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1. Introduction

There has been keen interest of late in the area of fractional differential equations
that are defined in terms of a combination of a left- and/or right-Riemann and/or Caputo
differential operators. The reason for this is that it appears as if that, when the operators
are defined appropriately, they may be a complete analog of the Sturm–Liouville theory,
which is a fractional theory that generalizes equations of the form

(p(x)y′)′ − q(x)y = 0, x ∈ [a, b], (1)

as well as the eigenvalue problems associated with them such as

(p(x)y′)′ + (λw(x)− q(x))y = 0, x ∈ [a, b]

where, p, q, and w are real, or are complex-valued and continuous (although these condi-
tions can be relaxed tremendously (see below and e.g., [1])).

In this paper, we consider the basic existence and uniqueness questions for equations
of the form

Dα
b(pDα

a y)(x) + q(x) y(x) = 0, (2)

where 0 < α < 1, Dα
b is a right-Caputo differential operator and Dα

a is a left-Riemann–Liouville
differential operator (see Section 2). The advantage of this formulation is that (2) includes
(1) upon taking the limit as α → 1.

The recent results dealing with the existence and uniqueness of solutions of some
fractional differential equations (but not including those considered here) can be found
in [2]. Equations of the form (2) have been considered previously in recent papers such
as [3–5] (and the references therein) under the assumption that these solutions actually exist
and are unique in some suitable spaces. In [6], the question of the existence of eigenvalues
and an expansion theorem was considered, whereas the variational characterization of the
eigenvalues was given in the papers [7,8]. In [9], the new idea of Fuzzy-Graph-Kannan
contractions were used to estimate the solutions of fractional equations.
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Applications of fractional differential equations are now widespread. Among them,
we cite some current ones such as [10–13] in a list that is far from exhaustive. We encourage
the readers to look at these and the references therein for more insight.

To the best of our knowledge, the question of the actual existence and uniqueness of
solutions to initial value problems associated with (2), let alone such problems where p(x)
is sign-indefinite, has not yet been considered. This is our main purpose herein.

Indeed, in this paper, we relax the continuity and sign conditions on p, q in (2) to a
mere Lebesgue measurability over [a, b], along with other integral conditions. In addition,
we show that we retain the existence and uniqueness of continuous (specifically absolutely
continuous) solutions over [a, b]. This is the main contribution of this paper, i.e., to address
the fact that the existence and uniqueness of its solutions in appropriate spaces has been
seemingly overlooked by authors who have considered equations of the form (2). In so
doing this, we fill the gaps in regarding the presentations of such papers outlined in the
references below where solutions are assumed to exist.

Our methods make use of the fixed-point theorem of Banach–Cacciopoli [14,15],
(which is sometimes simply called the Banach fixed-point theorem). This latter result is
a generalization of the classical sequence of Picard iterations in the study of solutions of
differential equations. Its advantage lies in the fact that, in a normed space, the iterates, Tn,
of the contraction map T itself must satisfy the relation ||Tnx − xo|| < kn||x − xo||, where
xo is the fixed point in question (i.e., Txo = xo ) and k < 1 is the contraction constant.
As a result of this exponential decay in the error as the number of iterations increases,
we can obtain excellent approximations to the solutions of (2) themselves. Insofar as
there are numerical approximations to the solutions of fractional differential equations, we
cite [16,17] among the current ones.

2. Preliminaries

For the sake of convenience, we adopt the following notation. In the sequel, Caputo
(resp. Riemann–Liouville) derivatives will be denoted by boldface (i.e., upper case) letters,
while the ordinary derivative has only superscript in the form of an integer. For the sake of
brevity, we shall omit the obvious ± subscripts in expressions such I1−α

a+ y(x), which will be
written as I1−α

a y(x), and Dα
b−y(x) will be written as Dα

b y(x), etc. (this includes expressions
involving Caputo derivatives). The following abbreviations will also be used from time
to time: (pDα

a y)(x) for p(x)Dα
a y(x) if p is continuous but otherwise it has a meaning of its

own (as the quantity will still exist even if the coefficients are merely measurable); and
Iα
b (qy)(x) for Iα

b (q(x)y(x)). In addition, Caputo derivatives will be written with a bold face
D. Thus, Dα

a and Dα
b denote the left- and right-Caputo derivatives, respectively, while Dα

a
and Dα

b will refer to the left- and right-Riemann–Liouville derivatives. Ordinary derivatives
of order n and j will be denoted by Dn and Dj, respectively, etc.

We recall some of the definitions from fractional calculus and refer the reader to
standard texts such as [18–20] for further details.

Definition 1. The left- and the right- Riemann–Liouville fractional integrals Iα
a and Iα

b of the order
α ∈ R+ are defined by

Iα
a f (t) :=

1
Γ(α)

∫ t

a

f (s)
(t − s)1−α

ds, t ∈ (a, b], (3)

and

Iα
b f (t) :=

1
Γ(α)

∫ b

t

f (s)
(s − t)1−α

ds, t ∈ [a, b), (4)

respectively, where Γ(α) is the usual Gamma function and I0
a ( f ) = f , I−n

a ( f ) = f (n) is the
ordinary nth derivative of f [21]. The following properties may be found in any textbook on
fractional calculus, see e.g., [18,20].
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Definition 2. The left- and the right-Caputo fractional derivatives Dα
a and Dα

b are defined by

Dα
a f (t) := I1−α

a ◦ D f (t) =
1

Γ(1 − α)

∫ t

a

f ′(s)
(t − s)α

ds, t > a, (5)

and

Dα
b f (t) := −I1−α

b ◦ D f (t) = − 1
Γ(1 − α)

∫ b

t

f ′(s)
(s − t)α

ds, t < b, (6)

respectively, where f is assumed to be differentiable and that the integrals exist.

Definition 3. Similarly, the left- and the right-Riemann–Liouville fractional derivatives Dα
a and

Dα
b are defined by

Dα
a f (t) := D ◦ I1−α

a f (t) =
1

Γ(1 − α)

d
dt

∫ t

a

f (s)
(t − s)α

ds, t > a, (7)

and

Dα
b f (t) := −D ◦ I1−α

b f (t) = − 1
Γ(1 − α)

d
dt

∫ b

t

f (s)
(s − t)α

ds, t < b, (8)

respectively, where f is assumed to be differentiable and that the integrals exist.

Property 1. If y(t) ∈ L1[a, b] and I1−α
a y, I1−α

b y ∈ AC[a, b], then

Iα
a Dα

a y(t) = y(t)− (t − a)α−1

Γ(α)
I1−α
a y(a),

Iα
b Dα

b y(t) = y(t)− (b − t)α−1

Γ(α)
I1−α
b y(b).

Property 2 (See [18], p. 71).

Dα
a

(
(x − a)β

)
=

{
0, if α − β − 1 ∈ N = {0, 1, . . .},

Γ(β+1)
Γ(β−α+1) (x − a)β−α, otherwise.

Property 3. If y(t) ∈ AC[a, b] and 0 < α ≤ 1, then

Iα
a Dα

a y(t) = y(t)− y(a),

Iα
b Dα

b y(t) = y(t)− y(b).

Property 4 ([20], p. 44, [18], p. 77). For 0 < α < 1 and f ∈ L1[a, b], we have

Dα
a Iα

a f (t) = f (t), and, Dα
b Iα

b f (t) = f (t).

Property 5. The semi-group property holds, i.e., for any α > 0, β, we have

Iα
a Iβ

a f (t) = Iα+β
a f (t), D(Iα+1 f )(t) = Iα f (t),

are the case whenever all quantities are defined.

Property 6 ([18], p. 71, Property 2.1). For α, β > 0 there holds

Iα
a ((t − a)β−1)(x) =

Γ(β)

Γ(α + β)
(x − a)α+β−1.
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3. Existence and Uniqueness

In this section, we derive an integral equation that will be used later to prove the
existence and uniqueness of solutions to (9) and (10) as follows:

Dα
b(pDα

a y)(x) + q(x) y(x) = 0, (9)

which is subject to a set of conditions of the form

I1−α
a y(a) = K1 and given (pDα

a y)(a) = K2, (10)

where the Ki are the constants, either real or complex. This is relevant to the case where
p(x) = 1, q(x) = 0 on [a, b] was considered, in part, in [3]. The analysis in the remaining
pages will show that there are two types of solutions. Specifically, solutions that are
continuous in [a, b] if I1−α

a y(a) = 0, and are—in actuality—absolutely continuous and so
are in L2[a, b], as well as those solutions that are in L2[a, b] and are continuous on (a, b], if
I1−α
a y(a) ̸= 0. In either case, the solutions are always in L2[a, b], and so in L1[a, b], regardless

of the value of the initial condition I1−α
a y(a).

Proceeding formally from (9) and applying Iα
b to both sides (see Property 3), we find

(pDα
a y)(x)− (pDα

a y)(b) + Iα
b (qy)(x) = 0, (11)

i.e.,

Dα
a y(x)− 1

p(x)
(pDα

a y)(b) +
1

p(x)
Iα
b (qy)(x) = 0. (12)

Now, by applying Iα
a to both sides of (12) and using Property 1 we obtain the general

integral equation

y(x) =
(x − a)α−1

Γ(α)
I1−α
a y(a) + Iα

a

(
1
p

)
(x)(pDα

a y)(b)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(13)

The relationship between (pDα
a y)(a) and (pDα

a y)(b) is given by (11), which is evalu-
ated at x = a, i.e.,

K2 = (pDα
a y)(b)− 1

Γ(α)

∫ b

a

q(s) y(s)
(s − a)1−α

ds dt.

Thus, any solution of the initial value problem (9) and (10) must satisfy the equation

y(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(14)

When dealing with (14), there will be two separate cases here, namely one where
K1 = I1−α

a y(a) = 0, i.e., a homogeneous Dirichlet type condition is set at x = a, and the
other where I1−α

a y(a) ̸= 0. Each case leads to different types of solutions (more on this in
the following sections).

3.1. Solutions in C[a, b]

Let p, q be complex-valued Lebesgue measurable functions on [a, b] and let 0 < α < 1.
Here, we show that continuous solutions exist and are unique under various assumptions.

We will always assume that, for every α, 0 < α < 1, we have

c1 ≡ sup
x∈[a,b]

Iα
a

(
1
|p|

)
(x) < ∞, (15)
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and
c2 ≡ sup

x∈[a,b]
Iα
b (|q|)(x) < ∞. (16)

Observe that there are no sign restrictions on the coefficients p, q other than Lebesgue
measurability and the integrability conditions (15) and (16). As a result, we will obtain that
solutions of (9) and (10), which are not only continuous, but are also absolutely continuous
on [a, b]. The condition that K1 = 0 is necessary in order that the solutions be continuous at
x = a. In the next section, we will review the case where K1 ̸= 0.

Theorem 1. Let p, q be complex-valued and satisfy (15) and (16), as well as |p(x)| < ∞ a.e. on
[a, b]. If

2c1c2 < 1, (17)

then the initial value problem (9) and (10) with K1 = 0 and K2 is arbitrary, has a unique solution
of y ∈ AC[a, b].

Proof. Consider the complete normed space (X, || · ||∞) of the real valued continuous
functions that are defined on [a, b]. Note that K1 = I1−α

a y(a) = 0 is in force in (14). We can
define a map T on X by setting

Ty(x) = K2 Iα
a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x). (18)

By (15), the first term in (18) is the integral of an absolutely integrable function and so
it is, itself, absolutely continuous. On the other hand, since y ∈ X and q satisfies (16), the
second term is also finite and absolutely continuous. Finally, since y ∈ X and there holds
(16), |Iα

b (qy)(x)| ≤ ||y||∞ c2 over [a, b] so that this, combined with (15), shows that the third
term is also absolutely continuous in [a, b] and is thus continuous. Therefore, TX ⊂ X.

Next, we show that T is a contraction. Observe that

|Ty(x)− Tz(x)| ≤ Iα
b (|q(y − z)|)(a)Iα

a

(
1
|p|

)
(x)

+ Iα
a

(
1
|p| Iα

b (|q||y − z|)
)
(x)

≡ A + B. (19)

The first term, A, in (19), is estimated using (15) and (16), i.e.,

A ≤ sup
x∈[a,b]

Iα
b (|q|)(x) ||y − z||∞ Iα

a

(
1
|p|

)
(x) ≤ c1 c2 ||y − z||∞. (20)

On the other hand, the second term, B, satisfies

B ≤ ||y − z||∞ Iα
a

(
1
|p| Iα

b (|q|)
)
(x) ≤ c1 c2 ||y − z||∞. (21)

Through combining (19) with (20) and (21), we obtain

∥Ty − Tz∥∞ < 2 c1 c2 ∥y − z∥∞, (22)

such that T is a contraction on X provided there holds (17). The fixed-point theorem of
Banach–Cacciopoli now implies the existence of a unique fixed-point y ∈ X that satisfies

y(x) = K2 Iα
a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x). (23)
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As inferred from above, since all integrands appearing in (23) are in L1(a, b), it follows
that, in fact, y ∈ AC[a, b]. Finally, we can observe that both initial conditions in (10) are
automatically satisfied (once the various properties in Section 2 are used).

Remark 1. The condition (17) is not sharp and can be readily verified in the case where α = 1
(the theorem is clearly also true in that case). By setting p ≡ 1, q ≡ 1, and [a, b] = [0, 1], we can
obtain c1 = c2 = b − a, such that (17) is violated, yet the classical problem y′′ + y = 0, y(a) = 0,
y′(a) = K2 always has a solution that exists and is unique on [0, 1]. In this example, our theorem
only gives the existence and uniqueness of solutions on [0, b], where b <

√
2/2. Closed-form

solutions in the case where α < 1 are generally difficult to find.

Corollary 1. Let p, q ∈ C[a, b] and p(x) > 0 on [a, b]. If

2 (b − a)2α

Γ(α + 1)2 ||1/p||∞ ||q||∞ < 1, (24)

then the initial value problem (9) and (10) with K1 = 0 and K2 is arbitrary, has a unique solution
y ∈ AC[a, b].

Proof. Note that

c1 ≤ ||1/p||∞ sup
x∈[a,b]

Iα
a (1)(x) ≤ 1

Γ(α)
||1/p||∞ sup

x∈[a,b]

(x − a)α

α
≤ ||1/p||∞

(b − a)α

Γ(α + 1)
.

Similarly,

c2 ≤ ||q||∞
(b − a)α

Γ(α + 1)
.

Together, these two inequalities imply (17) on account of (24). The above result then
follows.

Corollary 2. In addition to the conditions on p, q in Theorem 1, let f be measurable, complex-valued,
and for every 0 < α < 1 satisfy

sup
x∈[a,b]

Iα
b (| f |)(x) < ∞. (25)

Then, the initial value problem (9) and (10) (with K1 = 0 and K2 being arbitrary) for the
forced equation

Dα
b(pDα

a y)(x) + q(x) y(x) = f (x) (26)

has a unique solution in AC[a, b].

Proof. The map T defined by

Ty(x) = K2 Iα
a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x) + Iα

a

(
1
p

Iα
b ( f )

)
(x)

(27)

is a contraction on X as it is easily verified by the method of Theorem 1 and TX ⊂ X. The
result follows by the contraction mapping principle.

However, the next result, Theorem 2 below, is classical in the case of ordinary deriva-
tives. It is unusual in the case we consider our differential operators as a composition of
left-Riemann–Liouville and right-Caputo derivatives. Thus, initial conditions are normally
at either the left- or right-endpoint of the interval under consideration, i.e., not in the
interior as they are here. Still, we have a uniqueness result.
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Theorem 2. Let p, q satisfy the conditions in Theorem 1. In addition, let x0 ∈ (a, b] be

Iα
a

(
1
p

)
(x0) ̸= 0,

as well as assume that (17) is satisfied. Then, the only solution of the initial value problem (9)
satisfying

I1−α
a y(x0) = 0, (pDα

a y)(x0) = 0, (28)

that is continuous on [a, b] is the trivial solution.

Proof. From Theorem 1, a solution that is continuous on [a, b] must satisfy I1−α
a y(a) = 0.

As a result, there holds (18), where K2 = (pDα
a y)(a). By substituting the first of (28) and

using the semi-group property, i.e., Property 5, we obtain the form

y(x) = c Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x), (29)

where

c =
I1
a

(
1
p Iα

b (qy)
)
(x0)

Iα
a

(
1
p

)
(x0)

.

By applying Property 4 to (29), we obtain (pDα
a y)(x) = c − Iα

b (qy)(x), such that the
second of (28) implies that c = Iα

b (qy)(x0). Thus, the solution of (9) that satisfies both of
(28) must look like the solution of the integral equation

y(x) = Iα
b (qy)(x0)Iα

a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x). (30)

We now show that (30) can only have the zero solution as a continuous solution. This,
however, is similar to the proof of Theorem 1 above with minor revisions, which we now
describe. On the space (C[a, b], || · ||∞), we define the map

Ty(x) = Iα
b (qy)(x0)Iα

a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x).

As in the proof of Theorem 1, TX ⊂ X, and we also note that

Ty(x)− Tz(x) = Iα
b (q(y − z))(x0)Iα

a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (q(y − z)

)
(x),

such that

|Ty(x)− Tz(x)| ≤ Iα
b (|q(y − z)|)(x0)Iα

a

(
1
|p|

)
(x) + Iα

a

(
1
|p| Iα

b (|q(y − z)|
)
(x)

≤ ||y − z||∞
(

Iα
b (|q|)(x0)|Iα

a

(
1
|p|

)
(x) + Iα

a

(
1
|p| Iα

b (|q|)
)
(x)

)
≤ ||y − z||∞ (c2 c1 + c2 c1)

= 2 c1 c2 ||y − z||∞. (31)

Thus, T is a contraction on account of (17). The above result then follows.

3.2. Solutions in L2[a, b]

We now consider the initial value problem for (9) where K1 ̸= 0. Of course, in this
case, there is a singularity at x = a, thus we can only expect continuity on (a, b], but we
will show that nevertheless solutions exist and are unique when considered in the Hilbert
space, L2[a, b].
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Theorem 3. Let p, q be measurable complex-valued functions on [a, b], |p(x)| < ∞ a.e., and let
1
2 < α < 1. Assume further that, for every α ∈ (1/2, 1), we have

c4 ≡ sup
t∈[a,b]

∫ b

t

q2(s)
(s − t)2−2α

ds < ∞, (32)

c5 ≡ sup
x∈[a,b]

Iα
a

(
1
|p|

)
(x) < ∞, (33)

and
2c5

√
c4
√

b − a
Γ(α)

< 1. (34)

Then, the initial value problem (9) with

I1−α
a y(a) = K1 ̸= 0 and (pDα

a y)(a) = K2 (35)

has a unique solution y ∈ L2[a, b]. In addition, the solutions are locally absolutely continuous.

Proof. Note that since 1
2 < α < 1, the Riemann–Liouville integrals Iα

a , Iα
b of L2-functions

exist by the Schwarz inequality; therefore, they are absolutely continuous functions of the
variable in question.

On the complete normed vector space, X =
(

L2[a, b], || · ||2
)
, for K1 ̸= 0, and where

|| · ||2 is the usual norm, define a map T on X by (see (14))

Ty(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(36)

Observe that the first term in (36) is L2[a, b] since α > 1/2. The second term is
square-integrable by hypothesis (33), while the third term in (36) is also square-integrable
by a combination of (32) and (33). The square integrability of the last term in (36) is a
consequence of the hypotheses and the Schwarz inequality. Specifically, for y ∈ X, we have∣∣∣∣Iα

a

(
1
p

Iα
b (qy)

)
(x)

∣∣∣∣ ≤ Iα
a

(
1
|p| Iα

b (|qy|)
)
(x)

=
1

Γ2(α)

∫ x

a

1/|p(t)|
(x − t)1−α

(∫ b

t

|q(s)| |y(s)|
(s − t)1−α

ds
)

dt

≤ 1
Γ2(α)

∫ x

a

1/|p(t)|
(x − t)1−α

(∫ b

t

|q(s)|2
(s − t)2−2α

ds
)1/2

×
(∫ b

t
|y(s)|2 ds

)1/2

dt

≤ 1
Γ(α)

√
c4 ||y||2 Iα

a

(
1
|p|

)
(x)

≤ c5

Γ(α)
√

c4 ||y||2. (37)

Since the right side of (37) is independent of x and the interval [a, b] is finite, we obtain
that the fourth term in (36) is also in L2[a, b]. There follows that TX ⊂ X.
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We now show that T is a contraction on X. For y, z ∈ X, we have, as before (see (36))

|Ty(x)− Tz(x)| ≤ Iα
b (|q(y − z)|)(a) Iα

a

(
1
|p|

)
(x) + Iα

a

(
1
|p| Iα

b (|q(y − z)|)
)
(x)

≡ A + B. (38)

We estimated A and B separately. (Recall that the norm under consideration is the
L2[a, b]-norm.) Thus (see the calculation leading to (37)), we have

A = Iα
a

(
1
|p|

)
(x) Iα

b (|q||y − z|)(a)

=

(
1

Γ(α)

∫ x

a

1/|p(s)|
(x − s)1−α

ds
)(

1
Γ(α)

∫ b

a

|q(s)| |y(s)− z(s)|
(s − a)1−α

ds
)

≤ c5

Γ(α)

∫ b

a

|q(s)| |y(s)− z(s)|
(s − a)1−α

ds,

≤
c5
√

c4

Γ(α)
||y − z||2. (39)

The estimate for B was obtained exactly as in the details leading to (37) with y replaced
by y − z. Hence,

B ≤
c5
√

c4

Γ(α)
||y − z||2. (40)

By combining (39) and (40), we obtain

|Ty(x)− Tz(x)| ≤
2c5

√
c4

Γ(α)
||y − z||2

i.e.,

||Ty − Tz||2 ≤
2c5

√
c4
√

b − a
Γ(α)

||y − z||2. (41)

As such, the result eventually follows from (34) as T is a contraction on X.

Corollary 3. Let p, q ∈ C[ a, b], p(x) > 0 for all x ∈ [a, b], and let 1/2 < α < 1. If

2
||1/p||∞||q||∞
Γ(α)Γ(α + 1)

(b − a)2α

√
2α − 1

< 1, (42)

then the initial value problem (9) subject to

I1−α
a y(a) = K1 ̸= 0 and (pDα

a y)(a) = K2, (43)

has a unique solution y ∈ L2[a, b]. In addition, the solutions are at least absolutely continuous in
(a, b].

Proof. This is a straightforward consequence of Theorem 3 once the quantities (32) and
(33) are estimated trivially and (34) is applied.

Remark 2. The constants appearing in both (24), (34), and (42) are not intended to be precise.

Theorem 4. Let p, q be complex-valued and measurable on [a, b], |p(x)| < ∞ a.e. on [a, b], and let
1/p ∈ L1[a, b]. Assume further that, for every α ∈ (1/2, 1), we have

c4 ≡ sup
t∈[a,b]

∫ b

t

q2(s)
(s − t)2−2α

ds < ∞, (44)
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and, for every α ∈ ( 1
2 , 1), there holds

c5 ≡ sup
x∈[a,b]

Iα
a

(
1
|p|

)
(x) < ∞, (45)

as well as
κ < 1

where

κ =
2

Γ(α)

(
(b − a)2α−1

2α − 1
+

2
α
(b − a)α + b − a

)1/2

c5
√

c4.

Then, for α ∈ (1/2, 1) and for x0 ∈ (a, b], the only solution of the initial value problem
(9) that satisfies

I1−α
a y(x0) = 0, (pDα

a y)(x0) = 0, (46)

and that is in L2[a, b], is the (a.e.) trivial solution.

Proof. The case x0 = a is contained in Corollary 3; as such, we consider x0 ∈ (a, b]. From
(14), we know that every solution of (9) satisfies

y(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x),

(47)

where now K1 and K2 are to be determined such that (46) is satisfied for a given x0. By
applying the operator I1−α

a to both sides of (47)—as well as by then using both Properties 5
and 6, and setting everything equal to zero for x = x0—we can obtain the relation

I1−α
a y(x0)

= K1 + (K2 + Iα
b (qy)(a)) I1

a

(
1
p

)
(x0)− I1

a

(
1
p

Iα
b (qy)

)
(x0)

= 0.

(48)

Next, by applying the operator Dα
a to both sides of (47) and using both Properties 2

and 4, we can obtain

pDα
a y(x) = K2 + Iα

b (qy)(a)− Iα
b (qy)(x).

From this, the use of the second condition in (46) gives

K2 = Iα
b (qy)(x0)− Iα

b (qy)(a). (49)

By substituting (48) and (49) back into (47) and simplifying it, we obtain

y(x) = K1
(x − a)α−1

Γ(α)
+ Iα

b (qy)(x0) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x), (50)

where

K1 = I1
a

(
1
p

Iα
b (qy)

)
(x0)− Iα

b (qy)(x0) I1
a

(
1
p

)
(x0),

and K1 is a constant. Thus, (50) represents the form of a solution of (47) that satisfies both
conditions (46).
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This now allows us to define a map T on X = L2[a, b] that is endowed with the usual,
i.e, the L2-norm by, when y ∈ X,

Ty(x) =
(x − a)α−1

Γ(α)

(
I1
a

(
1
p

Iα
b (qy)

)
(x0)− Iα

b (qy)(x0) I1
a

(
1
p

)
(x0)

)
+ Iα

b (qy)(x0) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x).

(51)

By construction, a fixed point of T will be a solution of (47) that satisfies conditions
(46). To this end, we used the contraction mapping principle. For y ∈ X, α ∈ ( 1

2 , 1)—as
well as p, q satisfying (44) and (45), and using the proof of Theorem 3—we can now verify
that each integral appearing in (51) exists and is finite for all x ∈ [a, b]. As such, we have
TX ⊂ X.

Next, we show that T is a contraction. For y, z ∈ X, x ∈ [a, b], we have

Ty(x)− Tz(x) =

(x − a)α−1

Γ(α)

(
I1
a

(
1
p

Iα
b (q(y − z))

)
(x0)− Iα

b (q(y − z))(x0) I1
a

(
1
p

)
(x0)

)
+ Iα

b (q(y − z))(x0) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (q(y − z))

)
(x),

such that

|Ty(x)− Tz(x)| ≤
(x − a)α−1

Γ(α)

(
I1
a

(
1
|p| Iα

b (|q(y − z)|)
)
(x0) + Iα

b (|q(y − z)|)(x0) I1
a

(
1
|p|

)
(x0)

)
+ Iα

b (|q(y − z)|)(x0) Iα
a

(
1
|p|

)
(x) + Iα

a

(
1
|p| Iα

b (|q(y − z|))
)
(x),

≡ A + B + C,

(52)

where

A ≡ (x − a)α−1

Γ(α)

(
I1
a

(
1
|p| Iα

b (|q(y − z)|)
)
(x0) + Iα

b (|q(y − z)|)(x0) I1
a

(
1
|p|

)
(x0)

)
, (53)

B ≡ Iα
b (|q(y − z)|)(x0) Iα

a

(
1
|p|

)
(x), (54)

and

C ≡ Iα
a

(
1
|p| Iα

b (|q(y − z|))
)
(x). (55)

Now, A = A1 + A2, where

A1 ≡ (x − a)α−1

Γ(α)
I1
a

(
1
|p| Iα

b (|q(y − z)|)
)
(x0)

and

A2 ≡ (x − a)α−1

Γ(α)
Iα
b (|q(y − z)|)(x0) I1

a

(
1
|p|

)
(x0).

We estimate A1 first using the calculations leading to (37). Thus,

A1 =
(x − a)α−1

Γ(α)2

∫ x0

a

1
|p(s)|

∫ b

s

|q(y − z)|(t)
(t − s)1−α

dt ds

≤ (x − a)α−1

Γ(α)
c5
√

c4||y − z||2.

(56)
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Similarly,

A2 ≤ (x − a)α−1

Γ(α)
c5
√

c4||y − z||2. (57)

By combining (56) and (57), we obtain

A ≤ 2(x − a)α−1

Γ(α)
c5
√

c4||y − z||2. (58)

The estimate for B is similar to the estimate for A2 but without all the terms involving
α, i.e.,

B ≤
c5
√

c4

Γ(α)
||y − z||2. (59)

Finally, C is estimated as in the B-term in (38), i.e.,

C ≤
c5
√

c4

Γ(α)
||y − z||2. (60)

Therefore, (58)–(60) yield

|Ty(x)− Tz(x)| ≤ k(x) ||y − z||2 (61)

k(x) = 2
(
(x − a)α−1 + 1

Γ(α)

)
c5
√

c4.

Then, it follows that
||Ty − Tz||2 ≤ κ ||y − z||2,

where κ = ||k||2 is given by

κ =
2

Γ(α)

(
(b − a)2α−1

2α − 1
+

2
α
(b − a)α + b − a

)1/2

c5
√

c4.

Thus, T is a contraction on X provided κ < 1. The conclusion then follows.

In the case where p, q are (real-valued) continuous and p(x) > 0, a similar though
more extensive argument gives a different bound for uniqueness. This is our next result.

Theorem 5. Let p, q ∈ C[ a, b], p(x) > 0 for all x ∈ [a, b], and let α > 1/2. Thus, let

c1

(
(b − a)c2

2 + 2c2c3
(b − a)α

α
+ c2

3
(b − a)2α−1

2α − 1

)1/2

< 1, (62)

where

c1 = 2
||q||∞||1/p||∞
Γ(α)2

√
2α − 1

,

c2 =
(b − a)2α−1/2

α
,

and
c3 = (b − a)α+1/2.

Then, for x0 ∈ (a, b], the only solution of the initial value problem (9) that satisfies

I1−α
a y(x0) = 0, (pDα

a y)(x0) = 0, (63)

and which is in L2[a, b] is the (a.e.) trivial solution.
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Proof. The case of x0 = a is contained in Theorem 3, such that we can consider x0 ∈ (a, b].
From (14), we know that every solution of (9) satisfies

y(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(64)

pDα
a y(x) = K2 + Iα

b (qy)(a)− Iα
b (qy)(x).

By using the proof of Theorem 4, we have

Ty(x) =
(x − a)α−1

Γ(α)

(
I1
a

(
1
p

Iα
b (qy)

)
(x0)− Iα

b (qy)(x0) I1
a

(
1
p

)
(x0)

)
+ Iα

b (qy)(x0) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x)

(65)

and

|Ty(x)− Tz(x)| ≤
(x − a)α−1

Γ(α)

(
I1
a

(
1
p

Iα
b (|q(y − z)|)

)
(x0) + Iα

b (|q(y − z)|)(x0) I1
a

(
1
p

)
(x0)

)
+ Iα

b (|q(y − z)|)(x0) Iα
a

(
1
p

)
(x) + Iα

a

(
1
p

Iα
b (|q(y − z|))

)
(x),

≡ A + B + C,

(66)

respectively. We estimated B using the same technique that was used in Theorem 3 and
Corollary 3, except that a was replaced by x0 in the latter, thus leading to minor changes in
the estimate. This gives

B ≤ ||1/p||∞||q||∞(b − a)α

αΓ(α)2

∫ b

x0

(s − x0)
α−1 |y(s)− z(s)| ds

≤ ||1/p||∞||q||∞(b − a)α

αΓ(α)2
(b − x0)

α−1/2
√

2α − 1
||y − z||2,

≤ ||1/p||∞||q||∞(b − a)2α−1/2

αΓ(α)2
√

2α − 1
||y − z||2.

(67)

Now, C is estimated as in Theorem 3, i.e.,

C ≤ ||1/p||∞||q||∞
α Γ(α)2

(b − a)2α−1/2
√

2α − 1
||y − z||2. (68)

Finally, A in (66) consists of two terms, and we can write A = A1 + A2 as before,
which is where the associations should be clear. Then, we have

A1 =
(x − a)α−1

Γ(α)
I1
a

(
1
p

Iα
b (|q(y − z)|)

)
(x0)

=
(x − a)α−1

Γ(α)2

∫ x0

a

1
p(s)

∫ b

s

|q(y − z)|(t)
(t − s)1−α

dt ds

≤ (x − a)α−1

Γ(α)2 ||q||∞
∫ x0

a

1
p(s)

∫ b

s
(t − s)α−1 |y(t)− z(t)| dt ds

≤ ||1/p||∞||q||∞
Γ(α)2

(b − a)α−1/2
√

2α − 1
(x − a)α−1(x0 − a) ||y − z||2.

(69)
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Of course, (69) may be strengthened by a bound that is independent of x0, i.e., one
such as

A1 ≤ ||1/p||∞||q||∞
Γ(α)2

(x − a)α−1
√

2α − 1
(b − a)α+1/2||y − z||2. (70)

Similarly,

A2 ≤ ||1/p||∞||q||∞
Γ(α)2

(x − a)α−1
√

2α − 1
(b − a)α+1/2||y − z||2. (71)

By combining (70) and (71), we obtain

A ≤ 2
||1/p||∞||q||∞

Γ(α)2
(x − a)α−1
√

2α − 1
(b − a)α+1/2 ||y − z||2. (72)

Thus, through using (67), (68) and (72) together with (66), we obtained the bound

|Ty(x)− Tz(x)| ≤

2 ||1/p||∞||q||∞
Γ(α)2

√
2α − 1

{
(b − a)2α−1/2

α
+ (b − a)α+1/2(x − a)α−1

}
||y − z||2,

≡ c1 {c2 + c3 (x − a)α−1} ||y − z||2,

(73)

where the definitions of the various constants c1, c2, and c3 in (73) should be clear from the
display. Using (73), we can now obtain

∫ b

a
|Ty(x)− Tz(x)|2dx

≤ c2
1||y − z||22

∫ b

a
{c2

2 + 2c2c3(x − a)α−1 + c2
3(x − a)2α−2} dx

≤ c2
1||y − z||22

(
(b − a)c2

2 + 2c2c3
(b − a)α

α
+ c2

3
(b − a)2α−1

2α − 1

) (74)

or

||Ty − Tz|| ≤ c1

(
(b − a)c2

2 + 2c2c3
(b − a)α

α
+ c2

3
(b − a)2α−1

2α − 1

)1/2

||y − z||2. (75)

From (75), we find that T is a contraction on X provided that

c1

(
(b − a)c2

2 + 2c2c3
(b − a)α

α
+ c2

3
(b − a)2α−1

2α − 1

)1/2

< 1. (76)

The fixed-point theorem guarantees the existence of a unique fixed point, which—of
course—must be the (a.e.) zero solution.

4. Two-Point Boundary Problems

We show that the analysis in the previous sections extends naturally to the study of the
so-called two-point boundary value problems on an interval [a, b]. In other words, the initial
conditions are placed at two points (usually the end points a and b of the interval under
consideration), and then one seeks solutions to the problem at hand with those conditions
imposed. As such, now we consider the problem

Dα
b(pDα

a y)(x) + q(x) y(x) = 0, (77)

which is subject to a set of conditions of the form

I1−α
a y(a) = K1 and given (pDα

a y)(b) = K2, (78)
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where the Ki are both the given constants, i.e., a Dirichlet-type condition at x = a and a
Neumann-type condition at x = b. Note that the quantity (pDα

a y)(x) is now evaluated
at x = b in lieu of x = a. This change leads to a two-point boundary value problem
where solutions of (77) are now sought that satisfy both conditions in (78). The techniques
from the previous sections led us to formulate the existence and uniqueness results for the
solutions of such two-point boundary value problems, i.e., (77) and (78). As will be noted,
the problem in this section is actually a little easier to solve than the initial value problem
(9) and (10) that were considered earlier.

As before, we proceed formally from (77), except that we now apply Iα
b to both sides

(see Property 3) to find

(pDα
a y)(x)− (pDα

a y)(b) + Iα
b (qy)(x) = 0, (79)

i.e.,

Dα
a y(x)− 1

p(x)
(pDα

a y)(b) +
1

p(x)
Iα
b (qy)(x) = 0. (80)

This time, by applying Iα
a to both sides of (80) and using Property 1, we can obtain

(when compared with (13))

y(x) =
(x − a)α−1

Γ(α)
I1−α
a y(a) + Iα

a

(
1
p

)
(x)(pDα

a y)(b)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(81)

As before, there are two different cases: the case where I1−α
a y(a) = 0, and the one

where I1−α
a y(a) ̸= 0. The conditions leading to the existence and uniqueness of solutions

to the problems at hand are identical, however. Once again, we do not assume any sign
restrictions on the leading coefficient p. The proofs are sketched as they lead to no new
methods.

Theorem 6. Let p, q be complex-valued measurable functions on [a, b], |p(x)| < ∞ a.e. on [a, b],
which also satisfy (15) and (16). If c1 c2 < 1, then the two-point boundary value problem (77) which
is subject to (78) with K1 = 0, and where K2 is arbitrary has a unique solution y ∈ AC[a, b].

Proof. Once again, we considered the normed space (X, || · ||∞) of the real valued continu-
ous functions defined on [a, b]. Note that I1−α

a y(a) = 0 is in force in (81). We can define a
map T on X by setting

Ty(x) = Iα
a

(
K2

p

)
(x)− Iα

a

(
1
p

Iα
b (q y)

)
(x). (82)

Then, any fixed point of T will satisfy both the first and the second of (78). The proof
of Theorem 1 shows that all quantities appearing in (82) are continuous such that TX ⊂ X.
Next, let y, z ∈ X. Then, we obtain

|Ty(x)− Tz(x)| ≤ Iα
a

(
1
|p| Iα

b (|q (y − z)|)
)
(x).

The term on the right above corresponds to the term denoted by B in Theorem 1.
Hence, by that discussion, we have |Ty(x)− Tz(x)| ≤ c1c2||y − z||∞, from which we can
obtain

||Ty − Tz||∞ ≤ c1 c2||y − z||∞.

As such, T is a contraction on X if c1 c2 < 1. The above result then follows.



Fractal Fract. 2024, 8, 148 16 of 18

The case of continuous coefficients and p(x) > 0 are covered as a special case, as
was expected.

Corollary 4. Let p, q ∈ C[ a, b], p(x) > 0 for all x ∈ [a, b]. If

(b − a)2α

Γ(α + 1)2 ||1/p||∞ ||q||∞ < 1, (83)

then the two-point boundary value problem (77) that is subject to (78), with K1 = 0 and K2 being
arbitrary, has a unique solution y ∈ AC[a, b].

Proof. Using the definitions, it is easy to show that

c1 ≤ (b − a)α

Γ(α + 1)
||1/p||∞

and

c2 ≤ (b − a)α

Γ(α + 1)
||q||∞.

Thus, (83) implies that c1c2 < 1; thus, the theorem applies and gives the conclusion.

We will now review the case where K1 ̸= 0. It is covered similarly but we also now
seek solutions in L2[a, b].

Theorem 7. Let p, q be complex-valued measurable functions on [a, b], |p(x)| < ∞ a.e. on [a, b],
which also satisfy (32) and (33). Let 1/2 < α < 1. If

c5
√

c4
√

b − a
Γ(α)

< 1 (84)

then the two-point boundary value problem (77) that is subject to (78), with K1 ̸= 0 and K2 being
arbitrary, has a unique solution y ∈ L2[a, b].

Proof. Let X =
(

L2(a, b), || · ||2
)
, and let us define a map T on X by (see (81)). We thus

have

Ty(x) =
(x − a)α−1

Γ(α)
K1 + Iα

a

(
K2

p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x). (85)

TX ⊂ X is a consequence of the discussion in Theorem 3. Next, we have

|Ty(x)− Tz(x)| ≤ Iα
a

(
1
|p| Iα

b (|q(y − z)|)
)
(x) ≤

c5
√

c4

Γ(α)
||y − z||2,

by the estimate (37). Hence, we have

||Ty − Tz||2 ≤
c5
√

c4
√

b − a
Γ(α)

||y − z||2,

which shows that T is a contraction on X provided that

c5
√

c4
√

b − a
Γ(α)

< 1.

The result then follows as before.
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Corollary 5. Let p, q ∈ C[ a, b], p(x) > 0 for all x ∈ [a, b], and let 1/2 < α < 1. If

k
α Γ2(α)

(b − a)2α

√
2α − 1

< 1, (86)

where k = ||1/p||∞||q||∞ > 0, then the two-point boundary value problem (77) that is subject to

I1−α
a y(a) = K1 ̸= 0 and (pDα

a y)(b) = K2 (87)

has a unique solution y ∈ L2[a, b].

Proof. In using the definitions and the continuity assumptions, we obtain

c4 ≤ ||q||2∞
∫ b

t
(s − t)2α−2 ds ≤ ||q||2∞(b − a)2α−1

2α − 1

and (see the proof of Corollary 1)

c5 ≤ ||1/p||∞(b − a)α

Γ(α + 1)
.

With these estimates, it is a simple matter to see that (86) implies (84), and that this
completes the proof.

Remark 3. We have shown that, under some mild assumptions, the mixed Riemann–Liouville–Caputo
fractional differential equation defined as in (77) and (78) always possesses two types of solutions.
Either all the solutions are continuous in [a, b] (if I1−α

a y(a) = 0 and 0 < α < 1 ), or they are
continuous in (a, b] but are still in L2(a, b) (if I1−α

a y(a) ̸= 0 and 1/2 < α < 1).

5. Conclusions

In this article, we have stated and proved the existence and uniqueness theorems for
fractional differential equations of the form

Dα
b(pDα

a y)(x) + q(x) y(x) = 0,

where 0 < α < 1, Dα
b is a right-Caputo differential operator and Dα

a is a left-Riemann–Liouville
differential operator under very general conditions on the coefficients of p, q, which involve
measurability and no sign conditions on either p or q. The advantage of this formulation
is that our equation includes the classical Sturm–Liouville equation upon taking the limit
as α → 1. We have shown that the initial value problem, when properly formulated and
under suitable conditions on p, q, will always have its solutions in L2[a, b]. We have also
given conditions under which the two-point boundary problem

I1−α
a y(a) = K1 and given (pDα

a y)(b) = K2

that is associated with the above equation has a unique solution in some suitable spaces
depending on whether K1 is or is not zero.
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