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Abstract: In this study, we present a novel approach for the numerical solution of high-order ODEs
and MTVOFDEs with BCs. Our method leverages a class of GSJPs that possess the crucial property
of satisfying the given BCs. By establishing OMs for both the ODs and VOFDs of the GSJPs, we
integrate them into the SCM, enabling efficient and accurate numerical computations. An error
analysis and convergence study are conducted to validate the efficacy of the proposed algorithm.
We demonstrate the applicability and accuracy of our method through eight numerical examples.
Comparative analyses with prior research highlight the improved accuracy and efficiency achieved
by our approach. The recommended approach exhibits excellent agreement between approximate
and precise results in tables and graphs, demonstrating its high accuracy. This research contributes to
the advancement of numerical methods for ODEs and MTVOFDEs with BCs, providing a reliable
and efficient tool for solving complex BVPs with exceptional accuracy.
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1. Introduction

BVPs involving high order ODEs and MTVOFDEs arise in various areas of science and
engineering, such as visco-elastic materials [1–3], economics [4], continuum and statistical
mechanics [5], solid mechanics [6], and dynamics of interfaces between soft-nanoparticles
and rough substrates [7]; for more applications of differential equations, see the monograph
by Gregus [8]. These problems often pose significant challenges due to their complex nature
and the presence of BCs that must be satisfied. Therefore, the development of efficient and
accurate numerical methods for solving such BVPs is of great importance.

There are many approximation approaches in the literature that use orthogonal poly-
nomials and non-orthogonal polynomials to obtain numerical solutions for different types
of differential equations [9–29]. In this paper, we present a novel approach for the numerical
solution of high-order ODEs and MTVOFDEs with BCs in the following forms:

X(n)(Z) = F(Z,X(Z),X(1)(Z), . . . ,X(n−1)(Z)), Z ∈ [0,L], n = 1, 2, 3, . . . , (1)

or

Dν(Z)X(Z) = F(Z,X(Z),Dν1(Z)X(Z),Dν2(Z)X(Z), . . . ,Dνm(Z)X(Z)), 0 < Z ≤ L, (2)

with each one of these two models subject to the following BCs:

X(i)(0) = αi, X(j)(L) = β j, i = 0, 1, . . . , n1, j = 0, 1, . . . , n2, n1 + n2 + 2 = n, (3)
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where n is the smallest positive integer number such that 0 ≤ ν1(Z) < ν2(Z) < · · · <
νm(Z) < ν(Z) ≤ n holds for all Z ∈ [0,L] and where Dν(Z)X(Z), Dνi(Z)X(Z) (i =
1, 2, . . . , m) are the VOFDs defined in the Caputo sense, F is a continuous function, and
αi (i = 0, 1, . . . , n1), β j (j = 0, 1, . . . , n2) are constants.

The establishment of OMs for ODs and VOFDs for GSJP is crucial to our technique.
These OMs enable us to efficiently compute the derivatives of the GSJPs, which are then
incorporated into the SCM. The SCM is a powerful numerical technique that approximates
the solution by expanding it in a series of basis functions and collocating the governing
equation at specific points within the domain. By integrating these innovative techniques,
we effectively bridge a gap in the existing literature, offering a reliable and efficient nu-
merical tool for addressing complex BVPs while advancing our understanding of systems
characterized by variable-order fractional dynamics. Our method provides a significant
contribution by precisely solving the mentioned high-order ODEs (1) and MTVOFDEs (2)
with BCs (3).

It can be said that the integration of these techniques is a dependable and efficient
tool for tackling these specific classes of equations, enabling accurate representations of
the solutions and precise enforcement of the BCs. This level of specificity enhances the
clarity of our research targets, ensuring that readers comprehend the problem domain we
aim to address. Additionally, employing these techniques enables us to effectively handle
the varying fractional orders, providing a powerful tool for the numerical solution of
complex BVPs. For example, in [19] the author discussed using the proposed techniques to
obtain the numerical solution of multi-term variable-order time-fractional diffusion-wave
equations. This capability opens up new avenues for studying real-world phenomena that
exhibit variable-order fractional dynamics. To ensure the reliability and effectiveness of our
proposed algorithm, we conduct an error analysis and convergence study. These analyses
provide theoretical guarantees for the accuracy and convergence properties of our method.
Additionally, we present a set of seven numerical examples to demonstrate the applicability
and accuracy of our approach. The numerical results obtained using our method exhibit
a high degree of agreement between the approximate solutions and the exact solutions.
We present these results in the form of tables and graphs, illustrating the accuracy and
reliability of our approach in solving complex BVPs. By introducing this novel numerical
approach for high-order ODEs and MTVOFDEs with BCs, we obtain a reliable and efficient
tool for solving the challenging BVPs encountered in various scientific and engineering
applications. The accuracy and effectiveness of our method make it a valuable asset for
researchers and practitioners seeking accurate numerical solutions for complex BVPs.

This paper’s structure is as follows. In Section 2, we cover the essential notions
and principles of VOFC. Section 3 delves into the essential characteristics of shifted JPs
and GSJPs. We explore their properties and significance in the context of our study. In
Section 4, we focus on the development of novel OMs tailored specifically for GSJP ODs
and VOFDs. These newly constructed OMs are crucial for solving the problem described
by Equations (1) and (2) subject to the BCs outlined in Equation (3). Section 5 delves into
the application of the newly developed OMs within the framework of the SCM to solve
the aforementioned problems. In Section 6, we present a comprehensive analysis of the
error estimate. To showcase the effectiveness and practicality of the proposed method,
we provide eight numerical examples in Section 7. These examples serve to validate our
method and enable comparisons with alternative approaches. We conclude our analysis
with a summary of key results and important conclusions in Section 8. We discuss the
contributions and implications of our research, highlighting the advantages and potential
applications of the proposed method in solving problems involving ODEs and VOFDEs
with BCs.

2. Basic Definition of Caputo VOFDs

This section introduces the tools needed to construct the suggested approach and
enable us to address the given problems.
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Definition 1 ([30–33]). The Caputo VOFDs for h(Z) are defined as follows:

Dµ(Z)h(Z) =
1

Γ(N− µ(Z))

Z∫
0

(Z− τ)N−µ(Z)−1h(N)(τ) dτ, n− 1 < µ(Z) ≤ N, Z > 0. (4)

When µ(Z) = α, Definition 1 provides the Caputo fractional derivative (FD) of order
α. Further, Dµ(Z) has the following characteristics:

Dµ(Z)(λ1h1(Z) + λ2h2(Z)) = λ1 Dµ(Z)h1(Z) + λ2 Dµ(Z)h2(Z),

Dµ(Z)h(Z) =
dN h(Z)

dZN
, µ(Z) = N, N ∈ N.

(5)

Furthermore, Equation (4) provides us with the following [30,31]:

Dµ(Z)(C) = 0, (C is a const.),

Dµ(Z)Zk =

0, k = 0, 1, . . . , ⌈µ(Z)⌉ − 1,
Γ(k + 1)

Γ(k + 1 − µ(Z))
Zk−µ(Z), k ≥ ⌈µ(Z)⌉.

(6)

3. A Brief Description of JPs and GSJPs

The primary goal of this section is to introduce the essential aspects of JPs and their
derived forms.

3.1. A Summary of the Shifted JPs

Orthogonal JPs, V (a,b)
n (x), a, b > −1, satisfy [34]

∫ 1

−1
wa,b(x) V (a,b)

n (x)V (a,b)
m (x) dx =

{
0, m ̸= n,

h(a,b)
n , m = n,

where wa,b(x) = (1− x)a(1+ x)b and h(a,b)
n =

2λΓ(n + a+ 1)Γ(n + b+ 1)
n!(2n + λ)Γ(n + λ)

, λ = a+ b+ 1.

The shifted JPs, denoted as V (a,b)
L,n (Z) = V (a,b)

n (2Z/L− 1), are in accordance with

∫ L

0
wa,b
L (Z) V (a,b)

L,n (Z)V (a,b)
L,m (Z) dZ =

0, m ̸= n,(
L
2

)λ
h(a,b)

n , m = n,

where wa,b
L (Z) = (L− Z)a Zb.

The fundamental expansions that will be used in this paper are [35] (Section 11.3.4):

1. The power form representation of V (a,b)
L,n (Z) is as follows:

V (a,b)
L,i (Z) =

i

∑
k=0

c(i)k Zk =
i

∑
k=0

c̄(i)k (L− Z)k, (7)

where

c(i)k =
(−1)i−kΓ(i + b+ 1)Γ(i + k + λ)

Lk k!(i − k)!Γ(k + b+ 1)Γ(i + λ)
and c̄(i)k =

(−1)k(a+ 1)i(λ + i)k

Lk k!(i − k)!(a+ 1)k
. (8)

2. The forms of Zk and (L− Z)k in regard to V (a,b)
L,r (Z) are
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Zk =
k

∑
r=0

b(k)r V (a,b)
L,r (Z), and (L− Z)k =

k

∑
r=0

b̄(k)r V (a,b)
L,r (Z), (9)

where

b(k)r =
Lk k! (λ + 2r)Γ(k + b+ 1)Γ(r + λ)

(k − r)! Γ(r + b+ 1)Γ(k + r + λ + 1)
and b̄(k)r =

(2j + λ)Lk(−k)j(λ + 1)j−1(a+ 1)k

(a+ 1)j(λ + 1)k(k + λ + 1)j
. (10)

3.2. Offering GSJPs

In this part, it is important to discuss the polynomials {ϕ
(a,b)
p,q,j (Z)}j≥0, defined as

follows:
ϕ
(a,b)
p,q,j (Z) = Zp(L− Z)q V (a,b)

L,j (Z), p, q = 0, 1, 2, . . . . (11)

These are required to meet the homogenous form of the BCs (3) for a suitable choice of p, q.
Subsequently, they satisfy

∫ L

0

wa,b
L (Z)

Z2p(L− Z)2q ϕ
(a,b)
p,q,i (Z) ϕ

(a,b)
p,q,j (Z) dZ =

0, i ̸= j,(
L
2

)λ
h(a,b)

i , i = j.
(12)

4. Two OMs for Ods and VOFDs of ϕ
(a,b)
p,q,j (Z)

In this section, we present two OMs for Ods and VOFDs of ϕ
(a,b)
p,q,j (Z). To do this, we

start with Theorem 1 and Lemma 1, which enable us to prove Theorem 2.

Theorem 1 ([9]). The first derivative of ϕ
(a,b)
p,0,i (Z), i ≥ 0, can be written in the form

Dϕ
(a,b)
p,0,i (Z) =

i−1

∑
j=0

θa,b
i,j (p)ϕ(a,b)

p,0,j (Z) + ϵp,i(Z), (13)

where ϵp,i(Z) =
1
i!
(−1)i p (b+ 1)i Z

p−1 and

θa,b
i,j (p) = Ca,b

i,j

i−j−1

∑
r=0

(−1)r(r + p + j + 1)(j + i + λ + 1)r

r!(r + j + 1)(r + j + b+ 1)(i − j − r − 1)!Γ(r + 2j + λ + 1)
, (14)

where

Ca,b
i,j =

(−1)i+j−1(λ + i)(b+ 1)i(λ + 2j)Γ(j + λ)(i + λ + 1)j

ℓ(b+ 1)j
.

Lemma 1. The polynomials V (a,b)
L,i (Z), i ≥ 0, have the following expression:

V (a,b)
L,i (Z) = (Z−L)

i−1

∑
j=0

Υa,b
i,j V (a,b)

L,j (Z) + V (a,b)
L,i (L), (15)

where

Υa,b
i,j =

Γ(i + a+ 1)Γ(j + λ)Γ(i + j + λ + 1)
L (j + 1)Γ(i − j)Γ(j + a+ 2)Γ(i + λ)Γ(2j + λ) 4F3

(
1 − i + j, 1 + j, j + a+ 1, i + j + λ + 1
2 + j, a+ j + 2, 2j + λ + 1

; 1
)

. (16)

Proof. We have

V (a,b)
L,i (Z) = (Z−L)

(V (a,b)
L,i (Z)− V (a,b)

L,i (L)
Z−L

)
+ V (a,b)

L,i (L). (17)
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In view of (7) and (9), we obtain

V (a,b)
L,i (Z)− V (a,b)

L,i (L)
Z−L = −

i−1

∑
k=0

c̄(i)k+1 (L− Z)k = −
i−1

∑
k=0

c̄(i)k+1

( k

∑
r=0

b̄(k)r V (a,b)
L,r (Z)

)
, (18)

consequently,

V (a,b)
L,i (Z)− V (a,b)

L,i (L)
Z−L = −

i−1

∑
j=0

( i−j−1

∑
r=0

c̄(i)r+j+1 b̄(r+j)
j

)
V (a,b)
L,j (Z) = −

i−1

∑
j=0

Υa,b
i,j V (a,b)

L,j , (19)

where Υa,b
i,j has the form from (16). Substitution of (19) into (17) leads to (15).

Theorem 2. Dϕ
(a,b)
p,q,i (Z), i ≥ 0, can be expressed as follows:

D ϕ
(a,b)
p,q,i (Z) =

i−1

∑
j=0

Ωp,q
i,j ϕ

(a,b)
p,q,j (Z) + ϑp,q,i(Z), (20)

where ϑp,q,i(Z) =
p
i!
(−1)i (b+ 1)i Z

p−1(L− Z)q − q
i!
(a+ 1)i(L− Z)q−1 Zp and

Ωp,q
i,j = θa,b

i,j (p) + q Υa,b
i,j . (21)

Proof. In view of (11), the first derivative of ϕ
(a,b)
p,q,i (Z) takes the following form:

D ϕ
(a,b)
p,q,i (Z) = (L− Z)q D (Zp V (a,b)

L,i (Z))− q (L− Z)q−1 Zp V (a,b)
L,i (Z). (22)

Using Lemma 1 and Theorem 1 leads to (22), which takes the form from (20).

Now, we have reached one of the main desired results in this section, which is the OM
of the ods of

Φ
(a,b)
p,q,N (Z) = [ϕ

(a,b)
p,q,0 (Z), ϕ

(a,b)
p,q,1 (Z), . . . , ϕ

(a,b)
p,q,N (Z)]T . (23)

Corollary 1 shows this outcome, which directly follows from Theorem 2.

Corollary 1.
dmΦ

(a,b)
p,q,N (Z)

dZm = Gm
p,qΦ

(a,b)
p,q,N (Z) + η

(m)
p,q,N (Z) (24)

with

η
(m)
p,q,N (Z) =

m−1

∑
k=0

Gk
p,q ϑ

(m−k−1)
p,q,N (Z),

where ϑp,q,N (Z) =
[
ϑp,q,0(Z), ϑp,q,1(Z), . . . , ϑp,q,N (Z)

]Tand Gp,q =
(

gi,j(p, q)
)

0≤i,j≤N

gi,j(p, q) =

{
Ωp,q

i,j , i > j,

0, otherwise.

The OM of the VOFDs of Φ
(a,b)
p,q,N (Z) is the second primary desired result, which is

provided in Theorem 4. To achieve this, we need to consider the following theorem:

Theorem 3 ([9]). Dυ(Z)ϕ
(a,b)
p,0,i (Z), i ≥ 0 has the following expression:
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Dυ(Z)ϕ
(a,b)
p,0,i (Z) = Z−υ(Z)

i

∑
j=0

Θ(p,0)
i,j (υ(Z))ϕ

(a,b)
p,0,j (Z), (25)

which leads to
Dυ(Z)Φ

(a,b)
p,0,N (Z) = Z−υ(Z)D(υ(Z))

p,0 Φ
(a,b)
p,0,N (Z), (26)

where D(υ(Z))
p,0 = (d(p,0)

i,j (υ(Z))) is a matrix of order (N + 1)× (N + 1) with elements defined
as follows:

d(p,0)
i,j (υ(Z)) =

{
Θ(p,0)

i,j (υ(Z)), i ≥ j,

0, otherwise,
(27)

and

Θ(p,0)
i,j (υ(Z)) =

(−1)i−j(p + j)!Γ(i + b+ 1)Γ(j + λ)Γ(i + j + λ)

(i − j)!Γ(j + b+ 1)Γ(2j + λ)Γ(i + λ)Γ(p + j − υ(Z) + 1)
× 3F2

(
j − i, p + j + 1, i + j + λ
2j + λ + 1, p + j − υ(Z) + 1

; 1
)

. (28)

Theorem 4. Dυ(Z)ϕ
(a,b)
p,q,i (Z), i ≥ 0 has the following expression:

Dυ(Z)ϕ
(a,b)
p,q,i (Z) = Z−υ(Z)

i

∑
j=0

Λ(p,q)
i,j (υ(Z),Z)ϕ(a,b)

p,0,j (Z) (29)

and consequently,
Dυ(Z)Φ

(a,b)
p,q,N (Z) = Z−υ(Z) D(υ(Z))

p,q (Z)Φ
(a,b)
p,0,N (Z), (30)

where D(υ(Z))
p,q (Z) = (d(p,q)

i,j (υ(Z),Z)) is a matrix of order (N + 1) × (N + 1) with elements
defined as follows:

d(p,q)
i,j (υ(Z),Z) =

{
Λ(p,q)

i,j (υ(Z),Z), i ≥ j,

0, otherwise,
(31)

and

Λ(p,q)
i,j (υ(Z),Z) =

q

∑
k=0

(−1)k
(

q
k

)
Lq−kΘ(k+p,0)

i,j (υ(Z))Zk. (32)

Proof. We have

Dυ(Z)ϕ
(a,b)
p,q,i (Z) =

q

∑
k=0

(−1)k
(

q
k

)
Lq−kDυ(Z)(Zk+p V (a,b)

L,i (Z)). (33)

Applying Theorem 3, we obtain

Dυ(Z)ϕ
(a,b)
p,q,i (Z) =

q

∑
k=0

(−1)k
(

q
k

)
Lq−k

(
Z−υ(Z)

i

∑
j=0

Θ(k+p,0)
i,j (υ(Z))(Zk+p V (a,b)

L,j (Z))
)

,

= Z−υ(Z)
i

∑
j=0

( q

∑
k=0

(−1)k
(

q
k

)
Lq−k Θ(k+p,0)

i,j (υ(Z))Zk
)

ϕ
(a,b)
p,0,j (Z),

= Z−υ(Z)
i

∑
j=0

Λ(p,q)
i,j (υ(Z),Z) ϕ

(a,b)
p,0,j (Z);

(34)

then,

Dυ(Z)ϕ
(a,b)
p,q,i (Z) = Z−υ(Z)

(
[Λ(p,q)

i,0 (υ(Z),Z), Λ(p,q)
i,1 (υ(Z),Z), . . . , Λ(p,q)

i,i (υ(Z),Z), 0, . . . , 0]Φ(a,b)
p,0,N (Z)

)
(35)

and (30) is obtained.
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5. Numerical Handling for the DEs (1) and (2) Subject to BCs (3)

In this part, we use the computed OMs to find numerical solutions for (1) and (2)
subject to (3).

5.1. Homogeneous BCs

Suppose that

X(i)(0) = 0, X(j)(L) = 0, i = 0, 1, . . . , n1, j = 0, 1, . . . , n2, n1 + n2 + 2 = n, (36)

p = n1 + 1, and q = n1 + 1; then, the following approximations can be considered:

X(Z) ≃ XN (Z) =
N
∑
i=0

ai ϕ
(a,b)
p,q,N (Z) = AT Φ

(a,b)
p,q,N (Z) (37)

and

Dυ(Z)X(Z) ≃ Dυ(Z)XN (Z) =


AT Gm

p,q Φ
(a,a)
p,q,N (Z) + η

(m)
p,q,N (Z), υ(Z) = m, m is an integer,

Z−υ(Z) AT D(υ(Z))
p,q Φ

(a,a)
p,q,N (Z), υ(Z) is a fraction number or function,

(38)

where A = [a0, a1, . . . , aN ]T .
To express the residual of Equation (1) in the method suggested, it is possible to use

the approximations provided by (37) and (38):

Rp,q,N (Z) =AT Gn
p,q Φ

(a,b)
p,q,N (Z) + η

(n)
p,q,N (Z)

− F(Z,AT Φ
(a,b)
p,q,N (Z),AT Gp,q Φ

(a,b)
p,q,N (Z) + η

(1)
p,q,N (Z), . . . ,AT Gn−1

p,q Φ
(a,b)
p,q,N (Z) + η

(n−1)
p,q,N (Z)),

(39)

while the residual of Equation (2) is in the following form:

R̂p,q,N (Z) =Z−ν(Z) AT D(ν(Z))
p,q Φ

(a,b)
p,0,N (Z)

− F(Z,AT Φ
(a,b)
p,0,N (Z),Z−ν1(Z) AT D(ν1(Z))

p,q Φ
(a,b)
p,0,N (Z), . . . ,Z−νm(Z) AT D(νm(Z))

p,q Φ
(a,b)
p,0,N (Z)).

(40)

Using the (N + 1) zeros of V (a,b)
L,N+1(Z) as collocation points, or alternatively, using Zk =

L(k+1)
N+2 , 0 ≤ k ≤ N , we obtain the system

Rp,q,N (Zk) = 0, 0 ≤ k ≤ N (41)

in the case of ODE (1) and the system

R̂p,q,N (Zk) = 0, 0 ≤ k ≤ N (42)

in the case of VOFDE (2). We can compute the coefficients ak, 0 ≤ k ≤ N , by solving
(41) or (42) to obtain the approximated solutions of (1) or (2), respectively. This proposed
algorithm is referred to as GSJCOPMM.

5.2. Nonhomogeneous BCs

It is important to change the nonhomogeneous conditions (3), the ODE (1), and the
VOFDE (2) into similar forms with homogeneous conditions in order to make the suggested
algorithm work. The following transformation is what makes these changes possible:

X̄(Z) = X(Z)− Tn(Z), Tn(Z) =
n−1

∑
j=0

Cj Z
j, (43)
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where the coefficients Cj(j = 0, 1, . . . , n − 1) can be computed by solving the system

T
(i)
n (0) = 0, T

(j)
n (L) = 0, i = 0, 1, 2, . . . , n1, j = 0, 1, 2, . . . , n2, n1 + n2 + 2 = n. (44)

Solving the following amended equations can simplify the current issue:

X̄(n)(Z) = F(Z, X̄(Z) + Tn(Z), (X̄+ Tn(Z))
(1), . . . , (X̄(Z) + Tn(Z))

(n−1)), Z ∈ [0,L], (45)

and

Dν(Z)X̄(Z) = F(Z, X̄(Z) + Tn(Z),Dν1(Z)(X̄(Z) + Tn(Z)),Dν2(Z)(X̄(Z) + Tn(Z)), . . . ,Dνm(Z)(X̄(Z) + Tn(Z))), Z ∈ [0,L],
0 ≤ ν1(Z) < ν2(Z) < · · · < νm(Z) < ν(Z) ≤ n,

(46)

with the following BCs:

X̄(i)(0) = 0, X̄(j)(L) = 0, i = 0, 1, 2, . . . , n1, j = 0, 1, 2, . . . , n2, n1 + n2 + 2 = n. (47)

Hence,
XN (Z) = X̄N (Z) + Tn(Z). (48)

6. Convergence and Error Analysis

Here, we look at the suggested method’s convergence and error estimations. To do
this, we first need to define the space Sp,q,N and obtained error eN (Z), which are our
primary focus:

Sp,q,N = Span{ϕ
(a,b)
p,q,0 (Z), ϕ

(a,b)
p,q,1 (Z), ..., ϕ

(a,b)
p,q,N (Z)}, eN (Z) = |X(Z)−XN (Z)|.

Then,

∥eN ∥2 =

(∫ L

0

(
eN (Z)

)2
dZ

)1/2

, ∥eN ∥∞ = max
0≤Z≤L

eN (Z). (49)

Theorem 5. Suppose that X(Z) = Zp(L− Z)q u(Z) and that XN (Z) is provided by (37), which
represents the best possible approximation for X(Z) out of Sp,q,N . Then,

∥eN ∥∞ ≤ KLp+q+1

2λ

(
p

p + q

)p( q
p + q

)q( eL
4

)N
(N + 1)s−N−1 (50)

and

∥eN ∥2 ≤ KLp+q+3/2

2λ

(
p

p + q

)p( q
p + q

)q ( eL
4

)N
(N + 1)s−N−1, (51)

where s = max{a, b,−1/2} < N + 1 and K = max
Z∈[0,L]

∣∣∣dN+1 u(η)
dZN+1

∣∣∣, η ∈ [0,L].

Proof. The author of [9] (the proof of Theorem 6.1) shows that if uN (Z) is the interpolating
polynomial for u(Z) at the roots of V (a,b)

L,N+1(Z), then we obtain

∥u − uN ∥∞ ≤ KL
2λ

( eL
4

)N
(N + 1)s−N−1, N > s − 1. (52)

Now, consider the approximation X(Z) ≃ XN (Z) = Zp(L− Z)q uN (Z); in this case,

∥X−XN ∥∞ ≤
(

max
0≤Z≤L

Zp(L− Z)q
)
∥u − uN ∥∞. (53)

It is not difficult to show that
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max
0≤Z≤L

Zp(L− Z)q = Lp+q
(

p
p + q

)p( q
p + q

)q
, (54)

in which case using (52), (53) and (54) leads to

∥X−XN ∥∞ ≤ KLp+q+1

2λ

(
p

p + q

)p( q
p + q

)q( eL
4

)N
(N + 1)s−N−1. (55)

Because the approximate solution XN (Z) ∈ Sp,q,N represents the best possible approxima-
tion of X(Z), we obtain

∥X−XN ∥∞ ≤ ∥X− h∥∞, ∀h ∈ Sp,q,N (56)

and
∥X−XN ∥2 ≤ ∥X− h∥2, ∀h ∈ Sp,q,N . (57)

Therefore,

∥X−XN ∥∞ ≤ ∥X−XN ∥∞ ≤ KLp+q+1

2λ

(
p

p + q

)p( q
p + q

)q( eL
4

)N
(N + 1)s−N−1

and

∥X−XN ∥2 ≤ ∥X−XN ∥2 ≤ Lq∥u − uN ∥∞

( ∫ L

0
Z2p dZ

)1/2

≤ KLp+q+3/2

2λ

(
p

p + q

)p( q
p + q

)q ( eL
4

)N
(N + 1)s−N−1.

The resulting error converges at a very fast rate, as shown by Corollary 2.

Corollary 2. For all N > s − 1, we have

∥eN ∥∞ = O((0.7)−NLN N s−N−1) (58)

and
∥eN ∥2 = O((0.7)−NLN N s−N−1). (59)

The stability of error, or the process of estimating the propagation of the error, is the
focus of the subsequent theorem.

Theorem 6. For any two successive approximations of X(Z), we obtain

|XN+1 −XN | ≲ O((0.7)−NLN N s−N−1), N > s − 1, (60)

where ≲ means that a generic constant d exists such that |XN+1 −XN | ≤ d (eL/4)N N s−N−1.

Proof. We have

|XN+1 −XN | = |XN+1 −X+X−XN | ≤ |X−XN+1|+ |X−XN | ≤ ∥eN+1∥∞ + ∥eN ∥∞.

By considering (58), we can obtain (60).

7. Numerical Simulations

In the current section, we present numerical simulations of BVPs as expressed in
Equations (1) and (2). Both types share a common form of BC (3). In the following examples,
we demonstrate the application of GSJCOPMM to solve these BVPs. These numerical
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simulations provide insights into the behavior of the solutions and the accuracy of the
proposed GSJCOPMM algorithm. We aim to showcase the applicability, effectiveness, and
efficiency of GSJCOPMM in tackling these challenging BVPs. We provide eight examples
to satisfy these aims; ∥eN ∥∞ and ∥eN ∥2 are presented for evaluation purposes. Additionally,
the order of convergence provided by the expression

RN ≈ Log(∥eN+1∥∞/∥eN ∥∞)

Log(∥eN ∥∞/∥eN−1∥∞)
, (61)

is discussed.

7.1. Numerical Simulations for Handling ODE (1) with BCs (3)

Problem 1. Consider the differential equation

D5X(Z) + Z2 (DX(Z))2 + X(Z) = g(Z), 0 ≤ Z ≤ 1,

X(i)(0) = 0, i = 0, 1, 2, 3, X(1) = 0,

}
, (62)

where g(Z) is computed such that X(Z) = Z4 (1 − Z). Applying the GSJCOPMM algorithm
leads to

X(Z) = XN (Z) =
N
∑
i=0

ai ϕ
(0,0)
4,1,i (Z), N = 0, 1, 2, 3, 4,

where a0 = 1 and ai = 0, i ̸= 0.

Problem 2. Consider the following nonlinear BVP of sixth order [36–38]:

D6 X(Z) = eZ X2(Z), 0 ≤ Z ≤ 1,

X(i)(0) = (−1)i, X(i)(1) = (−1)i e−1, i = 0, 1, 2,

}
, (63)

where X(Z) = e−Z. Applying the GSJCOPMM algorithm leads to

XN (Z) =
N
∑
i=0

ai ϕ
(a,b)
3,3,i (Z)+

(
− (7e − 19)

2e
Z5 − (46 − 17e)

2e
Z4 − (11e − 29)

2e
Z3 +

1
2
Z2 −Z+ 1

)
,

which provides us with approximated solutions that match the exact solution with a precision of
10−17 at N = 14 for various a, b values, as shown in Table 1. Table 2 presents a comparison
between GSJCOPMM and the three methods in [36–38]. Figure 1 presents the computed errors and
approximate solutions. Based on the given orders of convergence RN , it is apparent see that the
convergence rate improves as N increases; a higher order of convergence means that the error goes
down faster.

12( )

14( )

0.0 0.2 0.4 0.6 0.8 1.0
0

2×10-16

4×10-16
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8×10-16
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te
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r

(a)

0.2 0.4 0.6 0.8 1.0
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0.7
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0.9

1.0

(b)
Figure 1. Figures of eN (Z) and XN (Z) for Example 2 using various N with a = 0 and b = 3. (a) Errors
plots e12(Z) and e14(Z). (b) Exact and approximate solutions X1(Z) and X2(Z).
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Table 1. Computed errors in Example 2.

a b Errors N = 2 N = 4 N = 6 N = 8 N = 12 N = 14

0 0 ∥eN ∥∞ 1.3× 10−3 1.5× 10−6 2.9× 10−9 2.7× 10−12 1.7× 10−15 5.5× 10−16

∥eN ∥2 1.1× 10−3 1.4× 10−6 2.5× 10−9 2.4× 10−12 1.6× 10−15 2.4× 10−16

RN 1.10 1.12 1.66 1.89 1.92 1.87

1 0 ∥eN ∥∞ 1.4× 10−3 1.6× 10−6 1.7× 10−9 1.9× 10−12 1.2× 10−15 4.5× 10−16

∥eN ∥2 1.1× 10−3 1.2× 10−6 1.4× 10−9 1.0× 10−12 1.1× 10−15 2.5× 10−16

RN 1.11 1.02 1.46 1.79 1.82 1.75

0 2 ∥eN ∥∞ 1.5× 10−3 1.4× 10−6 2.5× 10−9 1.8× 10−12 1.4× 10−15 4.2× 10−16

∥eN ∥2 1.0× 10−3 1.3× 10−6 2.1× 10−9 1.5× 10−12 1.2× 10−15 3.1× 10−16

RN 1.08 1.13 1.56 1.79 1.81 1.77

−1/2 1/2 ∥eN ∥∞ 1.2× 10−3 1.2× 10−6 2.3× 10−9 2.4× 10−12 1.6× 10−15 7.1× 10−17

∥eN ∥2 1.1× 10−3 1.1× 10−6 2.1× 10−9 2.2× 10−12 1.1× 10−15 6.2× 10−17

RN 1.12 1.23 1.46 1.69 1.71 1.69

1/2 1/2 ∥eN ∥∞ 6.1× 10−3 4.2× 10−6 3.4× 10−9 4.5× 10−12 1.2× 10−15 8.4× 10−17

∥eN ∥2 2.5× 10−3 1.4× 10−6 1.2× 10−9 2.7× 10−12 1.0× 10−15 7.2× 10−17

RN 1.03 1.33 1.62 1.72 1.79 1.71

Table 2. A comparison of approaches [36–38] and GSJCOPMM for Example 2 using a = b = 1.

Z GSJCOPMM (N = 6) [38] (N = 12) [36] (N = 12) [37] (N = 12)

0.0 0.0 0.0 0.0 0.0
0.1 1.2× 10−12 4.1× 10−12 2.3× 10−7 1.2× 10−4

0.2 2.0× 10−11 2.5× 10−11 1.3× 10−6 2.3× 10−4

0.3 5.5× 10−12 6.3× 10−11 3.3× 10−6 3.2× 10−4

0.4 1.6× 10−11 1.0× 10−10 5.2× 10−6 3.8× 10−4

0.5 2.7× 10−11 1.3× 10−10 6.1× 10−6 4.0× 10−4

0.6 1.2× 10−11 1.3× 10−10 5.7× 10−6 3.9× 10−4

0.7 1.4× 10−11 1.0× 10−10 4.0× 10−6 3.3× 10−4

0.8 1.5× 10−12 5.2× 10−11 1.9× 10−6 2.4× 10−4

0.9 1.7× 10−12 1.0× 10−11 3.5× 10−6 1.2× 10−4

1.0 0.0 2.1× 10−17 5.0× 10−10 2.0× 10−9

Problem 3. Consider the following self-adjoint singularly perturbed singular BVP [39,40]:

εX(3)(Z) +
1
Z
X(2)(Z) +X(Z) = 3 ε

(
sin 3Z− 27ε cos 3Z− 9

Z sin 3Z
)

, 0 ≤ Z ≤ 1,

X(0) = 0, X(1)(0) = 9ε, X(1) = 3ε sin 3,

 (64)

for which the exact solution is X(Z) = 3 ε sin 3Z. Applying the GSJCOPMM algorithm leads to

XN (Z) =
N
∑
i=0

ai ϕ
(a,b)
2,1,i (Z) + 3 ε ((sin 3)Z − 3Z+ 3)Z.

Table 3 displays the MAE for some values of a, b, N , and ε, while Table 4 displays a comparison
between the GSJCOPMM, QBSM [39], and NCBS methods [40]. Figure 2a shows e12(Z) at
ε = 2−16, 2−18. In addition, Figure 2b shows the log-errors for various N and ε = 2−4, 2−8, 2−16.
This shows that the solutions are stable and converging.
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Figure 2. Figures of eN (Z) using various N for Example 3 with a = 0 and b = 3. (a) e12(Z) for
ε = 2−16, 2−18. (b) Graph of Log10(∥eN ∥∞) against N .

Table 3. Computed MAE in Example 3.

N a b ε 2−4 2−6 2−8 2−10 2−12 2−14 2−16 2−18 2−20

3 0 3 6.9× 10−4 5.4× 10−4 4.4× 10−4 1.1× 10−4 2.2× 10−5 6.8× 10−6 1.7× 10−7 4.2× 10−8 1.7× 10−8

8 7.8× 10−10 6.3× 10−10 3.1× 10−11 7.7× 10−12 1.9× 10−13 4.8× 10−14 1.2× 10−14 3.0× 10−15 7.5× 10−15

10 8.9× 10−13 1.4× 10−14 3.0× 10−15 8.4× 10−16 2.1× 10−16 5.3× 10−17 1.3× 10−17 2.8× 10−18 8.0× 10−18

12 6.5× 10−16 2.5× 10−17 2.0× 10−17 1.8× 10−17 1.5.0× 10−17 1.1× 10−17 5.3× 10−18 3.0× 10−18 1.6× 10−19

3 3 0 6.8× 10−4 6.2× 10−4 4.4× 10−4 1.1× 10−4 2.2× 10−5 6.8× 10−6 1.7× 10−7 4.2× 10−8 1.7× 10−8

8 7.5× 10−10 6.2× 10−10 3.3× 10−11 7.5× 10−12 2.9× 10−13 3.8× 10−14 2.2× 10−14 3.1× 10−15 4.5× 10−15

10 8.7× 10−13 1.3× 10−14 3.1× 10−15 7.7× 10−16 1.9× 10−16 4.8× 10−17 1.2× 10−17 3.0× 10−18 7.5× 10−19

12 6.4× 10−16 2.3× 10−17 3.1× 10−17 1.4× 10−17 1.1× 10−17 1.0× 10−17 5.3× 10−18 2.8× 10−18 8.0× 10−19

3 3.5 0.5 6.5× 10−4 5.6× 10−4 5.0× 10−4 1.2× 10−4 2.3× 10−5 6.7× 10−6 1.8× 10−7 3.1× 10−8 2.7× 10−8

8 7.5× 10−10 6.1× 10−10 3.2× 10−11 7.5× 10−12 1.8× 10−13 3.5× 10−14 1.7× 10−14 3.1× 10−15 7.2× 10−15

10 8.8× 10−13 2.4× 10−14 3.3× 10−15 7.4× 10−16 2.5× 10−16 5.5× 10−17 1.7× 10−17 1.5× 10−18 1.2× 10−18

12 6.0× 10−16 4.5× 10−17 4.1× 10−17 2.8× 10−17 1.40× 10−17 1.2× 10−17 6.3× 10−18 3.5× 10−18 2.6× 10−19

5 6 1 8.1× 10−5 7.5× 10−5 7.2× 10−5 4.1× 10−6 2.2× 10−6 6.8× 10−7 1.7× 10−7 4.2× 10−8 1.7× 10−8

10 7.0× 10−11 5.3× 10−11 3.1× 10−11 7.7× 10−12 1.9× 10−13 4.8× 10−13 1.2× 10−14 3.0× 10−14 7.5× 10−15

12 8.5× 10−14 6.4× 10−14 5.1× 10−14 8.4× 10−15 2.1× 10−16 5.3× 10−16 1.3× 10−17 2.8× 10−17 8.0× 10−18

14 6.6× 10−17 6.2× 10−17 5.3× 10−17 4.1× 10−17 5.0× 10−18 4.7× 10−18 5.3× 10−18 3.00× 10−18 1.6× 10−19

Table 4. Comparison of approaches [39,40] and GSJCOPMM for Example 3 using a = 4, b = 1.

N ε 2−4 2−6 2−8 2−10 2−12 2−14 2−16 2−18 2−20

12 GSJCOPMM 2.0× 10−15 4.3× 10−16 3.9× 10−17 2.1× 10−17 1.5× 10−17 1.3× 10−17 5.5× 10−18 3.4× 10−18 4.1× 10−19

128 QBSM [39] 2.1× 10−7 1.7× 10−8 1.2× 10−9 7.5× 10−11 5.2× 10−12 4.6× 10−13 6.8× 10−14 1.5× 10−14 3.6× 10−15

128 NCBS [40] 3.5× 10−9 2.0× 10−10 5.5× 10−12 1.5× 10−12 5.4× 10−13 1.5× 10−13 3.7× 10−14 9.2× 10−15 2.3× 10−15

Problem 4. For one-dimensional Bratu’s problems [41]

X(2)(Z) + λ eX(Z) = 0, λ ∈ R, 0 ≤ Z ≤ 1,

X(0) = 0, X(1)(0) = 0,

}
(65)

with the exact solution in the form from [42] (Equation 47), we have

X(Z) = −2 ln
[cosh( θ

2 (Z− 1
2 ))

cosh( θ
4 )

]
, (66)

where θ satisfies θ =
√

2λ cosh( θ
4 ). Bratu’s problems have either no solution, one solution, or two

solutions, respectively, when λ > λc, λ = λc, or λ < λc, where λc = 3.513830719. The relations
between λ and θ for some values of λ < λc are provided in [42] (Table 1).

Application of GSJCOPMM leads to the obtained approximated solutions matching the exact
solution with a precision of 10−16 at N = 14 for various a, b values, as shown in Table 5. According
to Tables 1 and 2 presented in [41], Table 6 presents a comparison between the absolute errors
obtained by the GSJCOPMM method and the three Schemes(15), (16)a, and (16)b in [41] as well as
a computational time (CPU time) comparison between GSJCOPMM and the three finite difference
Schemes(15), (16)a, and (16)b.
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Remark 1. It is important to note that the comparison of the computational time of the numer-
ical method of GSJCOPMM with the finite difference methods shown in Example 4 shows that
GSJCOPMM is faster; however, this result cannot be generalized, as the computational time may
vary depending on the problem, the complexity of the equations, and the implementation details.

Table 5. Computed errors in Example 4 when λ = 0.5.

a b Errors N = 2 N = 4 N = 6 N = 8 N = 12 N = 14

0 0 ∥eN ∥∞ 1.1× 10−3 1.4× 10−6 3.0× 10−9 3.5× 10−12 2.8× 10−15 5.9× 10−16

∥eN ∥2 1.0× 10−3 1.2× 10−6 2.4× 10−9 2.2× 10−12 1.4× 10−15 2.1× 10−16

1 0 ∥eN ∥∞ 1.1× 10−3 1.5× 10−6 1.8× 10−9 1.7× 10−12 1.3× 10−15 4.4× 10−16

∥eN ∥2 1.3× 10−3 1.1× 10−6 1.2× 10−9 1.1× 10−12 1.2× 10−15 2.4× 10−16

0 2 ∥eN ∥∞ 1.4× 10−3 1.2× 10−6 2.6× 10−9 1.7× 10−12 1.3× 10−15 4.3× 10−16

∥eN ∥2 1.1× 10−3 1.4× 10−6 2.2× 10−9 1.6× 10−12 1.3× 10−15 3.2× 10−17

−1/2 1/2 ∥eN ∥∞ 1.3× 10−3 1.1× 10−6 2.2× 10−9 2.3× 10−12 1.4× 10−15 6.2× 10−16

∥eN ∥2 1.2× 10−3 1.0× 10−6 2.2× 10−9 2.3× 10−12 1.3× 10−15 5.2× 10−17

1/2 1/2 ∥eN ∥∞ 5.9× 10−3 4.1× 10−6 3.3× 10−9 5.5× 10−12 1.3× 10−15 7.5× 10−16

∥eN ∥2 2.4× 10−3 1.5× 10−6 1.3× 10−9 2.6× 10−12 1.1× 10−15 6.2× 10−17

Table 6. A comparison of approaches [41] and GSJCOPMM for Example 4 (λ = 0.5) using a = b = 1
and N = 10.

Z GSJCOPMM Scheme (15) (n = 3) [41] Scheme (16)a [41] Scheme (16)b [41]

0.0 0.0 0.0 0.0 0.0
0.1 1.2× 10−17 2.2899× 10−14 3.0786× 10−5 1.3850× 10−7

0.2 2.0× 10−17 1.7382× 10−14 5.4900× 10−5 4.1545× 10−7

0.3 5.5× 10−17 1.5430× 10−14 7.2214× 10−5 7.0764× 10−7

0.4 1.6× 10−16 1.3721× 10−14 8.2639× 10−5 9.2180× 10−7

0.5 2.7× 10−16 1.3222× 10−14 8.6120× 10−5 9.9977× 10−7

0.6 1.2× 10−16 1.3721× 10−14 8.2639× 10−5 9.2180× 10−7

0.7 1.4× 10−17 1.5430× 10−14 7.2214× 10−5 7.0764× 10−7

0.8 1.5× 10−17 1.7382× 10−14 5.4900× 10−5 4.1545× 10−7

0.9 1.7× 10−17 2.2899× 10−14 3.0786× 10−5 1.3850× 10−7

1.0 0.0 0.0000 0.0000 0.0000

CPU Time 0.61 s 1.63 s 1.59 s 1.69 s

7.2. Numerical Simulations for Handling VOFDE (2) with BCs (3)

Problem 5. Consider the boundary Bagely–Torvik equation [10,43]

D2X(Z) + D3/2X(Z) + X(Z) = Z2 + 2 + 4
√

Z
π , 0 ≤ Z ≤ L,

X(0) = 0, X(L) = L2,

 (67)

for which the exact solution is X(Z) = Z2. Applying GSJCOPMM leads to

X(Z) = XN (Z) =
N
∑
i=0

ai ϕ
(a,b)
1,1,i (Z) + LZ, N = 0, 1, 2, . . . , 6,

where a0 = −1 and ai = 0, i ̸= 0.

Remark 2. It is worth noting that X(Z) = X0(Z), a, b > −1, while according to the author
of [10], at L = 1 we obtain X(Z) using N = 2. Furthermore, the authors of [43] achieved the best
error of 3.78 × 10−12 at L = 5.

Problem 6. Consider the equation [44,45]:
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Dδ(Z)X(Z) + cos(Z)DX(Z) + 4X(Z) + 5X(Z2) =
2Z2−δ(Z)

Γ(3 − δ(Z))
+ 5Z4 + 4Z2 + 2t cos(Z), 0 ≤ Z ≤ 1,

X(0) = 0, X(1) = 1,

 (68)

with the exact solution X(Z) = Z2, where δ(Z) = 1
4 (sin(Z) + 5). Applying GSJCOPMM using

N = 0 yields
X(Z) = X0(Z) = −ϕ

(a,b)
1,1,0 (Z) + Z.

Remark 3. It is worth noting that X(Z) = X0(Z), a, b > −1, while according to the author
of [44] X(Z) is obtained using N = 2. Furthermore, the authors of [45] achieved the best error of
6.15064 × 10−14.

Problem 7. Consider the nonlinear differential equation

Dµ(Z)X(Z) + ZX(Z)DX(Z)− 4Z3 X(Z) =
24Z4−µ(Z)

Γ(5 − µ(Z))
+ 4Z8 − 4Z7, 0 ≤ Z ≤ 1,

X(0) = 0, and X(1) = 1,

, (69)

where µ(Z) = 2Z. The exact solution is X(Z) = Z4. Applying GSJCOPMM using N = 2 yields

X(Z) = X2(Z) =
2

∑
i=0

ai ϕ
(1,1)
1,1,i (Z) + Z,

where a0 = − 9
5 , a1 = − 1

2 , a2 = − 1
15 .

Problem 8. Consider the nonlinear BVP

Dµ(Z)X(Z) + sin(Z) (X(Z))2 = g(Z), 5 < µ(Z) < 6, 0 ≤ Z ≤ 1,

X(i)(0) = 0, i = 0, 1, 2, 3, X(1) = 0, X(1)(1) = 0, µ(Z) = 5 + 0.5 e−Z,

}
, (70)

where g(Z) is computed such that X(Z) = Z4(1−Z)2 e−Z. Applying the GSJCOPMM algorithm
leads to

XN (Z) =
N
∑
i=0

ai ϕ
(a,b)
4,2,i (Z).

Table 7 displays the computed errors ∥eN ∥∞ and ∥eN ∥2 for some values of a, b, and N . The two
figures in Figure 3a,b show eN (Z) and Log10(∥eN ∥∞) for various N , respectively. This shows that
the solutions are stable and converging.
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Figure 3. Figures of eN (Z) using various N for Example 8 with a = 4.5 and b = 2.5. (a) eN (Z) plots
for N = 1, 3, 5, 7, 9, 11, 12. (b) Graph of Log10(∥eN ∥∞) against N .
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Table 7. Computed errors in Example 8.

a b Errors N = 3 N = 5 N = 7 N = 9 N = 11 N = 12

4.5 2.5 ∥eN ∥∞ 5.3× 10−5 7.5× 10−7 3.9× 10−9 6.7× 10−12 5.7× 10−15 2.5× 10−16

∥eN ∥2 3.1× 10−5 3.2× 10−7 3.5× 10−9 4.6× 10−12 4.6× 10−15 1.4× 10−16

4 3 ∥eN ∥∞ 2.6× 10−5 1.3× 10−7 1.3× 10−9 2.6× 10−12 2.8× 10−15 7.7× 10−17

∥eN ∥2 1.1× 10−5 1.1× 10−7 1.0× 10−9 2.1× 10−12 2.6× 10−15 6.4× 10−17

2.5 4.5 ∥eN ∥∞ 5.2× 10−5 7.1× 10−7 3.5× 10−9 6.1× 10−12 7.1× 10−15 2.2× 10−16

∥eN ∥2 3.1× 10−5 3.2× 10−7 3.4× 10−9 4.6× 10−12 4.6× 10−15 1.4× 10−16

3 4 ∥eN ∥∞ 2.3× 10−5 3.2× 10−7 1.2× 10−9 2.5× 10−12 1.7× 10−15 7.1× 10−17

∥eN ∥2 2.2× 10−5 1.2× 10−7 1.0× 10−9 2.2× 10−12 1.2× 10−15 2.4× 10−17

8. Conclusions

Our study has introduced a novel and efficient numerical approach for solving prob-
lems involving ODEs and VOFDEs associated with BCs. The main achievements of our
research can be summarized as follows:

(i) We have established a solid theoretical foundation by constructing OMs and incorpo-
rating them into the SCM. This framework allows for reliable and precise numerical
computation of solutions to problems described by the aforementioned ODEs and
VOFDEs with BCs.

(ii) Extensive error analysis and convergence studies have been conducted, providing
theoretical guarantees for the effectiveness and reliability of our proposed method,
known as GSJCOPMM.

Our research has significant implications, as GSJCOPMM provides several advantages
over existing approaches for solving ODEs and VOFDEs with BCs. First, GSJPs ensure that
the given BCs are satisfied, resulting in improved numerical solution accuracy. Second, the
developed OMs and their implementation within the SCM enable efficient computations,
reducing computational costs while maintaining high accuracy. These features make
GSJCOPMM particularly well suited for solving complex problems encountered in various
scientific and engineering fields.

The potential applications of our proposed method are broad, encompassing a wide
range of problems involving ODEs and VOFDEs. Our proposed method has a broad
range of potential applications involving PDEs, systems of ODEs and VOFDEs in thhe
mathematical modeling of physical systems, heat transfer, boundary layer problems in
fluid mechanics, the motion of mass–spring systems, reaction rates, and other phenomena
characterized by these models. In conclusion, this research contributes significantly to
the advancement of numerical methods for ODEs and VOFDEs with BCs, providing
an efficient and accurate approach for solving complex boundary value problems. The
establishment of a theoretical foundation together with the demonstrated advantages of
GSJCOPMM opens up new avenues for tackling challenging problems in various scientific
and engineering domains.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviations Definitions
DEs Differential equations
ODEs Ordinary differential equations
PDEs Partial differential equations
ODs Ordinary derivatives
VOFDEs Variable-order fractional differential equations
VOFDs Variable-order fractional derivatives
MTVOFDEs Multiterm variable-order fractional differential equations
OMs Operational matrices
SCM Spectral collocation method
VOFC Variable-order fractional calculus
JPs Jacobi polynomials
GSJPs Generalized shifted Jacobi polynomials
BVPs Boundary value problems
BCs Boundary conditions
MAE Maximum absolute error
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