effects of nitrogen supply on canopy structure and leaf nitrogen distribution in Carex species. Ecology
1994, 75, 1482–1490. [CrossRef]

87. Cunha, A.; Power, S.A.; Ashmore, M.R.; Green, P.R.S.; Haworth, B.J.; Bobbink, R. Whole Ecosystem Nitrogen Manipulation: Updated
Review; JNCC Report 331; JNCC: Peterborough, UK, 2002.

88. Pitcairn, C.E.R.; Leith, I.D.; Sheppard, L.J.; Sutton, M.A.; Fowler, D.; Munro, R.C.; Tang, S.; Wilson, D. The relationship between
nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms.
Environ. Pollut. 1998, 102, 41–48. [CrossRef]

89. Roubeix, V.; Daufresne, M.; Argillier, C.; Dublon, J.; Maire, A.; Nicolas, D.; Raymond, J.-C. and danis, P.-A. Physico-chemical
thresholds in the distribution of fish species among French lakes. Knowl. Manag. Aquat. Syst. 2017, 418, 41. [CrossRef]

90. Turkington, R.; John, E.; Watson, S.; Seccombe-Hett, P. The effects of fertilization and herbivory on the herbaceous vegetation of
the boreal forest in Northwestern Canada: A 10-year study. J. Ecol. 2002, 90, 325–337. [CrossRef]

91. Boonstra, R.; Krebs, C.J.; Cowcill, K. Responses of key understory plants in the boreal forests of western North America to natural
versus anthropogenic nitrogen levels. For. Ecol. Manag. 2017, 401, 45–54. [CrossRef]

92. Gillam, F.S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 2006, 94, 1176–1191.
[CrossRef]

93. Stevens, C.J.; Dise, N.B.; Gowing, D.J.G.; Mountford, J.O. Loss of forb diversity in relation to nitrogen deposition in the UK:
Regional trends and potential controls. Glob. Change Biol. 2006, 12, 1823–1833. [CrossRef]

94. Southon, G.E.; Field, C.; Caporn, S.J.M.; Britton, A.J.; Power, S.A. Nitrogen deposition reduces plant diversity and alters ecosystem
functioning: Field-scale evidence from a nationwide survey of UK heathlands. PLoS ONE 2013, 8, e59031. [CrossRef]

95. Geiser, L.H.; Nelson, P.R.; Jovan, P.R.; Root, H.T.; Clark, C.M. Assessing ecological risks from atmospheric deposition of nitrogen
and sulfur to US forests using epiphytic macrolichens. Diversity 2019, 11, 87. [CrossRef] [PubMed]

96. WallisDeVries, M.; Bobbink, R. Nitrogen deposition impacts on biodiversity in terrestrial ecosystems: Mechanisms and perspec-
tives for restoration. Biol. Conserv. 2017, 212, 387–389. [CrossRef]

97. Jones, F.C.; Plewes, R.; Murison, L.; MacDougall, M.J.; Sinclair, S.; Davies, C.; Bailey, J.L.; Richardson, M.; Gunn, J. Random forests
as a cumulative effects models: A case study of lakes and rivers in Muskoka, Canada. J. Environ. Manag. 2017, 201, 407–424.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0925-8574(97)10022-2
https://doi.org/10.1046/j.0269-8463.2001.00538.x
https://doi.org/10.2307/1937471
https://doi.org/10.1016/S0269-7491(98)80013-4
https://doi.org/10.1051/kmae/2017032
https://doi.org/10.1046/j.1365-2745.2001.00666.x
https://doi.org/10.1016/j.foreco.2017.06.065
https://doi.org/10.1111/j.1365-2745.2006.01155.x
https://doi.org/10.1111/j.1365-2486.2006.01217.x
https://doi.org/10.1371/journal.pone.0059031
https://doi.org/10.3390/d11060087
https://www.ncbi.nlm.nih.gov/pubmed/34712100
https://doi.org/10.1016/j.biocon.2017.01.017
https://doi.org/10.1016/j.jenvman.2017.06.011

	Introduction 
	Methods 
	Study Sites and Data Sources 
	Site Sampling Methods 
	Laboratory Analysis Methods 
	Environmental Data 
	Statistical Analyses 
	GradientForest Outputs 

	Results 
	Discussion 
	Variance Partitioning and Joint Effects 
	Drivers of Community Thresholds for Jack Pine Forests in the AOSR 
	Biodiversity-Based Empirical Critical Loads 
	Limitations and Uncertainties 

	Conclusions 
	References

