i fractal and fractional

[

Article

Forward Starting Option Pricing under Double Fractional
Stochastic Volatilities and Jumps

Sumei Zhang 1'*, Haiyang Xiao 2 and Hongquan Yong 2

check for
updates

Citation: Zhang, S.; Xiao, H.; Yong, H.
Forward Starting Option Pricing
under Double Fractional Stochastic
Volatilities and Jumps. Fractal Fract.
2024, 8,283. https://doi.org/
10.3390/ fractalfract8050283

Academic Editor: Leung Lung Chan

Received: 6 March 2024
Revised: 27 April 2024
Accepted: 4 May 2024
Published: 8 May 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Science, Xi'an University of Posts and Telecommunications, Xi’an 710121, China
School of Computer Science and Technology, Xi’an University of Posts and Telecommunications,
Xi’an 710121, China

*  Correspondence: zhangsumei@xupt.edu.cn

Abstract: This paper aims to provide an effective method for pricing forward starting options under
the double fractional stochastic volatilities mixed-exponential jump-diffusion model. The value of a
forward starting option is expressed in terms of the expectation of the forward characteristic function
of log return. To obtain the forward characteristic function, we approximate the pricing model with
a semimartingale by introducing two small perturbed parameters. Then, we rewrite the forward
characteristic function as a conditional expectation of the proportion characteristic function which
is expressed in terms of the solution to a classic PDE. With the affine structure of the approximate
model, we obtain the solution to the PDE. Based on the derived forward characteristic function
and the Fourier transform technique, we develop a pricing algorithm for forward starting options.
For comparison, we also develop a simulation scheme for evaluating forward starting options.
The numerical results demonstrate that the proposed pricing algorithm is effective. Exhaustive
comparative experiments on eight models show that the effects of fractional Brownian motion,
mixed-exponential jump, and the second volatility component on forward starting option prices are
significant, and especially, the second fractional volatility is necessary to price accurately forward
starting options under the framework of fractional Brownian motion.

Keywords: forward starting option; fractional stochastic volatility; jump; forward characteristic
function; pricing

1. Introduction

Forward starting options belong to European-style exotic options which start at the
determination time of the strike and expirate further in the future. They are the building
blocks of cliquets which are popular in the world of equity derivatives because of their
retaining of the upside potential with protection against downside risk. However, the
valuation of forward starting options is not easy, because these options not only depend on
the terminal value of the underlying price, but also on the asset price at the determination
time of the strike.

Rubinstein [1] first evaluated forward starting options based on the assumption of
geometric Brownian motion. Via the changing of numeraire, Kruse and Nogel [2] con-
sidered the counterpart by deriving a semi-analytical pricing formula with two integrals
which have to be evaluated under Heston stochastic volatility. With Feynman-Kac theo-
rem, Ahlip and Rutkowski [3] and Lin and He [4] extend the method in [2] to stochastic
volatility and stochastic interest rate, and regime-switching stochastic volatility models,
respectively. Using a similar approach, Guo and Hung [5] and Ahlip et al. [6] considered
forward starting options pricing under stochastic volatility, jumps, and stochastic interest
rates, respectively. Luci€ [7] and Haastrecht and Pelsser [8] reduced the formula in [2] to
one in the form of a single integral under the Heston model and a stochastic volatility and
stochastic interest rate model, respectively, and improved the efficiency of pricing using
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the fast Fourier transform technique (FFT). Given that the accuracy of FFT depends on a
dampening factor, Zhang and Geng [9] and Zhang and Sun [10] expressed forward starting
options prices by using a Fourier cosine series expansion under a stochastic volatility with
jump model and a stochastic volatilities, stochastic interest rate, and double jumps model,
respectively. Recently, Hata et al. [11] proposed a Taylor expansion approach for evaluating
forward starting options under the Hull-White stochastic volatility model.

All of the above studies are conducted under the models driven by standard Brownian
motion which are Markovian or memoryless. However, many studies show that asset
price fluctuations exhibit “long memory” [12-18] or “short memory” [19-22] which can be
captured by stochastic volatility models driven by fractional Brownian motion with the
Hurst index H € (1/2,1) or H € (0,1/2), respectively. In addition, jumps in the asset
price were observed by Coqueret and Tavin [23], Jin and Hong [24], Bates [25], and Wang
and Xia [26]. Recently, by introducing two fractional volatilities into a mixed-exponential
jump-diffusion model [27], Zhang et al. [28] propose a double fractional Heston mixed-
exponential jump-diffusion model and demonstrate that the model fits the market better
than the double Heston mixed-exponential jump-diffusion model and the double Heston
model driven by standard Brownian motion.

However, because the model is not Markovian, all pricing methods based on the
Feynman-Kac theorem are not easily applied, which poses a huge challenge for forward
starting options pricing. Zhang et al. [28] proposed a model approximation method by
approximating the pricing model with a semimartingale under which the Feynman-Kac
theorem can be activated. Motivated by the performance of the model and the pricing
method in [28], this paper extends the model and pricing method in [28] to the case of
forward starting option. Recently, Wang and Guo [29] evaluated variance and volatility
swaps under a similar model. Different from Wang and Guo [29] in which only one
fractional volatility was used, we consider two fractional volatilities and combine model
approximation and the Fourier transform technique to evaluate forward starting options.

The main goal of this paper is to provide a fast and efficient method for evaluating
forward starting options under two fractional volatilities and jumps. The main contri-
butions of this paper are twofold. Firstly, this paper derives the forward characteristic
function of log return proposed in [28]. Secondly, this paper proposes a pricing method
for forward starting options under double fractional volatilities and jumps. Compared
to existing option pricing methods for fractional Brownian motion setting, our method
can be used for both cases of H € (1/2,1) and H € (0,1/2). The rest of the paper is
organized as follows. Section 2 presents the model and pricing problem. Section 3 provides
an approximate model and the derivation of the forward characteristic function. Section 4
dilates the pricing method for forward starting options. Section 5 presents some numerical
experiments. Section 6 concludes.

2. The Model and Pricing Problem
2.1. The Model

Assume that {Q), F, {F;}y<;<1, P} is a complete probability space with the right
continuous filtration {F;},.,.r and the risk-neutral probability measure P. In the double
fractional Heston mixed-exponential jump-diffusion model, the dynamics of the asset price
S are given by the following system:

&= (r— A0)dt + onAWS, + \oudW, +d (T (G- 1),

dvy = K](91 _U]t)dt‘i‘(flw/vltdBft]/ 1)

dvyy = K2(92 — UZt)dt + UZN/UthBgz,
where Wlst and Wzst are both standard Brownian motion, Bﬂl and Bgz are both fractional
Brownian motion with a Hurst index Hy and Hj, respectively, and N; is a Poisson process
with rate A. Let { = ({x)>1 be a sequence of independent identically distributed nonnega-
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tive random variables, such that Y = In has a mixed-exponential distribution with the
density as follows:

Ay) =pY o pemke ™0 +q) %‘éjeéfy Iy<o, )
j

where 7 > 1,(§j >0,p>0, q=1-p>0,pg, q; € (00, ), Y4y pr = 1,2]’-‘:1qj =1.
To make fy(y) a density, a simple sufficient condition is Y1, pyr7x >0 (M = 1,...,m),
E]-Lzl qjéj >0(L=1,...,n) and a necessary conditionis p; >0, g1 >0, ;" prix > 0,
Y q]@]- > 0. Assume that § = E[{ — 1]. With the density (2), basic calculus gives the following:

1 1
5= -+
PY i Pl — 1) 950 i

Forj =1, 2, x;, 0;, 0; satistying 2x;0; > (7 denote the mean reversion rate, long-
run mean, and volatilities of variance vj;, respectlvely According to Thao [30], fractional

H:
Brownian motion B, . has the following form:

H; 1 _ oH1/2 000
B, _F(H]-+1/2)/ (t— )" V2w (=1, 2), 3)

where I'(+) is the gamma function, and W]?; are both standard Brownian motion. Sup-
pose processes Wﬁ and Wﬁ are independent of { and Nj, respectively, while stt and W]?;
are correlated by setting Cov(dW5,, dWY,) = p1dt, Cov(dWs,, dW3,) = pdt to mimic
the asset-volatility leverage effect. Suppose Sg = S, vjg = vy, U = V2. According to

Zhang et al. [28], model (1) can be written as the following stochastic partial integro-
differential system:

(r—)uS)dt—i—Z] 1 \ﬁdw5+d( (Ck—l))

t
= r(H+1/2) fot v ) t(t o
= I’(HJlrl/Z) Jo (t=5) K2(602 — vas)ds + mfo (t—s) 02/U2sdWS..

(t =)k (61 — vis)ds + 1"(HT/2IO s)1 1201 \Jord WY, 4)

2.2. The Pricing Problem

Under the risk-neutral measure P, the value of a forward starting put option can be
expressed on the forward log return as follows:

+
In 5T
Vi(to, T) = e "TEP (ean —e“%> | Fo (5)

with determination time t(, maturity T, constant interest rate #, and strike price K. Ac-
cording to [28], if the characteristic function of In % is given, one can evaluate Vr(ty, T)
effectively by using the Fourier transform technology.

Let ¢p(u,7) = EV [exp (zuln 5t >|.7-'t0} (T = T — tg) be the characteristic function of

H;
ln , which we call the forward characteristic function. Because B ! are not semimartin-

gales, ¢r(u, T) is not a semimartingale. Therefore, we cannot obtaln ¢r(u, T) by solving a
PDE like in the standard Brownian motion environment. However, according to El Euch
and Gatheral [31], the forward characteristic function ¢r(u, T) has a similar structure to
that of the classic Heston model with jumps as follows:

¢r(u,7) =E {exp(—zu/\w + zuz )] exp (Z?Zl hi(u,T) + gi(u, T)U]'), (6)
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Hj-1/2;
where hj(u, T) = x;0; [ gj(u, t)dt, gj(u,T) = mfo r— )i~V Li(u,t)dt, Li(u, )
are the solutions to the following fractional Riccati equations:

DHH2L (u, 1) = 1/2(—u? — iu) + (iupyoy — 1) L1 (u, T) 4+ 1/2002L%(u, T),
L

DHH12L, (u, 1) = 1/2(—u? — iu) + (iupaon — k) Ly (u, T) +1/202°Ly% (u,7),  (7)
V2 Hip (u,0) = 1V Ha Ly (u,0) = 0,

where 1 P
_ —H;—1/2
DL ) = gy, (10 L
o 1 T —H;-1/2
2L (u,7) = 1“(1/2—H]-)/0 (r =02 15w, )t

3. The Forward Characteristic Function
3.1. Model Approximation

By introducing two small perturbed parameters €1, €, (0 < €1, € < 1), the processes

Bﬁj (j =1, 2) in Formula (3) can be approximated by the following semimartingales:

s/H

t
By = | (t=s +e) i 2aw )

in L?(Q) as &g — 0, & — 0. Differentiating Formula (8), one has the following:
H;
dBj; I = (Hj—1/2)yjdt + s dw;;, )

where ¢ = [, ot (t—s+e j)Hf —3/24 W]?; are semimartingales. Putting Formula (9) into model
(1), one can approximate model (1) by applying the following classic stochastic partial
integro-differential system:

B = (= AS)dt 4+ /Ord W5, + /oW, + d (T3 @k_l)>

dvi} = |(Hy = 1/2)gui01y/o5] + 1 (01 — vi}) [t + e 20y fuiian, (10)

1t/
dv2 = |(Hy —1/2) ¢2t021/v§%+K2(92—v§§)}dt+€H2 Y20y U2 AWE,.

Because ¢j; = fot (t—s+e ]-)HF?’/ de?; are semimartingales, the forward character-
1,60
istic function @72 (u, t) = E¥ [exp (iu In 22152> |ft0} is a semimartingale. Based on the
fo
tower law of conditional expectations, one can write g% (1, T) as follows:

551,52 581 £2 551 £2
T LN (I . PN ) Y (R o PR

where ¢ (1, T) is the characteristic function of In(S7*2/K) conditional on the filtration F3,.
Ssl,s2
If we consider exp <—iu In =%~ ) as the proportion of ¢(u, T), we only need to calculate

the expectation of the proportion characteristic function to obtain the forward characteris-
tic function.
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3.2. Calculation of the Expectation of the Proportion Characteristic Function

Lemma 1. Under the risk-neutral measure P, the characteristic function of the log asset
price In(572 /K) conditional on the filtration Fy,, ¢(u, T) is given by the following:

€1,€2

2
@(u,T) = exp (iul (u,7) 4+ )_ Nj(u, T)vjt0>, (12)
j=1

where
. 2 K;0; 1- Ge
M(u, T) =iurt + AtA+ . | —=(Dj+ 7))t — ZInW ,
=14

2 1 1—37D/'T
Nj(u,T) :le —(D]+’)/]) 7713]_1, , T = T_tO/
=1

j l*Gj(Z
2 aab v — iuoA — i G — VTD
Dj=\/7j —4ajbj, vj = tup;Aj —x;, G = 7-Dj’
142 o 1 . _ H -1/2
a]fjA] bj = —u(i +u)A aj,

= ; pini ,m-l-qu]]g —1—iud.

Proof. See Zhang et al. [28]. O

Lemma 2. Under the risk-neutral measure P,
, 2 2
E Z Ni(u, T)vjs, ()| Fo | = exp M(u,t) + Z Ni(u, t)vj|,
i=1

where forj =1, 2,

M(u,7) = — Zze”n(l N())
=18 i

. Nj(z)e 0 2;

Nile D) = " = e

2
Proof. SetIT = E” X Nj(u, T)vjy (1) |]-"0] . IT As a semimartingale; the Feynman-Kac PDE
for I'l is followed as follows:
2
o _ 1 &1 o 1 9*11
@=L [<i(6; — vieey) + (Hy = 1) ey [ AL+ 3%, ]avf 7,
] , jt Jjt (13)
=0 = exp [‘Z Nj(u, T)U]"| .

IT
j=1

Since j; (j = 1,2) are semimartingales, one has o = E(¢;;) = 0. In the light of the
affine structure of model (10), we conjuncture that IT has the following form:

IT = exp [ (u,t) + i Nj(u, t)vj] . (14)

=
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Putting Formula (14) into Formula (13), one has the following ODEs:
aaf]\f = K191N1 + kz@zﬁz,
O = —rNy +1/28382, (15)
N,

o9t = —K2j\72 + 1/2A%j\v]22

with M(u,0) = 0, Ni(1,0) = Ny(u,7), Np(u,0) =

N(u, T). Solving the ODEs (15),
Lemma 2 follows.

Combining Lemma 1 with Lemma 2, one can obtain the expectation of the proportion
characteristic function; thus, one has the forward characteristic function ¢3"2(u, 7).

Theorem 1. Assuming that the dynamics of asset price S;""*? are given by model (10), then
£1,€2

the forward characteristic function of In Sgl =, P

(u, T) is given by the following:

922 (u,7) = exp[ (w,7) + zNj(u,ﬂuﬁol, (16)

where
M(u,7) = M(u,7) — ;—f n(1-Nj(uw,7)/1y),

]_
~ Ni(u,t)e "0 2kK;
. — — ]
Nju,7) = _ N Ay = N(—e )
i
]

Based on Theorem 1, differential calculation gives the following outcome.

Theorem 2. Assuming that the dynamics of asset price S;'“? are given by model (10), and

9" In 912 (u,7) S81 2 .
n= g denotes the n-th cumulant of In 521—,9_2, one has the following:
u=0 to

[0, (1—¢ " —x.7)

2 ; J EinT—l kit
a=xr 2% o Azh Eey

n
q _ Pillk @b
1L 5 < PL -1 1+q29+1 )}’
r " 2
- 2 3 2 X
=1L 4 8x; Kj %

-A2 e TA2
+einT G]A] +9]K]TAj + 9]—6'/p/TA] o Ze]p]A]
2i3 K K2
] ]

A2 ! "2
087 _or _ 258; By Iyt (By)

ht +2B/
] N K t]i i
+ 8x3 AZ Iy, 2 ¢ . ]]
] j ]
n
2
+AT<PZ F’k _|_q2 ‘71)[
k=1 i
(] 0,
where ( )
A2 pa} A i(1—e "
"o j /
V=T _] + 3,B T

] ] ]

Ao e (3T 1-ApT A A2 A
B’»’Zﬁe ZK]T+e K]T<2]K2+ eIt BiPi _;_7]34_]7‘0].
J J
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4. The Pricing Algorithm
€1.€)
Let =In ;752 ; one can express (5) as follows:
0
Velto, T) = e 7K [ —(ef = 1) i el de, 17)

where f71?(¢|x) is the density of ¢ conditional on x = In(S/K).
Since f7"“2(¢|x) decays to zero as ¢ — oo, f2(Z|x) can be approximated by apply-
ing a truncated Fourier cosine series expansion (COS) on the domain [g, b] as follows:

N-1
el = 2 0 [ (e B o[-, as
=0

where R[.] denotes taking the real part of the argument, and N denotes the number of terms
in series expansion. Inserting (18) into (17) and interchanging summation and integration,
one can approximate forward starting option value by the following:

V(to, T) ~ *’TZ [ ( k”a,r)e—i’ﬁ”‘é]uK (19)

where U = f —(ef —1) Cos(%kn)dg denotes the cosine series coefficients. By using a
basic calculus calculation, one has the analytical solutions of Uy as follows:
1

. %}m)){msm(gkz)—cos(”k”)+e} k—nbsm(l’fkg) k #0,
k — b—a

e’ —a—1 k=0

(20)

According to Fang and Oosterrlee [32], for some constant L, the integration domain
[a, D] is chosen as follows:

0, b] = [ cal+leal, c1+L\/yc2\+|C4} @)

where ¢; (j =1, 2, 4) can be obtained by the following:

_ 19(In g2 (u, 1))
9T ou/

lu=0(j=1,2, 4).

We present the following Algorithm 1 for approximating a forward starting put
option price.

Algorithm 1. The COS-based algorithm for pricing a forward starting put option

Step 1: Initialization K, S, to, T, r,x1, 61, 01,v1, p1, k2, 62, 02, U2, p2, A, m, n, p, p1,

q1, él/ M1, 92/ M2, Hl/ Hp, L, N

Step 2: Choose ¢1, €3 to approximate the pricing model (1) by applying model (10)

Step 3: Compute the forward characteristic function by applying Formula (16)

Step 4: Compute the cumulant ¢q, 2, ¢4 by applying Theorem 2

Step 5: Compute cosine series coefficients Uy by applying Formula (20)

Step 6: Compute the truncated domain [a, b] by applying Formula (21)

Step 7: Approximate the value of a forward starting put option by applying Formula (19)

5. Numerical Experiments

Under the approximate model (10), we used the COS-based algorithm to evaluate
forward starting put options. According to [28], the parameters selected were as follows:
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= 12, 6; =005, 04 =09, py = =05, v; =005,x = 16,6, = 003, 0o = 09, po = —05,

= 002,p = 04, py =13, g =12, 0; =20, 6, =20, 5, =50, 7o = 50, H; = 0.8,

H2 =07,A=1 m=2 n=2, r=0.0165, S =100, K =100, ty =1, T = 5. To test

the convergence of the pricing algorithm, we set four groups (¢, €3): (0.01, 0.01), (0.001,

0.001), (0.0001, 0.0001), (0.00001, 0.00001), specifying L = 5, L = 10, L = 15, and specifying
N =16, N =32, N = 64 for each L.

To test the effectiveness of the pricing algorithm, we also evaluated forward starting

put options by using a Euler-Maruyama scheme for the approximate model (10) as follows:

Nt
S5 = 5y 0l = A0~ £ il )+ £ o VamE-+a(z, @) T o)

j=Ne—1
of = of)y + [(Fh - 1/2)% 101 /vy (61— vy y) [ At
/ /AL ) 22
Hl 1/2 Ui}f 1 (lelt + 1 —Pl th) ( )
vyt = U5y F [(HZ —1/2)2r 102/ 05}y + 702 (62 — Uzt—l)] At

+8£I2_1/2(72, / U;%_l\/ At (pzWQtS + 41— P22Z2t) .

where Y] is a random number generated by two double exponential distributions, Wi, Wo®,
Z1t, Zy are independent standard normal random variables, At = T/ N, denotes the time

step. Py ~ \/TNl l { ( N%) + SJ} ij%ij(j =1,2), where {zjk} denotes the sequence

of independent standard normal random variables and Nj is the number of subintervals
in [0, t]. For Monte Carlo simulation, we used the number of subintervals N; = 100, the
number of simulations M = 100,000, and the number of time steps N, = 1000. Table 1
examines the convergence and accuracy of the pricing algorithm for evaluating forward
starting puts under approximate model (10).

Table 1. Convergence and accuracy of the COS-based algorithm for evaluating forward starting put
options under the approximate model.

& & L COS(16) COS(32) COS(64) MC =+ Std

5 18.5682 18.5682 18.5682

0.01 0.01 10 18.6135 18.5682 18.5682 18.5686 + 0.0159
15 19.1058 18.5700 18.5682
5 18.5838 18.5838 18.5838

0.001 0.001 10 18.6274 18.5838 18.5838 18.5842 + 0.0162
15 19.1109 18.5855 18.5838
5 18.5918 18.5918 18.5918

0.0001 0.0001 10 18.6344 18.5918 18.5918 18.5920 + 0.0150
15 19.1133 18.5934 18.5918
5 18.5960 18.5960 18.5960

0.00001 0.00001 10 18.6381 18.5960 18.5960 18.5960 + 0.0146
15 19.1145 18.5975 18.5960

From Table 1, we can see that the accuracy of the COS-based algorithm depends on the
values of (&1, €2), L, and the number of terms N in series expansion. As the value of (e1, €7)
decreases, option prices tend to stabilize. The effect of L on option prices depends on the
number of terms N. When N = 64, the effect of L on option prices is almost negligible.
Table 1 shows that when (g1, €2) = (0.00001, 0.00001) and N = 64, the option values
calculated by the two methods are the very closest.

Furthermore, we examined the effects of the fractional Brownian motion, jump, and
the second volatility component on forward starting put option prices. To this end, we
set (g1, €2) = (0.00001, 0.00001), N = 64, L = 10 and specified two determination time
top =1/4, 1, and two maturities T =1/2, 5 years. We evaluated forward starting put options
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under model (10) (FDHestonMEM) applying the model parameters and option parameters
used in Table 1. For comparison, we also evaluated forward starting put options under the
FDHeston mode by setting A = 0, the DHeston model by setting A = 0,H; = Hp = 0.5, the
FHestonMEM model by setting x; = 0y = 02 = vp = pp = 0, the FHeston model by setting
Ky = 0y = 0p = Uy = pp = A = 0, the DHestonMEM model by setting H; = H, = 0.5, the
HestonMEM model by setting xp = 6, = 02 = v = pp = 0, H; = 0.5, and the Heston
model by setting xy = 0 = 0 = vp = pp = A =0, H; = 0.5. Table 2 compares forward
starting put option prices generated from the above eight models under fp =1/4, T =1/2
and tp =1, T = 5, respectively.

Table 2. Comparison of forward starting put options prices under the FDHestonMEM, FDHeston,
FDHestonMEM, FDHeston, DHestonMEM, DHeston, HestonMEM, and Heston model.

to T K FDHestonMEM FDHeston FHestonMEM  Heston DHestonMEM DHeston HestonMEM FHeston
80 0.3377 0.2963 0.1152 0.2338 0.5163 0.4806 0.2633 0.0808
85 0.8357 0.7710 0.3789 0.5292 1.0338 0.9768 0.5838 0.3135
90 1.7720 1.6860 1.0201 1.1199 1.9213 1.8407 1.2084 0.9212
95 3.2961 3.1972 2.2817 2.2118 3.3242 3.2239 2.3342 2.1609
1/4 1/2 100 5.4970 5.3967 4.3501 4.0521 5.3689 5.2599 4.1908 4.2280
105 8.3794 8.2885 7.2696 6.8269 8.1202 8.0172 6.9499 7.1656
110 11.8723 11.7976 10.9349 10.5137 11.5519 11.4676 10.5975 10.8588
115 15.8585 15.8022 15.1550 14.8625 15.5523 15.4920 14.9075 15.1063
120 20.2087 20.1695 19.7321 19.5711 19.9646 19.9265 19.5916 19.7044
80 9.4981 9.1760 6.2624 6.0294 9.5588 9.2443 6.4006 5.8740
85 11.5033 11.1574 7.9640 7.6361 11.5188 11.1782 8.0497 7.5372
90 13.6941 13.3281 9.8907 9.4638 13.6606 13.2971 9.9150 9.4315
95 16.0616 15.6788 12.0357 11.5096 15.9769 15.5937 11.9928 11.5507
1 5 100 18.5960 18.1999 14.3897 13.7678 18.4591 18.0596 14.2768 13.8855
105 21.2872 20.8811 16.9421 16.2303 21.0985 20.6860 16.7588 16.4249
110 241252 23.7121 19.6808 18.8873 23.8861 23.4638 19.4290 19.1565
115 27.1001 26.6827 22.5932 21.7280 26.8128 26.3836 22.2769 22.0673
120 30.2023 29.7832 25.6666 24.7405 29.8695 29.4363 25.2909 25.1438

From Table 2, we can see that for the above eight models, the mixed-exponential
jump and the second volatility component both increase forward starting options prices
for all maturities and determination time. The effects of fractional Brownian motion on
forward starting option prices depend on the determination time, maturity, and the value
of K/S. To comprehensively examine the effects of fractional Brownian motion, jump, and
the second volatility component on forward starting put option prices, we computed the
relative error between forward starting put options prices under the above models with
the same parameters as in Table 2. Figures 1-3 report the main outcomes.

To examine the effect of mixed-exponential jump on forward starting put options
prices, we investigated four cases including the single volatility model and two volatilities
model driven by fractional Brownian motion and standard Brownian motion, respectively.
Figure 1 reports the effect of the mixed-exponential jump on the values of short-term
(to =1/4, T =1/2) and long-term (tcx = 1, T = 5) forward starting put options.

From Figure 1, we can see that for the short-term options, when K/S < 1.05, the
effect of jump on option prices with single volatility is more significant than that with
two volatilities. Moreover, the effects of jump on option prices under the framework
of fractional Brownian motion are more significant than those in the standard Brownian
motion case. When K/S > 1.05, the effect of jump on option prices with single volatility and
with two volatilities are almost the same. For the long-term options, the effects of the mixed-
exponential jump on the options prices with single volatility are both more significant
than the counterpart with two volatilities under the two frameworks of Brownian motion.
However, these effects of jump on the options prices are significantly weaker than those in
the short-term case.
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Figure 1. The effect of the mixed-exponential jump on the values of short-term (g =1/4, T =1/2)
and long-term (tg = 1, T = 5) forward starting put options.
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Figure 2. The effects of fractional Brownian motion on the values of short-term (tg = 1/4, T =1/2)
and long-term (g = 1, T = 5) forward starting put options.

To examine the effects of fractional Brownian motion on forward starting put options
prices, we investigated four cases including the single volatility model and two volatilities
model with jump and without jump, respectively. Figure 2 reports the effects of fractional
Brownian motion on the values of short-term (fg = 1/4, T = 1/2) and long-term (fp =1,
T = 5) forward starting put options.

From Figure 2 we can see that for the short-term options, when K/S <0.95, fractional
Brownian motion both decreases option prices with single volatility and with two volatili-
ties, and the effects of fractional Brownian motion on option prices with single volatility
are more significant than those with two volatilities. When K/S >0.95, fractional Brownian
motion both increase the option prices with single volatility and with two volatilities,
and the effects of fractional Brownian motion on option prices with single volatility and
with two volatilities are almost the same. For the long-term options, when K/S < 0.9
or K/S > 1, the effects of fractional Brownian motion on the options prices with single
volatility are both more significant than the counterpart with two volatilities under two
frameworks with jump and without jump. When 0.95 < K/S < 1, the effects of fractional
Brownian motion on the options prices with two volatilities are slightly significant than the
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counterpart with single volatility. However, these effects of fractional Brownian motion on
the options prices are significantly weaker than those in the short-term case.
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Figure 3. The effects of the second volatility on the values of short-term (tp = 1/4, T = 1/2) and
long-term (fg = 1, T = 5) forward starting put options.

To examine the effects of the second volatility on forward starting put options prices,
we investigated four cases including the jump-diffusion model and diffusion model under
the framework of fractional Brownian motion and standard Brownian motion, respectively.
Figure 3 reports the effects of the second volatility on the values of short-term (fp = 1/4,
T = 1/2) and long-term (ty) = 1, T = 5) forward starting put options.

From Figure 3 we can see that for the short-term options, when K/S < 0.95, the effects
of the second volatility on option prices without jump are more significant than those with
jump. As K/S increases, the intensity of the effect gradually weakens. When K/S > 0.95,
the effects of the second volatility on option prices with jump and without jump are almost
the same. For the long-term options, the effects of the second volatility on the options
prices are significantly weaker than those in the short-term case. For all maturities and
determination time, the effects of the second volatility on option prices in the framework
of fractional Brownian motion are more significant than those in the standard Brownian
motion case, which implies that the second volatility is necessary to price accurately
forward starting options under the framework of fractional Brownian motion.

Furthermore, based on the model parameters and option parameters used in Table 2,
we examined the effects of the main parameters of the second fractional volatility on
the short-term (ty = 1/4, T = 1/2) forward starting put options prices. Due to limited
space, Figure 4 only reports the effects of Hurst index H, and long-run mean 6, on the
options prices.

From Figure 4 we can see that when Hy > 0.5, increasing the value of H; rapidly raises
the options prices and the intensity of this effect gradually tends to stabilize. When H, < 0.5,
the effect of Hy on the options prices is similar to that in the case of H, > 0.5, and this
effect is more significant. Figure 4 displays this compared to the standard Brownian motion
(Hz = 0.5) case, which shows that increasing or decreasing the value of H; both significantly
change forward starting options prices. Increasing ¢, raises the options prices and the
intensity of this effect gradually increases as the strike prices increase. Figure 4 shows
that the effects of H, and 6, on forward starting options prices are both significant, which
implies that the effect of the second fractional volatility on forward starting options prices
is significant and the FDHestonMEM model may fit the forward implied volatility better.
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6. Conclusions

This paper proposes an effective pricing algorithm for forward starting options under
double fractional Heston stochastic volatilities and jumps. We express the value of a
forward starting option in terms of the expectation of the forward characteristic function of
log return. By introducing two small perturbed parameters, we approximate the pricing
model using a semimartingale. Then, we rewrite the forward characteristic function as
a conditional expectation of the proportion characteristic function which is expressed
in terms of the solution to a classic PDE. With the affine structure of the approximate
model, we obtained the solution to the PDE. Based on the obtained forward characteristic
function and Fourier transform technique, we propose a pricing algorithm for forward
starting options. For comparison, we also developed a simulation scheme for evaluating
forward starting options. The numerical results show that the proposed pricing algorithm
is effective. Via exhaustive comparative experiments on eight models, we found that the
effects of fractional Brownian motion, mixed-exponential jump, and the second volatility
component on forward starting option prices are all significant, and especially, the second
fractional volatility is necessary to price accurately the forward starting options under
the framework of fractional Brownian motion. The pricing algorithm for forward starting
options proposed in the paper can be extended to the case of stochastic interest rates.
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