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Abstract: In this paper, a fractional-order control method based on the twin-delayed deep deter-
ministic policy gradient (TD3) algorithm in reinforcement learning is proposed. A fractional-order
disturbance observer is designed to estimate the disturbances, and the radial basis function network
is selected to approximate system uncertainties in the system. Then, a fractional-order sliding-mode
controller is constructed to control the system, and the parameters of the controller are tuned using
the TD3 algorithm, which can optimize the control effect. The results show that the fractional-order
control method based on the TD3 algorithm can not only improve the closed-loop system performance
under different operating conditions but also enhance the signal tracking capability.

Keywords: FODOB; FOSMC; radial basis function network; TD3 algorithm

1. Introduction

Fractional-order calculus stands out for its flexible description of the behavior of
nonlocal and non-Markovian dynamics, providing a rich mathematical tool for modeling
complex systems. Its main applications include the modeling of nonlinear and nonsmooth
system dynamics [1], the simulation of multiscale complex systems [2], the analysis of
non-Markovian processes [3], as well as in the fields of signal processing, control sys-
tems and financial modeling [4]. In the field of control, fractional-order control has been
combined with many traditional control schemes, such as fractional-order PID control [5],
fractional-order robust control [6], and fractional-order sliding-mode control [7]; these
fractional-order control methods have been developed in depth at the theoretical level
to form a sound theoretical system and have achieved extensive and powerful results in
practical applications.

As a traditional control strategy, fractional-order sliding-mode control is able to cope
with the nonlinearity and uncertainty of the system more flexibly [8–10]. However, with the
increase in system complexity and nonlinearity, choosing the optimal values of controller
parameters often becomes a great difficulty [11]. Faced with this problem, different scholars
have used a variety of optimization algorithms over the years, such as early adaptive
control [12], the particle swarm algorithm [13], the genetic algorithm [14], and the wolf-
pack algorithm [15]. These algorithms have had some success, but as technology advances,
they struggle to handle increasingly complex problems.

In recent years, with the continuous development of artificial intelligence technol-
ogy, more and more advanced algorithms have been applied to the control field [16].
Among them, reinforcement learning algorithms based on neural networks are increasingly
becoming a focus of research because their flexibility and adaptability make them more
adaptable to complex environments [17–23]. Reinforcement learning efficiently masters
system dynamics by learning through the interaction of an agent with the environment [24].
This approach transforms the system control problem into a process in which the agent
learns the optimal control strategy through continuous trial and error [25], and it can also
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learn without prior knowledge of the system model [26,27], which offers a flexible ap-
proach for real-time controller parameter optimization. Specifically, under the framework
of reinforcement learning, the intelligent body adjusts the control strategy according to
feedback signals by interacting with the environment and gradually optimizes the con-
troller parameters [28,29]. This learning approach is more adaptive, especially in the face of
a high-order system complexity, significant nonlinearities, and rapid changes in dynamic
characteristics, where traditional static parameter optimization methods may appear to be
inadequate [30]. Therefore, reinforcement learning provides a more intelligent solution for
controller parameter optimization, which is expected to show more significant performance
improvements in practical applications.

In this paper, a fractional-order control method based on TD3 reinforcement learn-
ing is proposed to optimize the parameters. A fractional-order disturbance observer is
designed for estimating the disturbance signals present in the system, while an RBF net-
work is designed for approximating the possible uncertainties in the system, and finally,
a fractional-order sliding-mode controller is designed for controlling the system. For the
parameter optimization part, it is performed by the TD3 reinforcement learning algorithm,
which consists of six deep neural network networks designed to inhibit the bootstrap
phenomenon in the reinforcement learning algorithm [31], so that the output of the network
can converge to the optimal solution quickly. On this theoretical basis, a valve-controlled
hydraulic system is selected for design and simulation in Matlab/Simulink to verify the
effectiveness of the method proposed in this paper, and at the same time, in order to
reflect the advantages and disadvantages of the proposed method, a series of comparative
experiments are designed.

In summary, the main work of this paper can be succinctly summarized in the follow-
ing three areas:

i. The fractional-order disturbance observer is designed to estimate the system distur-
bance signal, and the RBF network is selected to approximate the uncertainties of
the system; then, a fractional-order sliding-mode controller is designed to control the
system according to the estimated value of the disturbance observer;

ii. The TD3 algorithm is introduced to optimize the parameters of the controller, and an
improved loss function is designed to improve the learning performance of the algorithm,
accelerate the convergence of the network output, and optimize the control effect;

iii. It is verified through simulation that not only the control effect of the proposed method
is better than the selected comparison control method, but that its also has a great
robustness and generalization capability.

This paper is organized as follows. Section 2 introduces the proposed fractional-
order control method, including the system state equation generalization and the designed
fractional-order disturbance observer with an RBF network structure, based on which the
fractional-order sliding-mode controller is designed. Section 3 introduces the fundamentals
of the TD3 algorithm [32] and defines the reward function and loss function used. Section 4
demonstrates the stability of the designed method to verify its theoretical correctness.
In Section 5, the proposed method is simulated in Matlab/Simulink using a valve-controlled
hydraulic system as a model, and a series of control simulations are performed to verify
the practical feasibility of the proposed method. Finally, conclusions and future work
are presented.

2. Design of Fractional-Order Control Method

In this section, the fractional-order control part of the proposed method is accom-
plished for a system generalization including a fractional-order disturbance observer, an
RBF network, and a fractional-order sliding-mode controller.

For a common system, the equation of state can be expressed as{
ẋ = Ax + Bu + f (x) + d
y = Cx

(1)
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where x is the system state, and x ∈ Rn; A is the system parameter matrix, A ∈ Rn×n, B is
the control matrix, and B ∈ Rn×q; u is the control signal, u ∈ Rq, C ∈ Rp×n is the output
matrix, d ∈ Rn×1 is the disturbance signal, and f (x) ∈ Rn×1 is the uncertainty of system.

In this paper, the Riemann–Liouville fractional-order calculus formula is defined
as [33]:

Dαg(x) =
1

Γ(n− α)

dn

xn

∫ x

a

g(t)

(x− t)α+1−n dt (2)

where α represents the differential, 0 < α < 1, Γ(·) represents the Gamma function, n
represents the smallest integer larger than α, usually taken as 1, and a, x represents the
lower and upper limits of the integral.

For the disturbance signal, the fractional-order disturbance observer is given by{
Dλz = −L

(
Dλ−1z + LDλ−1x

)
− L

(
ADλ−1x + BDλ−1u + Dλ−1 f̂ (x)

)
d̂ = z + Lx

(3)

where z is the disturbance observer auxiliary vector, L is the gain matrix, −L is the Hurwitz
matrix with n distinct eigenvalues, d̂ is the estimate of the disturbance, and f̂ (x) is an
estimate of the model uncertainty.

Theorem 1. Assume that the disturbance is bounded and its derivative is also bounded, which
means that ∥d(t)∥ ≤ ς,

∥∥ḋ(t)
∥∥ ≤ ζ. Define the estimation error of the disturbance

ed(t) = d(t)− d̂(t). Based on the structure of the designed disturbance observer, the estimation
error of the disturbance is bounded when the system uncertainty estimation error f̃ (x) is bounded,
which means that ∥ed(t)∥ ≤ ξ, where ξ is a very small constant greater than zero.

Proof. Define M = −L; then, M is a Hurwitz matrix with n distinct eigenvalues, so there
exists an invertible matrix X such that X−1MX = diag(λ1, λ2, · · · , λn). Therefore, there
exists a positive constant σ such that

∥∥eMt
∥∥ ≤ σeλmax(M)t, where σ =

∥∥X−1
∥∥∥X∥ [34].

Differentiating the estimation error ed(t) for the disturbance yields the following equation:

d(ed(t))
dt = ḋ(t)− ˙̂d(t) = ḋ(t)− d

dt (z + Lx)
= ḋ(t) + L(z + Lx) + L

(
Ax + Bu + f̂ (x)

)
− L(Ax + Bu + f (x) + d)

= ḋ(t) + Ld̂(t)− Ld(t) + L f̂ (x)− L f (x)
= ḋ(t)− Led(t)− L f̃ (x)

It can be obtained that ėd(t) = ḋ(t) + Med(t) + M f̃ (x). The subsequent proof is given
in the stability analysis on ed(t).

For the model uncertainty that may exist in the system, a radial basis function (RBF)
network is used for approximation. The network structure of an RBF has the ability for
high-speed learning, the ability to approximate a nonlinear function, which improves the
model’s fitting ability, and it can adapt to a variety of complex input–output mapping, so it
is very flexible in practical applications. Moreover, compared with other types of neural
networks, the RBF network structure is relatively simple, which makes it easy to realize
and adjust [35]. The structure of the RBF network used in this paper is shown in Figure 1.

The input–output relationship for each layer can be expressed as an input layer,

θi = xi, (i = 1, 2, · · · , n), an implicit layer, hj = enetj , netj = −
m
∑

j=1

∥θj−cj∥2

b2
j

, (j = 1, 2, · · ·m),

and an output layer, Yi = Wi
T H = ωi1h1 + ωi2h2 + · · ·+ ωimhm, where ∥·∥ is the Euclidean

paradigm, H is an implicit layer function vector H = [h1h2 · · · hm]
T , cj is the center vec-

tor, bj is the width of the radial basis function, and Wi is the ith set of column vectors
of the weight matrix W from the implicit layer to the output layer, which means that
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W =


ω11 ω12 · · · ω1m
ω21 ω22 · · · ω2m

...
...

. . .
...

ωn1 ωn2 · · · ωnm


T

, where i is the number of neurons in the input and

output layer, and j is the number of neurons in the hidden layer.

Figure 1. Structure of the RBF network.

Defining the optimal weights vector as W∗, the system uncertainty part function f (x)
can be expressed as [36]

f (x) = W∗T H + ε (4)

where ε =
[

ε1 ε2 · · · εn
]T is the smallest approximation error of the RBF network,

H = ℵ(x, c, b), ℵ(·) is the arithmetic function from the input layer to the output of the
implicit layer; since the system uncertainty f (x) is bounded, there exists an upper bound
Wmax for W∗, which means that ∥W∗∥ ≤Wmax.

Defining the estimate of the RBF network for the system uncertainty f (x) as
f̂ (x) = ŴT H, the estimation error can be written as [36]

f̃ (x) = f (x)− f̂ (x)
= W∗T H − ŴT H + ε

=
(

W∗T − ŴT
)

H + ε

= W̃T H + ε

(5)

where ε satisfies ∥ε∥ ≤ εmax, with εmax a bounded constant.
Based on the fractional-order disturbance observer’s estimate of the disturbance signal

d̂ and the RBF network’s estimate of the system’s uncertainty f̂ (x), the sliding-mode surface
of the fractional-order sliding-mode controller is given by

s = C1e + C2Dλ−1e (6)

where e is the system tracking error, e = yd − y, determined by the desired output yd and
the actual output y of the system, C1 and C2 are positive real numbers, and 0 < λ < 1 is
the order of the fractional-order differentiation.
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Deriving the sliding-mode surface and taking the sliding-mode convergence law as
−ks − kssgn(s), where ks and k are the sliding-mode convergence law parameters and
ks, k > 0, and substituting into (1), the control law can be obtained by

u = (CB)−1
(

ẏd +
C2

C1
Dλe +

ks + kssgn(s)
C1

)
− B−1 Ax− B−1d− B−1 f (x) (7)

Substituting the disturbance signal estimator of (3) with the system uncertainty esti-
mator f̂ (x) yields the following final control law:

u = (CB)−1
(

ẏd +
C2

C1
Dλe +

ks + kssgn(s)
C1

)
− B−1 Ax− B−1d̂− B−1 f̂ (x) (8)

3. TD3 Algorithm Based on Fractional-Order Control Method

In this section, a TD3 algorithm based on the designed fractional-order control method
is proposed, and we design the reward function and loss function of the TD3 algorithm
based on the proposed fractional-order control method, which in turn makes it effective for
the optimization of the parameters of the fractional-order control method.

As a kind of reinforcement learning algorithm, the basic principle of the TD3 algorithm
is also composed of a critic and an actor, two kinds of networks of the agent and the
environment for the interactive operation. More specifically, Figure 2 shows the agent
interacting with the environment to obtain the state st and rewards rt, the output of the
action at at moment t, and the update of the two kinds of networks within the agent is
based on the loss function.

Figure 2. The relationship between environment and agent.

In this paper, the state of the environment st is set as the error signal for each state of
the system, which means that st =

[
e1(t) e2(t) · · · en(t)

]T , and the reward signal
rt is set to the negative of the weighted sum of the absolute values of the error signals

for each state of the system, which means rt = −
n
∑

i=1
ηi|ei(t)|, where ηi > 0 denotes the

weight of the ith error signal in the reward function, which needs to be set according to
the actual situation; the action at of the actor network’s output are the parameters of the
fractional-order controller which should be optimized.

In the reinforcement learning algorithm, the Bellman equation is defined as [37]

Ut = rt + γUt+1 (9)



Fractal Fract. 2024, 8, 99 6 of 17

where rt denotes the reward acquired by the intelligence in the environment,

Ut =
n
∑

k=1
γk−1rt+k−1 is a value function that represents the sum of the rewards that the

intelligence expects to acquire in a continuous process after moment t, and where 0 < γ < 1
denotes the discount rate.

For both sides of (9), the expectation based on the state S and action A at a moment
can be obtained, and the value function of the action at that moment can be obtained by

Eπ [Ut|St = st, At = at ] = Eπ(r(st, at)) + γEπ [Ut+1|St+1 = st+1, At+1 = at+1 ] (10)

In the reinforcement learning algorithm, the estimation of the value function of the
action is carried out through the critic network, so there is a certain bias, at which point
the Bellman equation’s equal sign does not hold. Defining the difference between the left
and right sides of (10) as the temporal-difference error (TD error) δTD(t), it can be written
as [38]

δTD(t) = Qπ(st, at|ϖt )− (r(st, at) + γQπ(st+1, at+1|ϖt )) (11)

where ϖt is the parameter of the critic network at moment t.
In order to solve the bootstrapping of the overestimation in traditional reinforcement

learning algorithms, the TD3 algorithm adopts two sets of critic networks and target critic
networks with identical structure and parameters; the corresponding network outputs
are called Critic1 network Q1,π(s, a|ϖ1 ), Critic2 network Q2,π(s, a|ϖ2 ), Target Critic1 net-
work Q′1,π(s, a|ϖ′1 ), and Target Critic2 network Q′2,π(s, a|ϖ′2 ). The algorithm adopts the
strategy of smoothing regularization to reduce the estimation error, adding a noise signal
ϵ ∼ clip(N (0, σ);−c, c) to the action output from the actor network, so that the target value
ytarget = r(st, at) + γ ·Qπ(st+1, at+1) can be expressed as [31]

ytarget = r(st, at) + γmin
i=1,2

(
Q′1,π

(
st+1,

(
a′t+1 + ϵ

)∣∣ϖ′ j )) (12)

The agent in the TD3 algorithm stores each state transfer pair (s, a, r, s′) in the replay
buffer during each interaction with the environment, and since in the process of learning
by the intelligent body, the selection of the experience should be considered to prioritize
the learning value, in this paper, a nonuniform sampling was designed as

P(X = ri) = eα(|ri |)
(

n

∑
i=1

eα(|ri |)
)−1

(13)

where P(X = ri) denotes the probability of drawing a state transfer pair corresponding to
reward ri, α is a parameter that controls the shape of the distribution, and n denotes the
total number of samples in the replay buffer.

Based on the sampling probability in (13), N samples are taken from the replay buffer
and the loss function of the critic network is constructed using the mean squared error
(MSE), which can be written as

Jϖ(t) =
2

∑
j=1

Jϖj(t) = −N−1
2

∑
j=1

N

∑
i=1

(
Qj,π(s, a|ϖ )i − ytargetj,i

)2
(14)

For the actor network, in order to maximize the future expected return of the current

strategy, which means that π(a|θ ) = arg max
θ

Est ,at

(
∞
∑
i=t

γi−tRi

)
, and in order to improve

the explorability of the action space, the loss function was designed as

Jθ(t) = −

N−1
N

∑
j=1

Estj ,atj

 ∞

∑
i=tj

γi−tj Ri

+ αHθ(π)

 (15)
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where θ is the parameter of the actor network, Hθ(π) = ∑a π(s|θ ) logπ(s|θ ) is a measure
of uncertainty in the distribution of strategies, and α is the weight parameter for that item.

For both critic network and actor network parameters ϖ, θ are updated using the
gradient descent method, which can be expressed as [31]

ϖt+1 = ϖt − α∇ϖ Jϖ(t)

θt+1 = θt − β∇θ Jθ(t)
= θt − β

(
N−1 ∑∇aQπ(s, a|ω )∇θπ(s|θ ) + α∇θ Hθ(π)

) (16)

where α and β are the learning rate of the critic network and actor network.
For the target network parameter, a soft update is performed by introducing the

update shift τ of the network parameter, which means [31]:

ϖ′ i,t+1 = τϖi,t+1 + (1− τ)ϖ′ i,t (i = 1, 2)
θ′t+1 = τθt+1 + (1− τ)θ′t

(17)

Finally, the TD3 algorithm uses lagged updating for the actor network, which means
that the actor network is updated once when the critic network is updated multiple times.
Based on the above description, a structure of a fractional-order control method based on
the TD3 algorithm is proposed, and the corresponding pseudocode is shown in Algorithm 1.

Algorithm 1 FOCS pseudocode based on the TD3 algorithm
Initialize critic networks Q1,π(s, a|ϖ1 ) and Q2,π(s, a|ϖ2 ) and actor network πθ with
random parameters ϖ1, ϖ2, θ
Initialize target networks ϖ′1 ← ϖ1, ϖ′2 ← ϖ2, θ′ ← θ
Initialize replay buffer B
for t = t0 to t = t f do

Output action based on current parameters at ∼ πθ(st) + ϵ, ϵ ∼ clip(N (0, σ);−c, c),
Take at for FOCS, observe the error e(t), calculate r, and observe new state st+1
Store the transfer pair (s, a, r, s′) in B
if n ≥ N \\ n is the number of transfer pair in replay buffer B.

Sample N transfer pairs and calculate the loss function of critic network Jϖ(t)
Update ϖ by ϖt+1 ← ϖt − α∇ϖ Jϖ(t)

if Critic network after d updates
Calculate the loss function of critic network Jθ(t)
Updateθ by θt+1 ← θt − β∇θ Jθ(t)
Update target network by

ϖ′t+1 ← τϖt+1 + (1− τ)ϖ′t
θ′t+1 ← τθt+1 + (1− τ)θ′t

end if
end if

end for

4. Stability Analysis

In this section, the stability of the proposed control method is substantiated through a
detailed proof, emphasizing the theoretical feasibility of the proposed approach.

For the proposed fractional-order disturbance observer, the Lyapunov function is
defined as

Vd =
1
2

eT
d ed (18)

The derivation of (18) and substitution into (1), (3), and (5) yield
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V̇d = eT
d ėd = eT

d

(
ḋ− ˙̂d

)
= eT

d
(
ḋ− (ż + Lẋ)

)
= eT

d
(
ḋ−

(
D−λ+1Dλz + L(Ax + Bu + f (x) + d)

))
= eT

d
(
ḋ− Led − L f̃ (x)

)
= eT

d Med + eT
d M f̃ (x) + eT

d ḋ
≤ λmax(M)eT

d ed + λmax(M)eT
d
(
W̃T H

)
+ λmax(M)eT

d ε + 1
2
(
eT

d ed + ḋT ḋ
)

≤
(

2λmax(M) + 1
2

)
eT

d ed +
λmax(M)

2 tr
(

HT H
)
tr
(
W̃TW̃

)
+ 1

2
(
λmax(M)εTε + ḋT ḋ

)
≤
(

2λmax(M) + 1
2

)
eT

d ed +
λmax(M)m

2 tr
(
W̃TW̃

)
+ 1

2
(
λmax(M)ε2

max + ζ2)
(19)

where λmax(M) is the largest eigenvalue of M which is a Hurwitz matrix so it can be
obtained that λmax(M) < 0. In order to make the estimation error of the fractional-order
disturbance observer for the disturbance signal stable, M should satisfy λmax(M) < −1/4.

In order to keep the approximation error of the designed RBF network for the system
uncertainty within a certain range, the adaptive law of the RBF network weights and the
implicit layer function update law are taken as

˙̂W = η−1(−KŴ − C1HsTC
)

(20)

where η ∈ Rm×m is the designed positive-definite diagonal matrix, K > 0 are the designed
parameters of the adaptive law, s and C1 are the sliding-mode surface and the parameter
which was designed in (6), and H is the implicit layer function vector.

For the proposed RBF network, the Lyapunov function is defined as

Vf =
1
2

tr(W̃TηW̃) (21)

Derive Equation (21), and substitute into the RBF network’s adaptive law (20):

V̇f = tr
(

W̃Tη ˙̃W
)
= tr

[
W̃Tη

(
Ẇ∗ − ˙̂W

)]
= −tr

[
W̃Tη

(
η−1(−KŴ − C1HsTC

))]
= tr

(
W̃TKŴ

)
+ tr

(
W̃TC1HsTC

)
= Ktr

[
W̃T(W∗ − W̃

)]
+ tr

(
W̃TC1HsTC

)
≤ −K2 tr

(
W̃TW̃

)
+ K

2 ∥W∗∥
2 + tr

(
W̃TC1HsTC

)
≤ −K2 tr

(
W̃TW̃

)
+ K

2 W2
max + tr

(
W̃TC1HsTC

)
(22)

Based on the designed sliding-mode surface function, define the Lyapunov function

Vs =
1
2

sTs (23)

Deriving Equation (23) and substituting the system state equation shown in (1) with
the control law shown in (8) yield

V̇s = sT ṡ = sT(C1 ė + C2Dλe
)
= sT(C1(ẏd − Cẋ) + C2Dλe

)
= sT(C1(ẏd − C(Ax + Bu + f (x) + d)) + C2Dλe

)
= sT(C1

(
ẏd − C

(
Ax + B

(
(CB)−1

(
ẏd +

ks+kssgn(s)+C2Dλe
C1

)
−B−1 Ax− B−1d̂− B−1 f̂ (x)

)
+ f (x) + d

))
+ C2Dλe

)
= sT(−ks− kssgn(s)− C1C f̃ (x)− C1Ced

)
= −ksTs− sT(kssgn(s) + C1C f̃ (x) + C1Ced

)
≤
(
−k + ks

2 + C1∥C∥
2

)
sTs + C1∥C∥

2 eT
d ed +

ks
2 − sTC1C

(
W̃T H + ε

)
(24)

To prove the overall stability of the original system with the addition of a fractional-
order control method, define the Lyapunov function

V = Vd + Vf + Vs (25)
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A derivation of Equation (25) and a substitution of the Lyapunov derivation of (19),
(22), and (24) lead to

V̇ =
.

Vd +
.

Vf +
.

Vs

≤
(

2λmax(M) +
C1∥C∥+1

2

)
eT

d ed +
(
−k + ks

2 + C1∥C∥
2

)
sTs−

(
K
2 −

mλmax(M)
2

)
tr
(
W̃TW̃

)
+C1∥C∥

2 sTs + C1∥C∥
2 ε2

max +
K
2 W2

max +
1
2
(
ζ2 + λmax(M)ε2

max
)
+ ks

2

≤
(
−k + ks

2 + C1∥C∥
)

sTs +
(

2λmax(M) +
C1∥C∥+1

2

)
eT

d ed

−
(
K
2 −

mλmax(M)
2

)
tr
(
W̃TW̃

)
+ 1

2
(
ζ2 + λmax(M)ε2

max + C1∥C∥ε2
max +KW2

max + ks
)

≤ −
(

k− ks
2 − C1∥C∥

)
sTs−

(
−2λmax(M)− C1∥C∥+1

2

)
eT

d ed

−
(
K
2 −

mλmax(M)
2

)
tr
(
W̃TW̃

)
+ δ

≤ −κV + δ

(26)

where κ = min
((

k− ks
2 − C1∥C∥

)
,
(
−2λmax(M)− C1∥C∥+1

2

)
,
(
K
2 −

mλmax(M)
2

))
to satisfy

the system stability, the control system parameter 0 < C1 < −4λmax(M)−1
∥C∥ , k− ks

2 > C1∥C∥,
ks > 0 should be selected, and δ = 1

2
(
ζ2 + λmax(M)ε2

max + C1∥C∥ε2
max +KW2

max + ks
)
.

At this point, the system is boundedly stable.

5. Simulation Result

In this section, in order to validate the effectiveness of the proposed methodology,
a valve-controlled hydraulic system is selected as the object of study to design a series of
simulations. Firstly, to verify the online learnability of the TD3 algorithm, three rounds
of training states during the training process are selected for the comparison. Secondly,
the control effect is verified for the optimized fractional-order control method of the TD3
algorithm by employing the prescribed performance fractional-order sliding-mode con-
troller (PPC-FOSMC), an unoptimized fractional-order sliding-mode controller (FOSMC),
and a sliding-mode controller (SMC). Furthermore, the antidisturbance is proved for the
proposed method, and the simulation verification is carried out for different input signals
and disturbance signals. The results show that the fractional-order control method based
on the TD3 algorithm not only has good online learning ability and generalization ability
but also has a better control effect than the traditional FOSMC, SMC, and PPC-FOSM.
Finally, in order to verify that the designed method can still maintain a better control effect
under noise disturbance, a Gaussian noise is selected as the disturbance signal to simulate
using the online learning method.

5.1. Simulation Results of System Online Learning

A valve-controlled hydraulic system is a third-order system [39] which can be de-
scribed approximately as {

ẋ = Ax + Bu + Bdd + f (x)
y = Cx

(27)

where x = [xv, xs, xa]
T denotes the position, velocity, and acceleration, respectively, u

denotes the control input, and y denotes the output of the position. The state matrix, input
matrix, disturbance matrix, and output matrix A, B, Bd, and C are, respectively,

A =

 0 1 0
0 0 1
−R1 −R2 −R3

, B =

 0
0
b

,

Bd =
[

0 0 1
]T , C =

[
1 0 0

]
,

(28)
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where R1 = 4kkce β
mVt

, R2 =
4Bpkce β

mVt
+ k

m , R3 = 4kce β
Vt

+
Bp
m , b =

4kvksvkq βAp
mVt

, and the values of the
parameters of the valve-controlled hydraulic system are shown in Table 1.

Table 1. Parameters of the valve-controlled hydraulic system.

Name Symbol Numerical Value

Total mass of piston and load converted to piston m 5 kg
Piston area of hydraulic cylinder Ap 0.4734 m2

Springiness k 1
Flow-pressure amplification factor kce 3.005× 10−13

Modulus of elasticity of hydraulic fluid β 0.005
Total volume of hydraulic cylinder Vt 1.5 m3

Viscous damping coefficient of piston and load Bp 5
Servo amplifier gain kv 1

Servo valve gain ksv 4.733× 10−3

Flow gain of slide valve kq 1

The disturbance signal during the TD3 training was set to be d = 0.5sin(5πt), the sys-
tem uncertainty was f (x) = sin(2xa)cos(3xa), and the system expected the output position
signal to be xpd = sin(t); the training parameters are shown in Table 2.

Table 2. Parameters of the TD3 algorithm.

Name Numerical Value

Episode 1300
Episode step 100

Sampling time 0.1 s
Final time 10 s

Learning rate 0.001
Replay buffer 1× 106

Minimum batch size 128
Number of actor network layers 4
Number of critic network layers 9

Learning to train the system with the above parameters, the episode rewards and
average rewards obtained after 1900 episodes are shown in Figure 3a, and Figure 3b–d show
the state of the system for the selected episode 1, episode 500, and episode 1826. It can be
noticed that in the first 420 episodes, the episode reward fluctuates a lot, and after episode
420, the episode reward and the average reward stabilize for the first time, but at that
point, the network still cannot achieve a particularly good training effect. From episode 630
to episode 1300, the agent further explores the action space, and after episode 1300, the
episode reward and average reward converge to more optimal values, corresponding
to the system state. It can be found that the position and velocity signals of the system
corresponding to episode 1 have the worst tracking performance with both large errors
and desired signals, while the acceleration signals have the worst tracking performance
with more noise. Compared to episode 1, episode 500’s systematic position signal can
already track the desired signal at the 0.8th second but with a small error, the velocity
signal can track the desired signal after 2 s but with a small noise in between, and the
acceleration signal can only track the desired signal after the 4th second. Finally, compared
to the previous two, episode 1826 is definitely the best performer, with the position signal
tracking the desired signal in the first 0.1 s with very little error, and the velocity signal
tracking the desired signal with little error after that, despite oscillating in the first 0.1 s,
and with the acceleration signal tracking the desired signal after oscillating in the first 0.4 s
with an acceptable error.
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Figure 3. Episode reward and average reward with the training results of the 1826th episode:
(a) episode reward and average reward of 1900 episodes, (b) the 1st, 500th, and 1826th episode’s
position and expected position signals; (c) the 1st, 500th, and 1826th episode’s speed and expected
signals; (d) the 1st, 500th, 1826th episode’s acceleration and expected signals.

In order to better visually represent the training state of set 1826, the system’s individ-
ual signals and desired signals and their errors at that point in time are shown in Figure 4.
It can be seen that the position, velocity, and acceleration signals of the system have good
tracking performance, and the errors are all within a small range. The same is true for the
estimation of disturbance signals.
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Figure 4. The 1st, 500th, and 1826th episode’s system signal and expected signals with the error:
(a) position signal and expected signal, (b) position tracking error, (c) speed signal and expected
signal, (d) speed tracking error, (e) acceleration signal and expected signal, (f) acceleration tracking
error, (g) estimation of the disturbance signal and the actual signal, (h) estimation error of the
disturbance signal.
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5.2. Simulation Results of TD3-FOCS

For the online learning results of the valve-controlled hydraulic fractional-order
control method, the training results of the 1826th episode are shown in Figure 5 with
C1 = 0.001, C2 = 290, k = 945, ks = 43, λ = 0.55 selected as the controller parameters,
and the parameters of FODOB and the RBF network were set to L = 157, K = 7, and
η = I, which is a single-unit diagonal matrix for the subsequent comparative simulation
experiments; the simulation time was set to 100 s, and the final results are shown in Figure 6.

As can be seen from Figure 6, for the position signal, the proposed TD3-FOSMC had
the fastest convergence speed (first 0.03 s) and maintained the final steady-state error in
the range of (−0.001, +0.001), which was the best among the experimental results. For the
velocity signal, it also had the fastest convergence speed (first 0.25 s) and maintained the
final steady-state error in the range of (−0.005,+0.005), which was the best performance
among all the experimental methods. For acceleration signals, although the prescribed
performance of the fractional-order sliding-mode controller ended up with a smaller error
range, the convergence time was greater than the proposed TD3-FOSMC, which converged
in the first 0.3 s. Combining all the above control effects, it can be concluded that the
proposed TD3-FOSMC has a better speed and stability.
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Figure 5. Training results of the 1826th episode: (a) parameter C1, (b) parameter C2, (c) parameter k,
(d) parameter ks.
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Figure 6. TD3-optimized fractional-order control vs. unoptimized control method’s system signals
and expected signals and their errors: (a) position signal and expected signal, (b) position tracking
error, (c) speed signal and expected signal, (d) speed tracking error, (e) acceleration signal and
expected signal, (f) acceleration tracking error.

5.3. Simulation Results of Different Control Signals and Disturbance Signals

In order to demonstrate the robustness and versatility of the method, two control
signals (a triangular wave composite signal and a step signal) and two disturbance signals
(a strong sine wave signal disturbance and a triangular wave composite signal) were se-
lected for the simulation verification. This allowed a more comprehensive assessment of the
method’s antidisturbance performance under different control and disturbance conditions,
thus demonstrating the effectiveness of the method in mitigating the effects of an external
disturbance in a variety of practical situations.

As observed in Figure 7, the simulation results revealed the capability of accurately
tracking the desired signal under the influence of a triangular wave composite signal and
a strong sine wave signal disturbance. Specifically, the position signal achieved tracking
within a remarkably short duration of 0.07 s, with very small overshoots (less than 1%) in
the first 0.02 s, and the final steady-state error confined to a narrow range of (−0.001, 0.001).
In the first 0.3 s, the velocity signal had large to small fluctuations in the range of (−3.7, 6);
after that, it achieved synchronization with the desired signal and kept the steady-state
error within the range of (−0.01, 0.01). On the other hand, the acceleration signal fluctuated
in the range of (−12, 12) for the first 0.5 s and was after synchronized with the desired
signal and kept the steady-state error within the range of (−0.25, 0.25). The results show
that despite the large overshoot in the system response for the different input signals and
disturbance signals, the system still had good stability and fast performance.

Analyzing the results shown in Figure 8, when subjected to a step signal and a strong
triangular wave composite signal disturbance during the simulation, the obtained results
exhibited a marginally reduced performance compared to the previous scenario. Taking
the simulation time of 10 s as an example, it can be found that for the position, velocity, and
acceleration signals, there were large fluctuations in the first 1 s, and their stabilization time
was slowing down sequentially. For the position signal, there were fluctuations within the
range of (5, 15) within the first 0.3 s; after that, it could track the desired signal, and the
final steady-state error was limited to the range of (0, 0.004). The velocity signal exhibited
fluctuations within the range of (−10, 10) during the first 0.5 s, after which it synchronized
with the desired signal, and the final steady-state error was constrained to (−0.002, 0).
For the acceleration signal, fluctuations within the range of (−20, 20) occurred during the
initial 0.8 s, following which it converged to the desired value. The final steady-state error
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remained confined to a smaller range of (−0.0001, 0.0001). Despite a slight decrease in
performance, the results underscore the method’s ability to maintain effective control even
in the presence of challenging input signals and disturbance conditions.
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Figure 7. Simulation results of triangular wave composite signals and strongly interfering sine wave
signals: (a) position signal and expected signal, (b) position tracking error, (c) speed signal and
expected signal, (d) speed tracking error, (e) acceleration signal and expected signal, (f) acceleration
tracking error, (g) estimation of the disturbance signal and actual signal, (h) estimation error of the
disturbance signal.
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Figure 8. Simulation results of step signals and triangular wave composite signal: (a) position
signal and expected signal, (b) position tracking error, (c) speed signal and expected signal, (d) speed
tracking error, (e) acceleration signal and expected signal, (f) acceleration tracking error, (g) estimation
of the disturbance signal and actual signal, (h) estimation error of the disturbance signal.
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5.4. Simulation Results under Noise Disturbance

The control performance is illustrated for the method under noise disturbance. The noise
disturbance signal was selected with a mean value of zero, a variance of five, and a
frequency of 10 Hz, and the simulation verification was carried out by using the online
learning of the agent. The results are shown in Figure 9.

Analyzing Figure 9, it can be seen that the position signal exhibited minimal suscepti-
bility form the noise disturbance signal, with an overshoot of less than 3% observed only
within the initial 0.03 s. Subsequently, the position signal could track the desired signal,
and the final steady-state error could be maintained within the range of (−0.001, 0). The ve-
locity signal demonstrated minimal susceptibility to noise disturbances, with oscillations
confined to the range of (−1.6, 4.7) within the initial 0.08 s. Following that period, the signal
could adeptly track the desired trajectory, and the final steady-state error could satisfy the
narrow bounds of (−0.0015, 0.0015). Comparing with the earlier online learning outcomes,
the performance of the acceleration signal was degraded under the noise signal. The accel-
eration signal was oscillatory within the range of (−6, 6) during the initial 0.15 s. Despite
these challenges, it could approximately track the desired signal. However, due to the
influence of noise, it maintained a final steady-state error within the range of (−0.13, 0.13).
Thus, based on the analysis above, the proposed control method could achieve the control
of system within the bounded range under the noise signal.
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Figure 9. Simulation results under noise disturbance: (a) position signal and expected signal, (b) po-
sition tracking error, (c) speed signal and expected signal, (d) speed tracking error, (e) acceleration
signal and expected signal, (f) acceleration tracking error.

6. Conclusions

In this paper, a fractional-order control method based on the TD3 algorithm was
introduced. A fractional-order disturbance observer was designed to estimate the system’s
disturbance signal, and an RBF network was selected to approximate the uncertainties
in the system, and the fractional-order sliding-mode control method was also adopted to
design the controller. A valve-controlled hydraulic system was simulated and validated in
Matlab/Simulink using the agent online learning and the optimization parameters. Dif-
ferent control signals and disturbance signals were used in the optimized fractional-order
control system. The results showed that the limitations of this method mainly lay in the dif-
ficulty of setting up the training environment comprehensively. Despite some shortcomings,
the proposed method was generally fast and had good antidisturbance ability.
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