
Citation: Moumen, A.; Mennouni, A.;

Bouye, M. Contributions to the

Numerical Solutions of a Caputo

Fractional Differential and

Integro-Differential System. Fractal

Fract. 2024, 8, 201. https://doi.org/

10.3390/fractalfract8040201

Academic Editors: Phumlani Dlamini,

Simphiwe Simelane and Riccardo

Caponetto

Received: 9 January 2024

Revised: 16 March 2024

Accepted: 25 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Contributions to the Numerical Solutions of a Caputo Fractional
Differential and Integro-Differential System
Abdelkader Moumen 1, Abdelaziz Mennouni 2,* and Mohamed Bouye 3

1 Department of Mathematics, Faculty of Sciences, University of Ha’il, Ha’il 55425, Saudi Arabia;
mo.abdelkader@uoh.edu.sa

2 Department of Mathematics, LTM, University of Batna 2, Mostefa Ben Boulaïd, Fesdis, Batna 05078, Algeria
3 Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413,

Saudi Arabia; mbmahmad@kku.edu.sa
* Correspondence: a.mennouni@univ-batna2.dz

Abstract: The primary goal of this research is to offer an efficient approach to solve a certain type of
fractional integro-differential and differential systems. In the Caputo meaning, the fractional derivative
is examined. This system is essential for many scientific disciplines, including physics, astrophysics,
electrostatics, control theories, and the natural sciences. An effective approach solves the problem
by reducing it to a pair of algebraically separated equations via a successful transformation. The
proposed strategy uses first-order shifted Chebyshev polynomials and a projection method. Using the
provided technique, the primary system is converted into a set of algebraic equations that can be solved
effectively. Some theorems are proved and used to obtain the upper error bound for this method.
Furthermore, various examples are provided to demonstrate the efficiency of the proposed algorithm
when compared to existing approaches in the literature. Finally, the key conclusions are given.
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1. Introduction

Fractional analysis is a mathematical discipline concerned with examining the prop-
erties of integrals and derivatives of the non-integer order. Since two decades ago, this
calculus has been the subject of research, attracting the attention of numerous academics
around the globe. In addition, fractional calculus is gaining popularity in various fields,
including materials science, water mechanics, potential theory, electricity, nature, mechani-
cal engineering, and more. There has recently been an explosion of interest in fractional
integro-differential and differential solutions. This theory has a wide range of applications,
including thermodynamic modeling, viscoelasticity, astrophysics, and chaotic networks;
see [1–6]. Fractional-order systems have also been widely used in information security,
exploiting newly designed fractional-order 3D Lorenz chaotic systems and 2D discrete
polynomial hyper-chaotic maps for high-performance multi-image encryption. Fractional-
order chaotic systems exhibit more control factors and more sophisticated dynamical
properties; see [7]. Under some conditions, those fractional integro-differential equations
may have an exact solution determined. An effective approximation is required because
solving integro-differential equations analytically is typically a problematic procedure.
Indeed, various efficient approaches for examining fractional integro-differential and dif-
ferential problems have been developed, including the matrix collocation method [8],
finite integration method [9], dynamical analysis [10], reproducing kernel Hilbert space
approximation [11], Euler wavelet approach [12], pseudo-operational matrix method [13],
spline quasi-interpolants [14], Haar wavelet [15], homotopy analysis method [16], shifted

Fractal Fract. 2024, 8, 201. https://doi.org/10.3390/fractalfract8040201 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8040201
https://doi.org/10.3390/fractalfract8040201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-0791-5866
https://doi.org/10.3390/fractalfract8040201
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8040201?type=check_update&version=2


Fractal Fract. 2024, 8, 201 2 of 20

Legendre projection method [17], airfoil collocation method and the iterated projection
method [18]. In [19], the author proposed a collocation approach via the wavelet functions
for weakly fractional integro-differential problems. In paper [20], the authors devised the
sinc collocation strategy to deal with weakly fractional partial integro-differential problems.
A polynomial approximation strategy was examined in [21] using a collocation method
for the shifted Legendre polynomials. On the other hand, the authors of [22] presented a
numerical method utilizing the Haar wavelet to address the following fractional coupled
integral-differential system:cJ α

0+ℓ(υ) + ℓ′(υ) +
∫ υ

0
λ(ρ)dρ = σ(υ), 0 ≤ υ ≤ 1,

cJ β
0+λ(υ) + λ′(υ) +

∫ υ
0 ℓ(ρ)dρ = ς(υ), 0 ≤ υ ≤ 1

(1)

where 1 ≤ α, β ≤ 2, 0 ≤ υ ≤ 1 and cJ α
0+ and cJ β

0+ are the Caputo fractional derivatives.
This system is currently the focus of extensive research because of its frequent occurrence
in several engineering and scientific disciplines; see [22–25]. In [26], the authors considered
some classes of stochastic fractional integro-differential equations of the typeABC

0 Dα
t X(t, ω) = f (t, ω) + λ1

∫ t

0
ϕ1(τ, X(τ, ω))dωs + λ2

∫ t

0
ϕ2(τ, X(τ, ω))dωτ ,

X(0, ω) = X0(ω), 0 < α ≤ 1,

where X is the unknown stochastic process, Wt is a Brownian motion. The fractional deriva-
tive was in the ABC sense introduced by Atangana and Baleanu. The authors approximated
X using the Galerkin projection method based on the piecewise Chebyshev cardinal func-
tions. The authors of [27–29] considered a linear fractional differential equation of the form

cJ ν
0+ℓ(υ) = −ℓ(υ) + σ(υ). (2)

Because of the memory effect of fractional derivatives, this fractional differential equation
best describes physical processes having memory and hereditary features. In [30], the
author suggested an implicit approach for the approximate solution of a significant class of
fractional differential equations of the form

cJ ν
0+ [ℓ− ℓ0](υ) = βℓ(υ) + σ(υ), ℓ(0) = υ0. (3)

It has been demonstrated that this equation serves as a suitable model for several physical
phenomena, including diffusion processes and damping principles. The author devel-
oped the suggested process using a quadrature formula method. A few techniques for
numerically solving these equations have been proposed; however, most of them lack error
estimates. There are a few ways to solve the fractional differential equations of the above
forms numerically. The aforementioned fractional systems are also the subject of much
research because they are often used in engineering and science.

Chebyshev polynomials are an essential class of orthogonal polynomials; they have a
significant impact in nearly every field of mathematical analysis, namely in interpolation and
approximation theory, numerical integration, and spectral analysis. Refs. [31–33] are an excel-
lent place to look for books on Chebyshev polynomials. The Chebyshev collocation scheme
was widened in [34] for the following Volterra pantograph integro-differential problem:

φ′(s) = a1(s)φ(s) + a2(s)φ(qs) + b(s)

+
∫ s

0
k1(s, ς)φ(ς) dς +

∫ qs

0
k2(s, ς)φ(ς) dς, 0 < q < 1, s ∈ [0, T].

(4)

The authors used Chebyshev polynomials to produce the pantograph operational matrices
and their related derivatives. Furthermore, the information gathered from operational ma-
trices was used to approximate the derivatives of unidentified functions. Furthermore, the
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weighted square norm allows for a thorough examination of convergence. The authors ran
some numerical experiments to validate the high performance of the numerical technique.
The results show that the computational technique is correct. The Chebyshev polynomials
approach was used in [35] to examine a space-time fractional integro-differential problem
of the form

CPDµ(s)[y(x, s).w(x, s)] +
∂y(x, s)

∂s

= r(x, s)−
∫ s

0
y(x, T).k(x, T) dT −

∫ t

0
y(x, T) dT,

(5)

y(x, 0) = w(x), x ∈ [0, 1], y(0, s) = v(s), s ∈ [0, 1]. (6)

Applying operational matrices of Chebyshev polynomials derived from the Caputo–Prabhakar
sense and appropriate collocation points would transform the variable fractional order
integro-differential equation into a system of algebraic equations. Deriving four different
kinds of Chebyshev polynomial operational matrices is the main objective of the Cheby-
shev polynomials approach. Such operational matrices convert an equation, which, when
the variables are scattered, can also be viewed as a system of linear equations into the
products of several dependent matrices. The authors of [36] established the concept of first
and second kind Chebyshev derivations based on specific differential operators and the
accompanying polynomial algebra. They then discovered the components of their kernels
and established that each component of either kernel determines a polynomial identity for
both forms of Chebyshev polynomials. They derived many polynomial identities for both
forms of Chebyshev polynomials, the generalized hypergeometric function and a partial
case of Jacobi polynomials.

Over the past 20 years, several approaches for solving compact operator equations
with different projection methods have been produced. The primary objective of [37] is to
improve and widen upon the findings of prior research utilizing the Kulkarni approach to
approximate the solution of the following integro-differential equation:

z′(λ) +
∫ 1

−1
ξ(λ, τ)z(τ)dτ = h(λ), −1 ≤ λ ≤ 1. (7)

The above equation reads in the operator form as follows:

Az − Tz = h, (8)

where
Az(λ) := z′(λ), −1 ≤ λ ≤ 1,

and

Tz(λ) := −
∫ 1

−1
ξ(λ, τ)z(τ)dτ, −1 ≤ λ ≤ 1.

The approach equation is[
I − πn(A−1T) + (A−1T)πn − πn(A−1T)πn

]
zn = h. (9)

Here, (πn)n≥0 is the sequence of orthogonal projections defined via the corresponding
normalized Legendre polynomials. In [38], the author worked on a different Legendre
projection method for establishing the Cauchy integro-differential problems:

φ′(λ) +
∮ 1

−1

φ(t)
t − λ

dt = h(λ), −1 ≤ λ ≤ 1, (10)

The approximate problem is finding φn such that
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φn + A−1Cπn φn = A−1h, (11)

where

(Cz)(λ) =
∮ 1

−1

z(t)
t − λ

dt, −1 ≤ λ ≤ 1, (12)

Here, the approximate operator is A−1Cπn. More recently, a projection approach was
developed in [39] to solve the following system of second-kind Cauchy integral equations:

z(λ)−
∮ 1

0

y(t)
t − λ

dt = h1(λ), (13)

y(λ)−
∮ 1

0

z(t)
t − λ

dt = h2(λ). (14)

In contrast to earlier methodologies, the piecewise polynomial is employed, along with the
development of the Galerkin approximation system characterized by the following form:

uG
n − C∗G

n uG
n = πP

n ξ, (15)

vG
n − CG

n vG
n = πP

n ζ, (16)

where CG
n := πP

n CπP
n and C∗G

n := πP
n C∗πP

n . Also, the author approached the Cauchy
integral operator C on [0, 1] by the finite rank Kulkarni operator CK

n as follows:

CK
n := πP

n C + CπP
n − πP

n CπP
n . (17)

Motivated by the above researches, this study aims to introduce a different projection
strategy for treating the following fractional integro-differential system:

a cJ ν
0+ℓ(υ) + bℓ(υ) + cℓ′(υ) + d

∫ 1

0
ψ(υ, ρ)λ(ρ)dρ = σ(υ), 0 ≤ υ ≤ 1,

a cJ ν
0+λ(υ) + bλ(υ) + cλ′(υ) + d

∫ 1
0 ψ(υ, ρ)ℓ(ρ)dρ = ς(υ), 0 ≤ υ ≤ 1,

r−1
∑

k=0

υk

k! ℓ
(k)(0) = 0,

r−1
∑

k=0

υk

k! λ(k)(0) = 0, r − 1 < ν < r.

(18)

where cJ ν
0+ is the Caputo fractional derivative of order 0 < ν ≤ 2. Here, 0+ for interval

[0, 1] and c for the Caputo sense. This work generalizes such problems and improves some
previously published results. In addition, Chebyshev polynomials of the first kind are
employed as an alternative to both Legendre polynomials and piecewise polynomials. The
corresponding approximate system is as follows:{

aϑn + bRν
0+ϑn + cRν−1

0+ ϑn + dRν
0+P

E
nBϑn = Rν

0+P
E
n Ψ,

aχn + bRν
0+χn + cRν−1

0+ χn + dRν
0+P

E
nBχn = Rν

0+P
E
n ζ.

(19)

It is important to highlight that the current issue, approximate operators, convergence
order of the orthogonal projection, and derived systems are completely different from
those described in the literature, namely in [37–39]. The introduction of computational
approaches to approach the solution of coupled fractional integro-differential systems has
garnered significant attention from mathematicians and researchers in the past years due
to the frequent occurrence of these systems in various disciplines, including engineering
and chemistry [40]. Consequently, numerical techniques have been devised to estimate
the solutions of these systems. In recent years, systems of fractional integro-differential
equations have been used in a variety of scientific and engineering disciplines, including
physiological models, elasticity, technological mathematics, physics theory, economic math-
ematics, finance, electricity, fluid statics, dynamics, heat transfer, and movement theory.
According to the literature study above, more research is needed on the method solution
for a coupled Caputo integro-differential system. In response to this reality, this study
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conducts a numerical investigation of the Caputo fractional-order differential system men-
tioned previously. Following [41], the majority of the literature defines temporal fractional
models according to the Caputo definition, which uses fractional differential equations or
pseudo-state space descriptions. The Caputo formulation is well known because it allows
for beginning conditions to be defined in terms of the integer derivatives of the derived
functions in the models under consideration. Our research on the Caputo derivative is
motivated by its importance as a common fractional operator, which is frequently used in a
variety of fractional derivative applications. The present research intends to delve deeper
into the characteristics and properties of this derivative, as well as incorporate realistic initial
conditions widely used in physics. The projection method is crucial in approximation theory,
and several authors have used Chebyshev polynomials to solve various functional equations
using a variety of strategies, including the spectral collocation approach, the least-squares
method, the operational matrix method, and the matrix collocation method. To tackle the
presented problem for the first time, we use a projection strategy based on First-Kind Cheby-
shev Polynomials in this work. We use a different technique to address a distinct problem.
Our strategy has two distinct advantages compared to other methods in the literature.
The coupled system is converted into a fractional integro-differential system that can be
solved separately using the current method. However, our algebraic system is considerably
easier to solve than the one presented in the literature. Given specific requirements, this
approach can be utilized in upcoming projects to address other categories of fractional
partial differential systems. The present study aims to delineate several overall objectives:

• The numerical approach of a new class of fractional differential and integro-differential
system is the subject of this research. This system is essential in many scientific fields,
including science, finance, control theories, nature, and electrostatics;

• Chebyshev polynomials of the first kind are used to solve this problem;
• A suitable transformation reduces the number of equations that must be solved in a

system of two independent equations;
• An error bound is established for the approach solution achieved by the suggested

procedure;
• We present the existence of the approach solution to the system;
• We offer an application to solve a differential equation;
• We compare our results with those of alternative approaches.

We structure the remainder of this material as follows: Section 2 presents some funda-
mental concepts and properties of fractional calculus, as well as first-order shifted Chebyshev
polynomials. In Section 3, we explore the fractional integro-differential system and transform
it into two independent fractional integro-differential equations that may be studied using
the method provided. Section 4 focuses on developing the projection method using shifted
Chebyshev polynomials of the first order and we solve two algebraic problems. In Section 5,
an error bound is established for the approximate solution achieved by the suggested method.
Section 6 describes an application to a system of differential equations. Section 7 contains
numerical test examples. Finally, in Section 8, the key conclusions are given.

2. Preliminaries

This section begins by examining the basic vocabulary and conceptual frameworks
used in the field of fractional theory and shifted Chebyshev polynomials of the first kind.

2.1. Some Basic Concepts of Fractional Calculus

Definition 1 ([42]). The gamma function, Γ, is described below:

Γ(ς) =
+∞∫
0

e−τ τς−1dτ, ς ∈ C, Re(ς) > 0. (20)

Definition 2 ([42]). The left-sided fractional Riemann–Liouville integral of order ν > 0 of inte-
grable function u : (0, ∞) → R is given as follows:
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Rν
0+u(υ) :=

1
Γ(ν)

∫ υ

0

u(ρ)
(υ − ρ)1−ν

dρ, υ > 0. (21)

Definition 3 ([42]). The left-sided fractional Riemann–Liouville derivative of order ν > 0 of
integrable function u : (0, ∞) → R is defined by

J ν
0+u(υ) :=

1
Γ(1 − ν)

d
dυ

∫ υ

0

u(ρ)
(υ − ρ)ν

dρ. (22)

Definition 4 ([42]). The Caputo fractional derivative of order ν > 0 for an absolutely continuous
and integrable function u : (0, ∞) → R is defined by

cJ ν
0+u(υ) = R1−ν

0+
d

dυ
u(υ) =

1
Γ(1 − ν)

∫ υ

0
(υ − ρ)−νu′(ρ)dρ. (23)

Remark 1. We have

cJ ν
0+υα =

{
0, for α ∈ N and α < [ν],

Γ(α+1)
Γ(α+1−ν)

υα−ν, for α ∈ N and α ≥ [ν] or α /∈ N and α > [ν].
(24)

Remark 2. For ν > 0, we have

J ν
0+u(υ) =

d
dυ

R1−ν
0+ u(υ), (25)

Rν
0+J

ν
0+

(
u(υ)− u(0)

)
= u(υ)− u(0). (26)

Remark 3. For continuous function u, the relationship between the Caputo and Riemann–Liouville
fractional derivatives is provided by

cJ ν
0+u(υ) = J ν

0+(u(υ)− u(0)), ν > 0. (27)

In addition,

cJ ν
0+u(υ) = J ν

0+

(
u(υ)−

r−1

∑
k=0

υk

k!
u(k)(0)

)
, υ > 0, r − 1 < ν < r. (28)

2.2. Shifted Chebyshev Polynomials of the First Kind

This subsection examines an important class of orthogonal polynomials. Through
analytical formulas and recurrence relations, these polynomials can be combined to generate
a new family of orthogonal polynomials referred as shifted Chebyshev polynomials.

Chebyshev polynomials En, n ∈ N are described in the following manner:

En(υ) = cos[n arccos(υ)], for all υ ∈ [−1, 1]. (29)

We can calculate En by using the explicit power series formula as follows:

En(υ) = n
⌈ n

2 ⌉

∑
q=0

(−1)q2n−2q−1 (n − q − 1)!
(q)!(n − 2q)!

υn−2q, n = 1, 2, . . . . (30)

Moreover, En are orthogonal polynomials with respect the following weight integral:

〈
Em, En

〉
=

∫ 1

−1

1√
1 − υ2

Em(υ)En(υ) dυ =

{
0, n ̸= m,
π
2 , n = m ̸= 0.

(31)
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We let

ET
n (υ) = En(2υ − 1), n = 0, 2, 3, . . . (32)

= cos[n arccos(2υ − 1)], for all υ ∈ [0, 1] (33)

indicate the corresponding orthogonal polynomials on [0, 1]. We recall that

ET
n (υ) = n

n

∑
q=0

(−1)n−q 22q(n + q − 1)!
(2q)!(n − q)!

υq n = 1, 2, 3, . . . (34)

Moreover,

〈
ET

k , ET
j
〉

ω
=

∫ 1

0
ET

k (υ)ET
j (υ)ω(υ) dυ =


0, k ̸= j,
π, k = j = 0,
π
2 , k = j ̸= 0.

(35)

Due to computational constraints, we employ the orthonormal basis of the shifted Cheby-
shev polynomials instead of the usual shifted Chebyshev polynomials. To this end, we
introduce the following orthonormal basis of Hω as follows:

E∗
j :=


ET

j√
π

, j = 0,
√

2ET
j√

π
, j ̸= 0.

(36)

Thus,

E∗
j (υ) =


1√
π

, j = 0,

j
√

2√
π

j
∑

p=0
(−1)j−p 22p(j+p−1)!

(2p)!(j−p)! υp, j ̸= 0.
(37)

The first six terms of E∗
j are now explained:

E∗
0 (υ) =

1√
π

,

E∗
1 (υ) =

√
2(2υ − 1)√

π
,

E∗
2 (υ) =

√
2
(
8υ2 − 8υ + 1

)
√

π
,

E∗
3 (υ) =

√
2
(
32υ3 − 48υ2 + 18υ − 1

)
√

π
,

E∗
4 (υ) =

√
2
(
128υ4 − 256υ3 + 160υ2 − 32υ + 1

)
√

π
,

E∗
5 (υ) =

√
2
(
512υ5 − 1280υ4 + 1120υ3 − 400υ2 + 50υ − 1

)
√

π
.

Chebyshev polynomials have received much attention because they are important in
numerical analysis. This study emphasizes shifted Chebyshev polynomials, which are
the first type. These polynomials have several intriguing and useful properties, including
excellent approximation accuracy and the simplicity of numerical methods based on them.

3. Fractional Integro-Differential System

Let us consider the Lebesgue space of real-valued square integrable functions Hω :=
L2

ω([0, 1],R) on [0, 1], with respect to weight function

ω(υ) :=
1√

υ − υ2
.
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Chebyshev polynomials of the first order are employed in this work to examine a
projection approach for treating a system of fractional integro-differential equations of
the form

a cJ ν
0+ℓ(υ) + bℓ(υ) + cℓ′(υ) + d

∫ 1

0
ψ(υ, ρ)λ(ρ)dρ = σ(υ), 0 ≤ υ ≤ 1,

a cJ ν
0+λ(υ) + bλ(υ) + cλ′(υ) + d

∫ 1
0 ψ(υ, ρ)ℓ(ρ)dρ = ς(υ), 0 ≤ υ ≤ 1,

r−1
∑

k=0

υk

k! ℓ
(k)(0) = 0,

r−1
∑

k=0

υk

k! λ(k)(0) = 0, r − 1 < ν < r.

(38)

According to [39], we examine the subsequent changing:{
χ := λ − ℓ, Ψ := ς + σ,
ϑ := λ + ℓ, ζ := ς − σ.

(39)

The main goal of the four transformations is to turn coupled System (40) into a system of
two separate fractional integro-differential equations, which can then be examined via the
given method.

Lemma 1. Problem (38) reads as follows:a cJ ν
0+ϑ + bϑ + cϑ′ + d

∫ 1

0
ψ(. , ρ)ϑ(ρ)dρ = Ψ,

a cJ ν
0+χ + bχ + cχ′ − d

∫ 1
0 ψ(. , ρ)χ(ρ)dρ = ζ.

(40)

Proof. We have λ =
ϑ + χ

2
, σ =

Ψ − ζ

2
,

ℓ = ϑ−χ
2 , ς = Ψ+ζ

2 .
(41)

By putting them into (38), we obtain

a cJ ν
0+(ϑ − χ) + b(ϑ − χ) + c(ϑ − χ)′ + d

∫ 1

0
ψ(. , ρ)λ(ρ)dρ = Ψ − ζ, (42)

a cJ ν
0+(ϑ + χ) + b(ϑ + χ) + c(ϑ + χ)′ + d

∫ 1

0
ψ(. , ρ)(ϑ − χ)(ρ)dρ = Ψ + ζ. (43)

Equations (42) and (43) are added together, and then (42) is subtracted from (43) to yield
(40).

Denoting by B the integral operator, i.e.,

(Bℓ)(υ) :=
∫ 1

0
ψ(υ, ρ)ℓ(ρ)dρ, 0 ≤ υ ≤ 1,

and setting

D :=

{
λ ∈ Hω : λ(k) ∈ Hω,

r−1

∑
k=0

υk

k!
λ(k)(0) = 0, r − 1 < ν < r

}
,

System (40) can be expressed in this way in the operator form:{
a cJ ν

0+ϑ + bϑ + cϑ′ + dBϑ = Ψ,
a cJ ν

0+χ + bχ + cχ′ − dBχ = ζ.
(44)

It is important to remember that operator B is compact from Hω into itself.
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Furthermore,

Rν
0+

cJ ν
0+λ(υ) = λ(υ)−

r−1

∑
k=0

υk

k!
λ(k)(0), (45)

and
Rν

0+
cJ ν

0+λ(υ) = λ(υ), for all λ ∈ D. (46)

Also, Rν
0+ : Hω → D is compact.

4. Development of the Method

By PE
n , the chain of bounded and finite rank orthogonal projections is denoted, out-

lined by

PE
n ψ :=

n−1

∑
j=0

〈
ψ, E∗

j

〉
ω
E∗

j , where
〈

ψ, E∗
j

〉
ω

:=
∫ 1

0
ω(σ)ψ(σ)E∗

j (σ)dσ. (47)

The corresponding norm on Hω is denoted by ∥ · ∥ω. Thus,

lim
n→∞

∥PF
n ϑ − ϑ∥ω = 0, for all ϑ ∈ Hω. (48)

We let Hω,n represent the space covered by the first n-orthonormal shifted Chebyshev
polynomials of first kind. It is obvious that Rν

0+(Hω,n) = Hω,n+1.
System (44) reads as follows:{

a ϑ + bRν
0+ϑ + cRν−1

0+ ϑ + dBRν
0+ϑ = Rν

0+Ψ,

a χ + bRν
0+χ + cRν−1

0+ χ − dBRν
0+χ = Rν

0+ζ.
(49)

The approximate solution of System (49) is denoted by (ϑn, χn). The corresponding ap-
proach system is as follows:{

aϑn + bRν
0+P

E
n ϑn + cRν−1

0+ PE
n ϑn + dRν

0+P
E
nBϑn = Rν

0+P
E
n Ψ,

aχn + bRν
0+P

E
n χn + cRν−1

0+ PE
n χn − dRν

0+P
E
nBχn = Rν

0+P
E
n ζ.

(50)

Alternatively, {
aϑn + bRν

0+ϑn + cRν−1
0+ ϑn + dRν

0+P
E
nBϑn = Rν

0+P
E
n Ψ,

aχn + bRν
0+χn + cRν−1

0+ χn − dRν
0+P

E
nBχn = Rν

0+P
E
n ζ.

(51)

We suppose that both operators aI + bRν
0+ + cRν−1

0+ + dRν
0+B and aI + bRν

0+ + cRν−1
0+ −

dRν
0+B are invertible.

We know that Rν
0+ is compact and

lim
n→∞

∥
(
Rν

0+P
E
nB −Rν

0+B
)
Rν

0+B∥ = 0, lim
n→∞

∥
(
Rν

0+P
E
nB −Rν

0+B
)
Rν

0+P
E
nB∥ = 0. (52)

Writing 
ϑn =

n

∑
k=0

βn,kE∗
k ,

χn =
n
∑

k=0
γn,kE∗

k ,
(53)

we have
cJ ν

0+(E
∗
j (υ)) = 0, j = 0, 1, . . . , ⌈ν⌉ − 1, ν > 0. (54)
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Moreover, for j = ⌈ν⌉, ⌈ν⌉+ 1, . . . , n − 1,

cJ ν
0+E

∗
j (υ) =j

j

∑
p=⌈ν⌉

(−1)j−p 22p(j + p − 1)!
(j − p)!(2p)!

cJ ν
0+υp

=j
j

∑
p=⌈ν⌉

(−1)j−p 22p(j + p − 1)!Γ(p + 1)
(j − p)!(2p)!Γ(p + 1 − ν)

υp−ν.

Thus,

cJ ν
0+P

E
n ψ(υ) =

n−1

∑
j=0

〈
ψ, E∗

j

〉
ω

cJ ν
0+E

∗
j (υ)

=
n−1

∑
j=⌈µ⌉

i

∑
p=⌈µ⌉

〈
ψ, E∗

j

〉
ω
(−1)j−p 22p j(j + p − 1)!Γ(k + 1)

(j − p)!(2p)!Γ(p + 1 − ν)
υp−µ. (55)

The following two independent linear systems can be solved to obtain 2n + 2 unknowns
βn,k and γn,k:

n

∑
k=0

βn,k

[
acJ ν

0+ + bE∗
k + c(E∗

k )
′ + dPE

nBE∗
k

]
= PE

n Ψ, with
n

∑
k=0

βn,kE∗
k (0) = 0,

n
∑

k=0
γn,k

[
acJ ν

0+ + bE∗
k + c(E∗

k )
′ − dPE

nBE∗
k

]
= PE

n ζ, with
n
∑

k=0
γn,kE∗

k (0) = 0.
(56)

Consequently, two separate linear systems are produced:
b βn,k +

n

∑
m=0

Pn(k, m)βn,m = Tn,k, k = 0, · · · , n,

b γn,k +
n
∑

m=0
P̂n(k, m)γn,m = T̂n,k, k = 0, · · · , n,

(57)

where, for k = 0, · · · , n − 1 and m = 0, · · · , n,

Pn(k, m) := a
∫ 1

0

cJ ν
0+E

∗
m(υ)E∗

k (υ)ω(υ)dυ + c
∫ 1

0
(E∗

m)
′
(υ)E∗

k (υ)ω(υ)dυ

+ d
∫ 1

0

(∫ 1

0
E∗

m(ρ)ψ(υ, ρ)dρ

)
E∗

k (υ)ω(υ)dυ,

P̂n(k, m) := a
∫ 1

0

cJ ν
0+E

∗
m(υ)E∗

k (υ)ω(υ)dυ + c
∫ 1

0
(E∗

m)
′
(υ)E∗

k (υ)ω(υ)dυ

− d
∫ 1

0

(∫ 1

0
E∗

m(ρ)ψ(υ, ρ)dρ

)
E∗

k (υ)ω(υ)dυ,

Pn(n, m) := E∗
m(0), P̂n(n, m) := E∗

m(0),

Tn(k) :=
∫ 1

0
Ψ(υ)E∗

k (υ)ω(υ)dυ, T̂n(k) :=
∫ 1

0
ζ(υ)E∗

k (υ)ω(υ)dυ,

Tn(n) := 0, T̂n(n) := 0.

For k = 0, 1, . . . , ⌈ν⌉ − 1 and m = 0, 1, . . . , ⌈ν⌉ − 1, ν > 0

∫ 1

0

(∫ 1

0
E∗

m(ρ)ψ(υ, ρ)dρ

)
E∗

k (υ)ω(υ)dυ =
2km

π

k

∑
p=0

m

∑
s=0

Ap,s

∫ 1

0

(∫ 1

0
ψ(υ, ρ)ρkdρ

)
υmω(υ)dυ,

where

Ap,s = (−1)k−p+m−s 22(p+s)(k + p − 1)!(m + s − 1)!
(2p)!(2s)!(k − p)!(m − s)!

.
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Once the two systems are solved, the solutions are built as follows:
λn =

1
2

n

∑
k=0

[βn,k + γn,k]E∗
k ,

ℓn = 1
2

n
∑

k=0
[βn,k − γn,k]E∗

k .
(58)

In this method, a projection strategy for performing a system of fractional integro-differential
equations of Form (38) is studied using Chebyshev polynomials of the first order. We first
convert coupled System (40) into a system of two distinct fractional integro-differential
equations. Next, we use the current method to investigate the produced equations. Two
algebraic systems follow. In the end, we accomplish building the solutions of System (38).

5. Convergence Analysis

Now, we establish the convergence of the current method. To this end, let us introduce
Sobolev space Hm

ϖ ([0, 1], R) order m ≥ 0 outfitted with the following norm:

∥ϕ∥2
ϖ,m =

m

∑
k=0

∥∥∥ϕ(k)
∥∥∥2

ω
. (59)

Following [43], we have

∥(I −P∗
n)γ∥ϖ ≤ G

nm , for all γ ∈ Hm
ϖ ([0, 1],R) and for some constant G > 0. (60)

Here, I denotes the identity operator. Since bRν
0+ + cRν−1

0+ + dRν
0+B and bRν

0+ + cRν−1
0+ −

dRν
0+B are compact, operators (aI + bRν

0+ + cRν−1
0+ + dRν

0+P
∗
nB)−1 and (aI + bRν

0+ +

cRν−1
0+ − dRν

0+P
∗
nB)−1 exist and are uniformly bounded with regard to n, for n large enough.

Theorem 1 ([44]). If

ψn =
n

∑
j=0

cjE∗
j , (61)

then

EE∗(n) :=| ψ(υ)− ψn(υ) |≤
∞

∑
j=n+1

| cj |, υ ∈ [0, 1]. (62)

Theorem 2. Assume that ς, σ,Bλ,Bℓ ∈ Hm
ϖ ([0, 1],R). Then, there exist G1, G2 > 0 such that

∥ϑn − ϑ∥ϖ ≤ G1

nm , (63)

and
∥χn − χ∥ϖ ≤ G2

nm . (64)

Proof. In fact, {
aϑn + bRν

0+ϑn + cRν−1
0+ ϑn + dRν

0+P
E
nBϑn = Rν

0+P
E
n Ψ,

aχn + bRν
0+χn + cRν−1

0+ χn − dRν
0+P

E
nBχn = Rν

0+P
E
n ζ.

(65)
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Moreover,

ϑ − ϑn =
(

aI + bRν
0+ + cRν−1

0+ + dRν
0+B

)−1
Rν

0+Ψ

−
(

aI + bRν
0+ + cRν−1

0+ + dRν
0+P

∗
nB

)−1
Rν

0+P
∗
nΨ

+
(

aI + bRν
0+ + cRν−1

0+ + dRν
0+P

∗
nB

)−1
Rν

0+Ψ

−
(

aI + bRν
0+ + cRν

0+ + dRν
0+P

∗
nB

)−1
Rν

0+Ψ

=
(

aI + bRν
0+ + cRν−1

0+ + dRν
0+P

∗
nB

)−1
Rν

0+ [d(P
∗
n − I)Bϑ + (I −P∗

n)Ψ].

In addition,

χ − χn =
(

aI + bRν
0+ + cRν−1

0+ − dRν
0+B

)−1
Rν

0+ζ

−
(

aI + bRν
0+ + cRν−1

0+ − dRν
0+P

∗
nB

)−1
Rν

0+P
∗
nζ

+
(

aI + bRν
0+ + cRν−1

0+ − dRν
0+P

∗
nB

)−1
Rν

0+ζ

−
(

aI + bRν
0+ + cRν

0+ − dRν
0+P

∗
nB

)−1
Rν

0+ζ

=
(

aI + bRν
0+ + cRν−1

0+ − dRν
0+P

∗
nB

)−1
Rν

0+ [d(I −P∗
n)Bχ + (I −P∗

n)Ψ].

Hence,

ϑ − ϑn =
(

aI + bRν
0+ + cRν−1

0+ + dRν
0+P

∗
nB

)−1
Rν

0+ [d(P
∗
n − I)B(λ + ℓ) + (I −P∗

n)(ς + σ)].

Also,

χ − χn =
(

aI + bRν
0+ + cRν−1

0+ − dRν
0+P

∗
nB

)−1
Rν

0+ [d(I −P∗
n)B(λ − ℓ) + (I −P∗

n)(ς − σ)].

Letting

Q1 :=
∥∥∥∥(aI + bRν

0+ + cRν−1
0+ + dRν

0+P
∗
nB

)−1
∥∥∥∥∥∥∥Rν

0+

∥∥∥,

Q2 :=
∥∥∥∥(aI + bRν

0+ + cRν−1
0+ − dRν

0+P
∗
nB

)−1
∥∥∥∥∥∥∥Rν

0+

∥∥∥,

we obtain

∥ϑ − ϑn∥ϖ ≤ Q1

[
d∥(I −P∗

n)B(λ + ℓ)∥ϖ + ∥(I −P∗
n)(ς + h)∥ϖ

]
≤ Q1

[
G3 + G4

nm

]
, for some constants G3, G4 > 0.

Moreover,

∥χ − χn∥ϖ ≤ Q2

[
d∥(I −P∗

n)B(λ − ℓ)∥ϖ + ∥(I −P∗
n)(ς − σ)∥ϖ

]
≤ Q2

[
G5 + G6

nm

]
, for some constants G5, G6 > 0

Letting
G1 := Q1 max{G3, G4} and G2 := Q2 max{G5, G6},

we accomplish the required outcomes.



Fractal Fract. 2024, 8, 201 13 of 20

Proposition 1. There exists G > 0 such that

∥λn − λ∥ϖ ≤ G
2nm , (66)

and
∥ℓn − ℓ∥ϖ ≤ G

2nm . (67)

Proof. In fact, λn =
ϑn + χn

2
,

ℓn = ϑn−χn
2 .

(68)

So, λ − λn =
(ϑ − ϑn) + (χ − χn)

2
,

ℓ− ℓn = (ϑ−ϑn)+(χn−χ)
2 .

(69)

Thus,

∥λ − λn∥ϖ =
∥ϑ − ϑn∥ϖ + ∥χ − χn∥ϖ

2
, (70)

∥ℓ− ℓn∥ϖ =
∥ϑ − ϑn∥ϖ + ∥χ − χn∥ϖ

2
. (71)

By applying Theorem 2, the intended outcomes are achieved, with G := G1 + G2.

6. Applications to Differential Equation

The method described above can be easily examined in some important cases. We
implement the present approach to a significant fractional differential problem in this part.
We analyze this problem to demonstrate the efficacy of the present technique. This case
is examined because it is a focal point of interest for numerous scholars across various
scientific and technological fields. By employing fractional calculus, it is possible to model
a physical phenomenon accurately that is influenced by the current time and its history.

Here, we consider the following differential problem:

a cJ ν
0+y(υ) + by(υ) + cy′(υ) = f (υ), y(0) = 0 y′(0) = 0 0 ≤ υ ≤ 1. (72)

In this case, Equation (72) reads as follows:

a y + bRν
0+y + cRν−1

0+ y = Rν
0+ f . (73)

The corresponding approximate equation is as follows:

ayn + bRν
0+P

E
n yn + cRν−1

0+ PE
n yn = Rν

0+P
E
n f (74)

or
ayn + bRν

0+yn + cRν−1
0+ yn = Rν

0+P
E
n f . (75)

Writing

yn =
n

∑
k=0

cn,kE∗
k , (76)

the following linear system can be solved to yield n + 1 unknowns cn,k:

n

∑
k=0

cn,k

[
acJ ν

0+ + bE∗
k + c(E∗

k )
′
]
= PE

n f , with
n

∑
k=0

βn,kE∗
k (0) = 0. (77)
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Consequently, the following linear system is produced,

b cn,k +
n

∑
m=0

An(k, m)cn,m = bn,k, k = 0, · · · , n. (78)

Moreover, for m = 0, · · · , n and k = 0, · · · , n − 1,

An(k, m) := a
∫ 1

0

cJ ν
0+E

∗
m(υ)E∗

k (υ)ω(υ)dυ + c
∫ 1

0
(E∗

m)
′
(υ)E∗

k (υ)ω(υ)dυ

An(n, m) := E∗
m(0),

bn(k) :=
∫ 1

0
Ψ(υ)E∗

k (υ)ω(υ)dυ,

bn(n) := 0.

7. Numerical Simulations

This section includes some simulations to demonstrate prior results. These numerical
evaluations were carried out using the Maple programming language.

Example 1. In this first example, we illustrate fractional integro-differential System (38) that
possesses the exact solutions shown below:

ℓ(υ) =
1
2

(
υ5 − υ7

)
, λ(υ) =

1
2

(
υ5 + υ7

)
, ν =

3
4

.

So,

ϑ(υ) = υ5, χ(υ) = −υ7,

and

Ψ(υ) =
υ2

63
√

π

[
63υ3√π + 256υ

5
2 π + 9

√
π
]
.

Also,

ζ(υ) = − υ2

1287
√

π

[
1287υ5√π + 6144υ

9
2 − 143

√
π
]
.

We accomplish some simulations showing the efficacy of this instance. For example, for n = 7,
unknowns β7,0 · · · β7,7 are described as follows:

β7,0 = 0.31823, β7,1 = 0.52785,

β7,2 = 0.29802, β7,3 = 0.11040,

β7,4 = 0.024445 × 10−1, β7,5 = 0.24568 × 10−2,

β7,6 = −0.28004 × 10−5, β7,7 = 9.1014 × 10−7.

Approximate solution ϑ7 is offered by

ϑ7(υ) = −0.27925 × 10−3υ − 0.47632 × 10−1υ4 − 0.25396 × 10−1υ6 + 0.59487 × 10−2υ7

+ 1.0461υ5 + 0.35983 × 10−1υ3 − 0.12375 × 10−4 − 4 + 0.77152 × 10−2υ2.
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Moreover,

γ7,0 = −0.25316, γ7,1 = −0.44638,

γ7,2 = −0.30230, γ7,3 = −0.15293,

γ7,4 = −0.055729, γ7,5 = −0.013917,

γ7,6 = −0.0021442, γ7,7 = −0.00015237.

Approximate solution χ7 is presented by

χ7(υ) = −0.20744 × 10−3υ − 0.99588υ7 + 0.82657 × 10−2υ2 + 0.29487 × 10−1υ3

− 0.35584 × 10−1υ4 + 0.33095 × 10−1υ5 − 0.18006 × 10−1υ6 + 0.36837 × 10−4.

Table 1 presents the numerical outcomes obtained for Example 1 using our suggested
approach.

Table 1. Outcomes for Example 1.

n ∥ϑ − ϑn∥ϖ ∥χ − χn∥ϖ

4 5.5421 × 10−4 8.5478 × 10−4

7 7.6542 × 10−5 5.6548 × 10−6

9 4.2356 × 10−7 6.4587 × 10−7

15 8.6548 × 10−14 7.4587 × 10−13

21 7.4528 × 10−17 6.9875 × 10−16

Figure 1 illustrates the numerical outcomes obtained for this Example via the present
approximation.

Figure 1. Comparison between approximate solutions ϑn and χn and analytic ones, ϑ and χ, respec-
tively, for n = 7.

Example 2. In this example, we take a = 1, b = 1, c = 0, d = 1. In this case, we investigate
fractional integro-differential System (38) so that

Ψ(υ) =
1

840
√

π

[
3072υ7/2 + 840υ4√π − 420υ2√π − 1120υ3/2

]
, ν =

1
2

.

and

ζ(υ) = − 1
840

√
π

[
3072υ7/2 + 840υ4√π + 420υ2√π + 1120υ3/2 − 308υ

√
π − 245

√
π
]
.
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Some numerical experiments are conducted in order to illustrate the efficacy of the current instance.
For example, for n = 5, unknowns β5,0 · · · β5,5 are described as follows:

β5,0 = 0.11796, β5,1 = 0.24900, β5,2 = 0.19709,

β5,3 = 0.78087 × 10−1, β5,4 = 0.98708 × 10−2, β5,5 = −0.24920 × 10−4.

Approach solution ϑ5 is provided by

ϑ5(υ) = 0.77591 × 10−2υ − 0.44719 × 10−1υ3 − 0.44719υ2

+ 1.0335υ4 − 0.10180 × 10−1υ5 − 0.17084 × 10−2.

Moreover,

γ5,0 = −0.55835, γ5,1 = −0.81377, γ5,2 = −0.34822,

γ5,3 = −0.079199, γ5,4 = −0.0095269, γ5,5 = −0.000084704.

Approach solution χ7 is given by

χ7(υ) = 0.26600 × 10−1υ − 0.88641υ4 − 0.15186υ3 + 0.37873υ2

− 0.34602 × 10−1υ5 − 0.18385 × 10−1.

Table 2 illustrates the numerical results obtained for Example 1 using our proposed technique.

Table 2. Numerical outcomes for Example 2.

n ∥ϑ − ϑn∥ϖ ∥χ − χn∥ϖ

6 3.7589 × 10−5 7.2546 × 10−5

8 6.2546 × 10−6 6.4548 × 10−5

10 3.2546 × 10−7 8.2746 × 10−6

14 6.2354 × 10−13 5.7854 × 10−11

20 5.2365 × 10−16 5.2546 × 10−15

For this second example, let us take a = 1, b = 1, c = 0, d = 1. The numerical findings
acquired for this example using the present approach are depicted in Figure 2.

Figure 2. Comparison between approximate solutions ϑn and χn and analytic ones, ϑ and χ, respec-
tively, for n = 5.

Example 3. In this example, we take a = 1, b = 0, c = 1, d = 1, ν = 1.75, and

ψ(υ, ρ) =

{
1 if ρ ≤ υ,
0 otherwise,
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We obtain the coupled fractional system integral-differential equations given in Example 2 of [22].
The authors used a numerical approach based on the Haar wavelet. The primary problem is converted
into a system of algebraic equations using the suggested method, which attempts to construct the
fractional operational matrix integration. The present results are better than those obtained in [22].
Moreover, our algebraic system is significantly simpler to solve than the algebraic system of [22]. We
present the numerical results for ∥ℓ− ℓn∥2 of Example 3 with comparison to [22] in Table 3. Also,
we offer the numerical results for ∥λ − λn∥2 of this example with comparison to [22] in Table 4.

Table 3. Numerical outcomes for ∥ℓ− ℓn∥2 of Example 3.

n [22] The Present Approach ≤

16 3.478023 × 10−4 6.356487 × 10−14

32 6.371379 × 10−5 7.256987 × 10−18

64 9.371983 × 10−7 9.264875 × 10−23

Table 4. Numerical outcomes for ∥λ − λn∥2 of Example 3.

n [22] The Present Approach ≤

16 5.371897 × 10−4 7.954216 × 10−14

32 8.381098 × 10−5 6.574821 × 10−18

64 2.387639 × 10−6 8.739128 × 10−22

Example 4 ([28]). We consider the following fractional differential equation:

cJ ν
0+y(s) = −y(s) + f (s), y(0) = 0, 0 < ν < 1, 0 ≤ s ≤ 1,

where

f (s) = s2 +
2s2−ν

Γ(3 − ν)
and y(s) = s2.

The linear B-spline operational matrix method described in [29] and the wavelet collocation method
are used in [28] to estimate the solutions to this problem. The absolute error of our method compared
with the linear B-spline operational matrix approach presented in [29] for J = 8 and the rapid
wavelet collocation method for L = 0; J = 5 is shown in Table 5.

Table 5. Numerical outcomes of Example 4.

si [22] [22] Our Method ≤

0.03125 0.059 × 10−12 0.043 × 10−4 2.252 × 10−17

0.09375 0.043 × 10−12 0.115 × 10−4 1.120 × 10−17

0.18750 0.053 × 10−12 0.134 × 10−4 3.700 × 10−17

0.28125 0.024 × 10−12 0.145 × 10−4 2.100 × 10−17

0.37500 0.003 × 10−12 0.153 × 10−4 2.000 × 10−17

0.46875 0.064 × 10−12 0.160 × 10−4 2.000 × 10−17

0.56250 0.054 × 10−12 0.165 × 10−4 1.000 × 10−17

0.65625 0.009 × 10−12 0.170 × 10−4 1.000 × 10−17

0.75000 0.017 × 10−12 0.173 × 10−4 3.000 × 10−17

0.84375 0.031 × 10−12 0.177 × 10−4 0.000 × 10−17

0.93750 0.201 × 10−12 0.180 × 10−4 0.000 × 10−17

8. Conclusions

We used shifted Chebyshev polynomials of the first kind and a projection method to
solve a set of fractional integro-differential equations in this work. The present strategy in-
volves transforming the given problem into two algebraic equations. The acquired systems
are solved to obtain approximate solutions to the given problem. The integro-differential
system under consideration exhibits clear significance in the realm of mathematical research,
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particularly about phenomena involving interactions within the field of physics. The impact
of the fractional operator on the growth of numerical outcomes has been substantial. This
approach can be employed to examine and resolve diverse fractional, integro-differential,
and integral problems. Under certain circumstances, this approach may be used as a future
project to solve the system of Cauchy fractional differential equations displayed in the ones
that follow:a cJ ν

0+ℓ(υ) + bℓ(υ) + cℓ′(υ) + d
∫ 1

0

λ(ρ)

υ − ρ
dρ = σ(υ), 0 ≤ υ ≤ 1,

a cJ ν
0+λ(υ) + bλ(υ) + cλ′(υ) + d

∫ 1
0

ℓ(ρ)
υ−ρ dρ = ς(υ), 0 ≤ υ ≤ 1.

The study can be extended to the derivatives of Riemann–Liouville and Grünwald–Letnikov
as future perspectives. As a result, these findings cast doubt on the accuracy of findings
made in the field of time-fractional model analysis that involves beginning conditions.
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